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1 Problem 1

Find the eigenvalues and the eigenfunctions for the Dirichlet and Neumann problems for
the Laplacian on a rectangle (0,4a) x (0, )

Solution

1.1 Dirichlet case

V2u = -Au
u(x,0)=0
u(x,b)=0
u(0,y) =0
u (a, y) =0
%u %u
Let u (x, y) = X (x) Y (x). Substituting this into the PDE =+ i —-Au gives

X"Y +Y"X = -AXY
Dividing by XY # 0 gives

XI/ + Y/I B A

X Y
X/I B Y// /\
X Y

Since the LHS depends on x only and the RHS depends on y only and they are equal, they

must be both constant. Say —u. The above becomes

X/I B Y// A 3
x "y “77F
Two ODE’s are therefore obtained from the above. They are
X" +uX=0 (1)
X(0)=0
X(@)=0
And
4t A=
y ThTH
v+ (A-u)=0
Let (/\ - y) =y constant. Hence the above gives the second ODE in y as
Y'+yY =0 (2)
Y(0)=0
Y(b)=0

Now the eigenvalues i,y and eigenfunctions for each ODE is found and from that result
the eigenvalue A is found using

A=y+u (3)
Starting with ODE (1) X" + uX =0

Case u<0
The solution to (1) is

X = Acosh( |y|x) + Bsinh( |y|x)

At x = 0, the above gives 0 = A. Hence X = Bsinh( |y|x). At x = a this gives 0 =

B sinh( |y|a). But sinh( |y|a) =0 only at 0 and \/mg # 0, therefore B = 0 and this leads

to trivial solution. Hence y < 0 is not an eigenvalue.



Case u=0

X=Ax+B

Hence at x = 0 this gives 0 = B and the solution becomes X = B. At x = a, B = 0. Hence the
trivial solution. y = 0 is not an eigenvalue.

Case u>0

Solution is

X = Acos (\/ﬁx) + Bsin (\/ﬁx)

At x = 0 this gives 0 = A and the solution becomes X = Bsin (\/ﬁx) Atx=a
0 = Bsin (\/ﬁa)
For non-trivial solution we want sin (\/ﬁa) =0 or \/ﬁa = kn where k =1,2,3, -+, therefore

krr\?
Uk = 7 k:1/2/31"' (4)

The corresponding Eigenfunctions are

k
ka):sm(j;x) k=1,2,3,--- (5)

Solving ODE (2) Y +yY =0

The same steps are repeated as above. The only difference is that now we obtain eigenvalues

2
= (2) m=123, (6)
And the corresponding eigenfunctions
. (mT
V(1) =sin (5-)

From (4,6) we see that the eigenvalues for V2u = —Au are, using (3)

m=1,2,3, - (7)

Ak,m = Ukt Ym
2 2
:(k_n) +(@) k:1/2/3/'”1m:]‘/2/3/”.
a b

And the eigenfunctions are from (5,7) are

(kN . (mn
CDk,m(x,y):sm 7x sm(Ty) k=1,2,3,---,m=1,2,3,--

1.2 Neumann case
Vou=-Au
aiyu (x,00=0
&iyu (x,b) =0
%u (O,y) =0

d
5” (u,y) =0

%u 22%u

Let u (x, y) = X (x) Y (x). Substituting this into the PDE Fe i Erie —-Au gives

X"Y +Y"X =-AXY



Dividing by XY # 0 gives

X// + Yl/ B A

X Y
Xl/ B Y/l /\
X Y

Since the LHS depends on x only and the RHS depends on y only and they are equal, they

must be both constant. Say —u. The above becomes
Xl/ B Y// A 3
x Ty T

Two ODE’s are therefore obtained from the above. They are
X" +uX=0 (1)
X' (0)=0
X' (a)=0
And

4 A=
y TATH

7+(/\—/J):O

Let (/\ - y) =y constant. Hence the above gives the second ODE in y as
Y'+yY=0 (2)
Y’ (0)=0
Y (b)=0
Now we find the eigenvalues y,y and eigenfunctions for each ODE and from this result
find

A=y+u 3)
Starting with ODE (1) X" + uX =0

Case u <0
The solution to (1) is

X(x) = Acosh( |y|x) + Bsinh( |y|x)

X' (x) = AyJu[sinh (\/mx) + B[] cosh (\/mx)

At x = 0, the above gives 0 = B. Hence X (x) = Acosh( |y|x) and X’ (x) = A,/|y| sinh (,/|y|x)
At x = a this gives 0 = A/|u|sinh (w/|y|a). But sinh( |y|a) = 0 only at 0 and 4/|ula # 0,
therefore A = 0 and this leads to trivial solution. Hence u < 0 is not an eigenvalue.
Case u=0

X=Ax+B

X =A

At x = 0 this gives 0 = A and the solution becomes X = B, therefore X’ =0. At x =4, 0=0.
Hence any constant B will work. Let this constant be Cy. Therefore u = 0 is an eigenvalue
with corresponding eigenfunction X (x) = Cy, a constant.

