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By Section 11.3, the eigenfunctions for all three problems (in D, in Dy, and
in D,) are complete. Among the eigenfunctions of — A in the rectangle D are the
products v,W,,. Suppose now that there were an eigenfunction u(x, y) in the
rectangle, other than these products. Then, for some A,—Au=AuinDand u
would satisfy the boundary conditions. If A were different from every one of the
sums &, + f3,,, then we would know (from Section 10.1) that #is orthogonal to
all the products v,w,,. Hence

0 =(u, 0,Wm) = f [ f u(x, y)op(x) dX] Wn(Y) dy. (13)
So, by the completeness of the w,,,,
f u(x, Y)v,(x) dx=0 for all y. (14)

By the completeness of the v,,, (14) would imply that u(x, y) = Oforallx, y.So
u(x, y) wasn’t an eigenfunction after all.

One possibility remains, namely, that A =, + B, for certain n and .
This could be true for one pair 1, 1 or several such pairs. If A were such a sum,
we would consider the difference

w(x, ¥) = ux, ) = D CamPnX)Wi(D); (1)

where the sum is over all the n, m pairs for which = a, + B, and where
Com = (Uy VgWpy)/ |0,,W,5sl|2 . The function defined by (15) is constructed so as
to be orthogonal to all the products v,wy,, for both a, + Bp=4and o, +

B # A. It follows by the same reasoning as above that w(x, ) =0. Hence -
ux, y)=2 CrmVn (W () summed over &, + B,,=A. That is, u was nota .
new eigenfunction at all, but was just alinear combination of those old products .

v, W,, which have the same eigenvalue A. This completes the proof of Theorem
: o

EXERCISES

1. Verify that all the functions (7) are solutions of (1) if a is an eigenvalue Ay
and if [ fvy dx = 0. Why does the series in (7) converge?

2. Usethe completeness to show that the solutions ofthe wave equation in any
domain with a standard set of BC_satisfy the usual expansion
u(x, £y = =2_,[4,, cos(VA, ct) + By, sin(VA,, ct)]v,(x). In particular, show
that the series converges in the L2 sense.

3. Provide the details of the proof that w(x, ), defined by (15), is identically
Z€ro.

11.6 ASYMPTOTICS OF THE EIGENVALUES

The main purpose of this section is to show that An—> . In fact, we’ll show
exactly how fast the eigenvalues go to infinity. For the case of the Dirichlet
boundary condition, the precise result is as follows.
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Theorem 1. Fora two-dimension.
_ 1. - al problem — Ay = Auin any plan i
D with u =0 on bdy D, the eigenvalues satisfy the limit relatigxf e domain

An_4n
n A4° )

n—roo

where 4 is the area of D.
For a three-dimensional problem in any solid domain, the relation is

n—w H Vv’ (2)

where V' is the volume of D.

Example 1. The Interval

Let’s compare Theorem 1 with the one-dimen:

sional =
n2n2/[2, In that case, case where

. A2 g
lim &2 =2
Jim = —=, (3)
where /s the length of the interval! The same result (3) was also derived

for the one-dimensional Neumann condition in Section 4.2 and the

Robin conditions in Section 4.3.
o

Example 2. The Rectangle

Here the domainis D={0<x< g, 0 i -
s ;U<
explicitly in Section 10.1 that y < b inthe plane. We showed

_Px2 m2p2
Wt T @

ﬁg ;;11? eigenfunction gin( [ nx/.a) . _sin( mmny/b). Since the eigenvalues ate
y numbered using a pair of integer indices, it is difficult to see the

relationship between (4) and (1). F i i
. . For this ose it i i
introduce the enumeration function puspose L s convenient to

N(2) = the number of eigenvalues that do not exceed ). .(5)

If the eigenvalues are written in increasing order as in (11.1.2), then

N(A,) = n. Now we can ex .

: n express V(4) another way using (4
N(4) is the number of integer lattice points (1, m) whichga(re).ciatm'lehs
within the quarter-ellipse aine

]2 'm2 A .
2t == (>0m>0) (6)
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Figure 1

i i i int is the upper right
in the (/, m) plane (see Figure 1). Each such latt}ce pointis .
comer( of a square lying within the quarter ellipse. Therefore, N(A) is at

most the area of this quarter ellipse:
Aab
=— 0
N = y

For large A, N(A) and this area may differ by 'flpproximately thelength
of the perimeter, which is of the order VA. Precisely,

Aab Aab ®
T~ C=NO=
for some constant C. Substituting A = 4,,and N(4) = n, (8) takes the form
Anab Anab 9
Zn — VI, =n= 4z’ ©)

where the constant C does not depend on n. Therefore, upon dividing by
n, we deduce that

lim I = ﬁ, . (10)
n—e 0 ab ;
which is Theorem 1 for a rectangle. O

For the Neumann condition, the only difference is that / and 1 are allowed

to be zero, but the result is exactly the same:
A, 47 a1

lim—2=—.
n—roc B ab

To prove Theorem 1, we will need the maximin principle. It is like the

ini inci i i al constraints. Theidea
minimum principle of Section 11.1 but with more general co .
isthat any grthogona]ity constraints other than those in Section 11. 1 willlead to
smaller minimum values of the Rayleigh quotient.
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Theorem 2. Maximin Principle Fix a positive integer # = 2. Fix n — 1 arbi-

trary trial functions y,(x), . . . , Vn—1(X). Let
' . IVw|?
= min ———— 12
T 12
among all trial functions w that are orthogonal to y,, . . . , Vn—1: Then
Ay =max A, , (13)

over all choices of the n — 1 trial functions Vise oo s Vpei-

Proof. Fix an arbitrary choice of Vis « + v s Vn—y. Letw(x) = E};lcjvj(x)
be a linear combination of the first n eigenfunctions which is chosen to be

orthogonalto yy, . . . , y,_;. That is, the constants €15 - - ., Cyare chosen
to satisfy the linear system
n n
0= (21 ¢ivj, yk) = 21 (vj, )y (fork=1,...,n—1).
j= Jj=
Being a system of only n — 1 equations in » unknowns, it has a solution
€15 « - -, €y, DOt all of which constants are zero. Then, by definition (12) of

ks

Vw2 _ 2y cic(—Av;, vy)

= ——

vl 2 g CiCi(vy, )
R S Ry (14)
znc? 2t n

where we’ve again taken [lvjll = 1. This inequality (14) is true for every choice of
Y15 -+ . s Yn—1- Hence, max A, =< A,,. This proves half of (13).
To demonstrate the equality in (13), we need only exhibit a special choice of

Y15+ + + 5 Yp—y for which A, = 4,. Our special choice is the first 7 — | eigen- |
functions: y; = v, . . .,y,_, = Up— - By.the minimum principle for the nth
eigenvalue in Section 11.1, we know that

A=A,  for this choice. (15)
The maximin principle (13) follows directly from (14) and (15). o

The same maximin principle is also valid for the Neumann boundary
condition if we use the “free” trial functions that don’t satisfy any boundary
condition. Let’s denote the Neumann eigenvalues by 4 ;. Now we shall simulta-
neously consider the Neumann and Dirichlet cases,

Theorem 3. zjslj forallj=1,2, ...,

Proof. Let’s begin with the first eigenvalues. By Theorems 11.1.1 and
11.3.1, both A; and A, are expressed as the same minimum of the Rayleigh



308 CHAPTER 11 GENERAL EIGENVALUE PROBLEMS

Figure 2

quotient except that the test functions for A, satisfy one extra constraint
(namely, that w= 0 on bdy D). Having one less constraint, i | has a greater
chance of being small. Thus 1; < A;.

Now let n = 2. For the same reason of having one extra constraint, we have

T = A (16)

We take the maximum of both sides of (16) over all choices of trial functions
Vis - - - s Vu—1- By the maximin principle of this section (Theorem 2 and its
Neumann analog), we have

~

A, = max 1, = max A,, = 4,. o

Example 3.

For the interval (0, /) in one dimension, the eigenvalues are A, = n?n2//2
and 1, = (n — 1)2n%/[2 (using our present notation with 7 running from 1
to o), It is obvious that A <4, o

The general principle which is illustrated by Theorem 3 is that
any additional constraint will increase the value of the maximin. (17)

In particular, we can use this principle as follows to prove the monotonicity of
the eigenvalues with respect to the domain.

Theorem 4. If the domain is enlarged, each eigenvalue is decreased.

That is, if one domain D is coritained in another domain D', then 4, = 4;,
and 1, = A’ where we use primes on eigenvalues to refer to the larger domam
D’ (see Flgure 2).