Case u>0

Solution is
X (x) = Acos (\/ﬁx) + Bsin (\/ﬁx)
X’ (x) = =Ay/usin (\/ﬁx) + B/ cos (\/ﬁx)
At x = 0 this gives 0 = B and the solution becomes X (x) = Acos (\/ﬁx) Hence X’ (x) =
—A4/psin (\/ﬁx) At x = a this gives
0 = -Ay/sin (ypa)



For non-trivial solution we want sin (\/ﬁa) =0or \/ﬁa = kmt where k=1,2,3, ---, therefore

kTt 2
U = — k=1,2,3,--- (4)

The corresponding Eigenfunctions are

X (x) = cos (I%nx) k=1,2,3,-- (5)

Solving ODE (2) Y +yY =0

The same steps are repeated as above. The only difference is that now we obtain eigenvalues
y =0 also and corresponding eigenfunction constant, say D, and also obtain

2
=) m=r25e (6)
and corresponding eigenfunctions
M
Y., (y) = cos (Ty) m=1,2,3,-- (7)
From (4,6) we see that the eigenvalues for V2u = —Au are
0 k=0,m=0
Ak,m =
g +¥m k=1,23,---,m=1,23,--

0 k=0,m=0

("7”)2 F (5 k=1,2,3,,m=1,2,3,--

And the eigenfunctions are from (5,7) are

1 k=0,m=0
D ’ = T mmn
n(x y) cos(k x)cos(Ty) k=1,2,3,---,m=1,2,3,--

o
Where in the above the constant eigenfunction that corresponds to the zero eigenvalue is
taken as 1.



2 Problem 2

Prove that the wave equation uy (x,t) = ¢?V2u, t > 0, x € Q € R with the Dirichlet boundary
conditions u (x,t) = 0 for x € dQ,t > 0 has solution

u(x,t) = i (An cos (\//\_nct) + B, sin (\//\_nct)) v, (x) (1)
n=1

Where A,,v, are respectively, eigenvalues and eigenfunctions of the Dirichlet problem
for the Laplacian in Q. Write in an analogous form the solution to the heat equation
up(x,t) = cV2u, t > 0, x € Q € R with Dirichlet boundary conditions u (x,t) = 0 for
x€dQ,t>0.

For the wave PDE

We will show the solution given solves the PDE by substituting it into the PDE and see if
it gives an identity.

u (x,t) = ? Z(A cos (\/_ct)+B sm(\/_ct))vn (%)

Assuming continuouseigenfunctlons, term by term differential is allowed, and the above
becomes

[oe]

up (x,t) = E % (An cos (\//\—nct) + B, sin (\/A_nct)) v, (x)
n=1
= i (—An\//\_nc sin (\//\_nct) + Bn\//\—nc coS (\/A_nct)) v, (x)
n=1

Taking one more time derivatives gives

uy (x,t) = i (—An/lnc2 cos (\/)\_nct) - B,A,c?sin (\/)\_nct)) v, (%) (2)

n=1
Similarly for the spatial coordinate

u, (x,t) = ? Z (A cos (\/—ct) + B,, sin (\/_ct)) v, (x)
= ; (An coS (\/A_nct) + B, sin (\/A_nct)) v, (x)

Taking one more space derivatives gives

V2u = i (An cos (\//l—nct) + B, sin (\/A_nct)) vl (x)

But since v, (x) is an elgenfunctlon then —v;/ (x) = A,,v, and the above simplifies to
V2u=- E (An cos (\//\—nct) + B, sin (\//\_nct)) A0, () (3)
n=1

Substituting (2,3) into uy (x,t) = ¢>V2u gives

2 (—AnAnc2 cos (\//\—nct) — B,A,c?sin (\/)\—nct)) v, (x) = 2 ( f}l (An cos (\//\_nct) + B, sin (\//\—nct)) A0, (x))
c? Z ( —A, cos (\/_ct) B, sin (\/_ct)) A0, (%) = =c? i (An co (\/—ct) + B, sin (\/_ct)) A0, (%)

1

—c? E (A cos (\/_ct) + B, sin (\/_ct)) A0, (x) = —c? Z (A cos (\/—ct) + B, sin (\/_ct)) A0y, (%)
The LHS is the same as the RHS. Hence the solution given satisfies the wave PDE.
For the heat PDE

g

For the heat PDE, we want to show that the following solution

W) = 3 A nto, () (@

n=1
Satisfies u; (x,t) = cV2u.