Proof. Inthe Dirichlet case, consider the maximin expression (13) for D. If
w(x) is any trial function in D, we define w(x) in all of D’ by setting it equal to
zero outside D; that is,

ey = ] W(X) forxin D
w(x) {0 forxin D’ but x notin D. (18)

Thus every trial function in D corresponds to a trial function in D’ (but not
conversely). So, compared to the trial functions for D’, the trial functions for D
have the extra constraint of vanishing in the rest of D’. By the general principle
(17), the maximin for D is larger than the maximin for D’. It follows that
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An = A}, as we wanted to prove. But we should beware that we are avoiding the
difficulty that by extending the function to be zero, it is most likely no longer a
C? function and therefore not a trial function. The good thing about the ex-
tended function w’(x) is that it still is continuous. For a rigorous justification of
this point, see [CH] or [Ga].

The same kind of reasoning is valid in the Neumann case. Indeed, the
maximin principle for the Neumann boundary condition states that

5 5 5 . [IVw?
A, =max A, where A, = T

and the competing trial functions w(x) do not satisfy any boundary condition at
all. Asabove, these test functions on D may be extended to the larger domain D’
by setting them equal to zero outside D. In this case, the new trial functions
w’(x) may be discontinuous at the part of the boundary of D which isinternal to
D’ (see Figure 1.) Butin any case there are again more trial functions for D’ than
for D. That is, the maximin for D has more constraints, so that 4, = 1/ . Again
see [CH] for a complete proof. o

(19)

SUBDOMAINS

Our next step in establishing Theorem 1 is to divide the general domain D into a
finite number of subdomains D, . . .. , D,, by introducing inside D a system
of smooth surfaces Sy, Sy, . . .(see Figure 3). Let D have Dirichlet eigenvalues
Ay = A, =- - -and Neumann eigenvalues A; = A, =+ - -. Each of the subdo-
mains Dy, . . . , D, hasits own collection of eigenvalues. We combine a// of
the Dirichlet eigenvalues of al/ of the subdomains D, ... ,D,, intoasingle
increasing sequence fi; < fi, = - . We combine a/l of their Neumann eigen-
values into another single increasing sequence fi; < i, <

By the maximin principle, each of these numbers can be obtamed as the
maximum over trial functions y,, . . . , y,—; of the minimum over trial
functions w orthogonal to y;, . . . , ¥,—. As discussed above, although each
i, is a Dirichlet eigenvalue of a single one of the subdomains, the trial functions
can be defined in all of D simply by making them vanish in the other subdo-
mains. Thus each of the competing trial functions for u, has the extra restric-
tion, compared with the trial functions for A, for D, of vanishing on the internal
boundaries. It follows from the general principle (17) that

Ap = Uy foreachn=1,2, .. .. (20)
Figure 3
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On the other hand, the trial functions defining 71,, for the Neumann prob-
lem in D are arbitrary C2 functions. As above, we can characterize i, as

. N ~ . [[Vw|j2
fp=MAX Uy Hpe = THID Iwi2 * @1

where the competing trial functions are arbitrary on each subdomain and or-
thogonalto yy, . . . , ¥,—1. But these trial functions are allowed to be discon-
tinuous on the internal boundaries, so they comprise a significantly more exten-
sive class than the trial functions for 4,,, which required to be continuous in D.
Therefore, by (17) we have ji,, = 4, for each n. Combining this with Theorem 3
and (20), we have proved the following inequalities. .

Theorem 5.

=
-
A
>t
-
A
s
-
A
=
-

Example 4.

Let D be the union of a finite number of rectangles D =D, UD,U
- + - in the plane as in Figure 4. Each particular u, corresponds to one of
these rectangles, say D, (where pdependson n). Let A(D ) denote the area
of D,. Let M(A) be the enumeration function for the sequence u;,
Ug, . . . defined above:

M(2) = the number of u;, 45, . . . that do notexceed . (22)
Then, adding up the integer lattice points which are located within D, we
get k

. M) _ o ADy) _ AD)
T T

(23)

as for the case of a single rectangle. Since M(u,,) = n, the reciprocal of (23)
takes the form .

(24)
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Similarly,
lim Zn_ 47
noe . AD)’ (25)

By Theorem 5 it follows that all the lLimits are e i
3y 1 \ qual: lim A, /n =
lim A,/n = 4n/4(D). This proves Theorem 1 for unions of rectan: nes.

ju}

Now an arbitrary plane domain D can be a i i
: ‘ I pproximated by unions of
rectangles just as in the construction of a double integral (and asin gection 8.4)
Wrgh the help of Theorem 5, it is possible to prove Theorem 1. The details aré
omitted but the proof may be found in [CH]. : '

THREE DIMENSIONS

The three-dimensional case works th i
. € same way. We limit ou
to the basic example. vay..e tselves, however,

Example 5. The Rectangular Box

Let D'= {O<Jg< a,0 §y< b,0<z<c). As in Example 2, the enu-
meration function N(J) is approximately the volume of the ellipsoid

12 m2 k2</1
a2 pr 2T 2

in the first octant. Thus for large A

8§83 = T . (26)

and the same for the Neumann case. Substituting 1 = =
we deduce that ng A= i, and N(1) = n,

n—o H abc h n—wo -l:l— (27)

For the union of a finite number of boxes of volume V(D), we de-
duce that ’

32 ¢r2 ¥3/2
lim X 6m = lim ——A"/
; U n—e R V(D) n—e 0
Then a general domain is approximated by unions of boxes. o

For the very general case of a symmetric differential operatoras(11.4. 1),the
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statement of the theorem is modified (in three dimensions, say) to read

13/2 ;{ 3/2
n-»o N = 1}1—120 n
— 672 (28)
I plmx)/p(X)P72 dx

EXERCISES

Prove that (9) implies (10).

(a) Fora circular drumhead (D = disk), verify Theorem 1 directly from
Section 10.2 and the properties of Bessel functions.

(b) Do the same in the Neumann case.

(a) Foraspherical ball, verify Theorem 1 dlrecﬂy from Section 10.3 and
the prOpertles of Bessel functions.
(b) Do the same in the Neumann case.

Explain how it is possible that A, is both a maximin and a minimax.

For — A in the ellipsoid D = {x2 + y?/4 < 1} with Dirichlet BCs use the
monotonicity of the eigenvalues with respect to the domain to find esti-
mates for the first two eigenvalues. Inscribe or circumscribe rectangles or
circles, for which we already know the exact values.

(a) Find upper bounds.

(b) Find lower bounds.

In the proof of Theorem 1 for an arbitrary domain D, one must approxi-
mate D by unions of rectangles. This is a delicate limiting procedure.
Outline the main steps required to carry out the proof.

Use the surface area of an ellipsoid to write the inequalities that make (26)
a more precise statement.

For a symmetric differential operator in three dimensions asin (11.4.1),
explain why Theorem 1 should be modified to be (28).

Consider the Dirichlet BCs in a domain D. Show that the first eigenfunc-

tion v, (x) vanishes at no point of D by the following method.

(a) . Suppose on the contrarythat v;(x) = Oat some pointin D. Show that
both D+={x€ D:v;(x) >0} and D~ ={x€ D:v(x) <0} are
nonempty. (Hint: Use the maximum principle in Exercise 7.4.26.)

(b) Letv+(x)=v,(x) forx€D+and vt(x)=0forxeD™. Let v~ =
v, — vt+. Notice that |v;| = v+ — v~. Noting that v; =0 on bdy D,
we may deduce that Vo+ = Vo, in D, and Vo = 0 outside D. Simi-
larly for Vo—. Show that the Rayleigh quotient Q for the function |, |
is equal to A, . Therefore, both v; and |v|are eigenfunctions with the
eigenvalue 4.

(c) Use the maximum principle on|v,|to show that v; > Oin all of D or
v; <0inall of D.

(d) Deduce that A, is a simple eigenvalue (Hint: If u(x) were another
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eigenfunction with eigenvalue A,, let w be the component of u or-

thogonal to v, . Applying part (c) to w, we know that w > 0 or w < 0
or w=0in D. Conclude that w=0in D.)

10. Show that the nodes of the #th eigenfunction v,(x) divide the domain D

into at most n pieces, assuming (for simplicity) that the eigenvalues are

distinct, by the following method. Assume Dirichlet BCs.

(a) Suppose on the contrary that (x € D: v,(x) # 0) has at least n + 1
disconnected components D, UD,U. . . U Dpyy. Let wi(x)=

v,(x) forx € D;, and w; (x) =0 elsewhere You may assume that
Vw;(x) = Vv (x) for x E j» and Vw;(x) = 0 elsewhere. Show that
the Rayleigh quotient for w equals A

(b) Show that the Rayleigh quotlent for any linear combination w =
Cywypt t 0y ey also equals 4,,.

() Lety,,...,y,be any tral functlons Choose the n+ 1 coeffi-
cients ¢;j so that w is orthogonal to each of Y1, -+ -, Yy Use the
maxunm principle to deduce that A, , (« =< ||Vw||2/ Iwll2 = A,,. Hence
deduce that A, ; = A,,, which contradicts our assumpnon