8 o
Uy (x/ t) = E 2 Ane_/\ndvn (X)
n=1



Assuming term by term differential is allowed the above becomes
< 7
(1) = 3 o Ane™ 0, ()

= E _AnAnce_A”Ctvn (x) (%)

n=1

Similarly for the spatial coordinate

8 oo
Uy (X, t) = % E Ane_AnCtvn (X)
n=1

= 2 Aye 0] ()

n=1

Taking one more space derivatives gives
()
2., _ —A,ct
Veu = EAne o (x)

n=1

But since v, (x) is an eigenfunction, then -v}, (x) = A,v,. The above becomes
V== Ae A0, (x) (6)
n=1
Substituting (5,6) into u; (x,t) = cV2u gives

Y —Auduce Mo, (x) = o - Y Ae A0, (x))

n=1 n=1
(o] 2 [oe]
—c ) Apdue 0, (x) = —c Y, Aye Mt 4,0, (%)
n=1 n=1

The LHS is the same as the RHS. Hence the solution (4) satisfies the heat PDE.



3 Problem 6.3.9

1 3x-2y>1
4 Compute its partial derivatives % and Z the sense
0 3x-2y<l1 ox %

of generalized functions.

Suppose f(x, y) =

Solution

The following is a plot of the above function in 3D

X o)

fxy) 05t
0.0 k™

Figure 1: Plot of f(x,y)

f[x_, y_] :=Piecewise[{{1, 3x-2y > 1}, {0, 3x-2y>1}}]
p = ParametricPlot3D[{x, y, f[x, Y1}, {X, -3, 3}, {y, -3, 3},
AxeslLabel -» {"x", "y", "f(x,y)"}, ImageSize - 400,
BaseStyle -» 12, Exclusions - True,
ExclusionsStyle -» LightGray, PlotTheme -> "Classic", PlotPoints - 50];

Figure 2: Code used for the above plot

Similar to what we did in 1D, when taking a derivative and there is a jump discontinuity,
an impulse 6 (x) is generated at the location where the jump discontinuity is located. The
location of the jump here is on the line 3x — 2y —1 = 0. This is a step function but in 3D.
Hence by chain rule

a 4 8
$:$(3x—2y—1)6(3x—2y—1)
=30 (3x -2y -1)
2 1
:5(’“‘5 ‘5)
And
If \xy) 9
#:a—y(Bx—Zy—l)é(Bx—Zy—l)
=26 (3x -2y -1)

3 1
—6(—§x+y+§)



4 Problem 6.3.10

Find a series solution to the rectangular boundary value problem 4.91-92 which is

Viu=0 on a rectangle R:{0<x<a,0<y<b}

u(x,0) = f(x)

u(x,b) =0
u(O,y) =0
u(a,y) =0

when the boundary data f(x) = 6(x - &) is a delta function at a point 0 < £ < a. Is your
solution infinitely differentiable inside the rectangle?

Solution

Figure 3: The problem to solve. Laplace PDE in rectangle

2 2
Let u (x, y) = X (x) Y (x). Substituting this into the PDE % + j—y’; = 0 and simplifying gives
XI/ YI/

X Y
Each side depends on different independent variable and they are equal, therefore they

must be equal to same constant.

X/I Y/I
— =-—==*A
X Y
Since the boundary conditions along the x direction are the homogeneous ones, —A is

selected in the above.

x_Y_,
X Y
Two ODE’s are obtained
X"+ AX =0 (1)
With the boundary conditions
X(0)=0
X(@) =0
And
Y’ -AY =0 (2)
With the boundary conditions
Y(0) = f ()

Y()=0
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In all these cases A will turn out to be positive. This is shown below.
Case 1 <0
The solution to (1) is

X = Acosh (\/Wx) + Bsinh (\/Wx)

At x = 0, the above gives 0 = A. Hence X = Bsinh (\/Wx) At x = g this gives X =
Bsinh (\/Wa). But sinh (\/Wa) =0 only at 0 and VIAla # 0, therefore B = 0 and this leads to

trivial solution. Hence A < 0 is not an eigenvalue.

Case A =0

X=Ax+B

Hence at x = 0 this gives 0 = B and the solution becomes X = B. At x = a, B = 0. Hence the
trivial solution. A = 0 is not an eigenvalue.

Case A >0
Solution is
X = Acos (\/Xx) + Bsin (\/Xx)
At x = 0 this gives 0 = A and the solution becomes X = Bsin (\/Xx) Atx=a
0 = Bsin (\/Xa)

For non-trivial solution sin (\/Xa) =0or \/Xa =nmn where n =1,2,3, ---, therefore

2
Anz(%”) n=1,2,3,--

Eigenfunctions are
X, (x) = B, sin (?x) n=1,2,3,- (3)
For the Y ODE, the solution is
Y, = C,, cosh (n%y) + D,, sinh (n%y) (4)
Applying B.C. at y = b gives
0 =C, cosh (%b) + D,, sinh (?b)
smh (n; b)
%)

C, =
cosh (%)
=-D tanh(nn )

cosh
a
Hence (4) becomes

Y, = -D, tanh (n%b) cosh (n_ny) + D, sinh (%y)

:Dn(sinh(?y) taﬂh(_b)COSh( ))

Now the complete solution is produced

U, (x, y) =Y,X,
=D, (sinh (%y) —tanh (%b) cosh (?y)) B, sin (%x)

Let D,B,, = B,, since a constant. (no need to make up a new symbol).

U (x, y) =B, (Sinh (n%y) — tanh (n%b) cosh (n%y)) sin (n%x)



11

Sum of eigenfunctions is the solution, hence
- . (nT nm nm . (N
u (x, y) = ;;1 B, (smh (7]/) —tanh (717) cosh (7y)) sin (73() (5)
The nonhomogeneous boundary condition is now resolved. Aty =0
u(x,0)=fx)=0(x-¢

Therefore (5) becomes
nmn

O(x—¢&) = E -B,, tanh (n_nb) sin (—x)
—~ a a
Multiplying both sides by sin (%x) and integrating gives

f O (x—¢&)sin (@x) dx = —f sin (@x) Z B, tanh (n_nb) sin (n_nx) dx
0 a 0 a a a

n=1

s a
=- 2 B,, tanh (Eb) f sin (Ex) sin (@x) dx
a 0 a a

n=1

-~ tan (22 (2)
a 2

Hence
) l;a 0 (x—&)sin (n%x) dx
a tanh (%b)

n=

But fl O(x = &)sin (%x) dx = sin (%5) by the property delta function. Therefore

o 2an(Z)
" ﬂtanh(ﬂb)
a

This completes the solution. (4) becomes

u (x, y) = 2 i ﬁ (sinh (n%y) —tanh (nn b) cosh (n%y)) sin (n%x)

a,3 tanh (7[7) 7
= —g i sin (n_né) sin (n_nx) M — cosh (n_n )
= a a tanh (%b) a’

Looking at the solution above, it is composed of functions that are all differentiable. Hence
the solution is infinitely differentiable inside the rectangle.

Here is a plot of the above solution using a = 77,b = %, E=1.

ux.y)

Figure 4: Plot of u(x,y)
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Sinh[*y]
-2 . nr . nt nrx
ufx_,y_, &1 := —me[—g] Sln[-—x] —a-COSh[—y] ;
I a a Tanh[ "% b] a
a

a=Pi;b=1/2; £=1;
p = Plot3D[u[x, y, €], {X, @, a}, {y, @, b}, PlotRange » {Automatic, Automatic, {-3, 7}},

PlotPoints - 40, AxesLabel » {"x", "y", "u(x,y)"},

ColorFunction -» Function[{x, y, z}, Hue[.45 (1-2)]]];

Figure 5: Code used for the above plot
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5 Problem 6.3.18

(a) Use the Method of Images to construct the Green’s function for a half-plane {y > 0}
that is subject to homogeneous Dirichlet boundary conditions. Hint : The image point is
obtained by reflection. (b) Use your Green’s function to solve the boundary value problem
With y > 0,u(x,0)=0
Ay — 1
—Au = Ty

Solution

5.1 Part (a)

The first step is to find Green function in the half-plane G (x, v; xo,yo). To do this we will
use Green function in the whole plane, called T(x, v xo,yo). There (x, y) is an arbitrary
point in upper half plane and (xo,yo) is fixed point where the impulse is located. We set
an impulse at the point (xo,yo) and a negative impulse at (xo, —yo). This way the end effect
is that at the boundary which is x = 0 the half plane Green function is zero which satisfies

the boundary conditions of the given PDE. The following diagram helps illustrate this
setup

(z,9)

° positive impulse here

x (20, %0) I'(z,y;x0,Y0) = 7% In \/(x —20)2 + (y — 10)?

x (20, —yo) (@970, —y0) = —5= In\/(z — 20)2 + (y + yo)?

negative impulse here

G("L', Y; Zo, yO) - F($7 Y; Zo, yO) - F(IL', Y; Zo, _yO)

~

Green function for Green function for
upper half-plane whole plane

Figure 6: Using method of images

Hence

G(xy,xo,yo):——ln(\/(x xo) + y Yo ]+21—nln(\/(x xo) +(y+y0)]

= —4L In ((x xo) + (y yo) ) 4— ((x - x0)2 + (y + yo)z)
1, - 50+ (y+y0)
A =) + (y—wo)
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5.2 Partb

Now that the Green function is known, the solution is

u (x, y) = jj; j(;y G (x, v; xo,yo)f (xo,yo) dxodyo

_jﬂ 1 @—%f+@+%f L
L [

(x - Xo)2 + (y - yo)2

1 v 1 (=202 + (v + o)’
- Z§~L;(1kyo)[1~;ln[ Ho| Ao .

(=x0? + (v~ o)

But

]i}nrx—XM2+(y+yaj}ho:an—xhl«y+y&34ﬁ“n[@4ﬂmi]+xhq«y_y03

(x = x0)% + (¥ - vo) (v-0)

=2yom —2x1In (y+y0) +2x1In (%) +2xIn (y—yo)
Yo

= 2y07'(+2x1n(—y_y0) +2xln—y+y0
¥y+Yo Y=Yo

y—yo+my+yﬂ

¥y+Yo ¥Y—=Yo

y—yoy+mj

Y+Yo¥Y—Yo

= 2yom + 2x (ln

= 2yom + 2xln(

= 2yom

Hence (1) becomes

1 Y
o) = [

1 y
=3 (vo—In (yo + 1))é

=3 (-m(y+)

Checking: When y = 0 then u (x, y) = —% In (1) = 0. Ok. Solution does not depend on x but
only on y.
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6 Problem 6.3.21

Provide the details for the following alternative method for solving the homogeneous
Dirichlet boundary value problem for the Poisson equation on the unit square:

uxx+uyy:—f(x,y) 0<xy<l1

u(x,0)=0
u(x,1)=0
u(O,y) =0
u(l,y) =0

(a) Write both u(x,y) and f(x,y) as Fourier sine series in y whose coefficients depend on x.
(b) Substitute these series into the differential equation, and equate Fourier coefficients to
obtain an infinite system of ordinary boundary value problems for the x-dependent Fourier
coefficients of 1. (c) Use the Green’s functions for each boundary value problem to write
out the solution and hence a series for the solution to the original boundary value problem.
(d) Implement this method for the following forcing functions (i) f (x, y) = sin (ny), (ii)

f (x, _1/) = sin (7x) sin (Zny), (iii) f (x, y) =1.

Solution
6.1 Parta
Let

u(vy) = ZA,Z () sin (V)
(9) = B, 0 sin (V1)

The eigenvalues are known to be A, = n?m? forn = 1,2, --- for these boundary conditions
on x =0 to x = 1. Hence the above becomes

u (x, y) = E A, (x) sin (nny) 1)
n=1
f (x, y) = E B, (x)sin (nny) (2)
n=1
6.2 Partb
From (1)
Uy, = i Al (x) sin (nny)
n=1
Upy = i Ayl (x)sin (nny)
n=1
uy, = i nmA, (x) cos (nny)
n=1
Uy = — i n’m? A, (x) sin (nny)
n=1

Substituting the above back into the original u,, +u,, = —f (x, y) gives

i A (x) sin (rmy) - i n’m? A, (x) sin (nny) = - i B, (x)sin (nny)
n=1 n=1

n=1
o0

2 (A,’q’ (x) = n®’m?A, (x)) sin (nny) = i B, (x)sin (nny)

n=1 n=1

Equating coefficients in the above gives
A () = nPr? A, (x) = =B, (%)

For all n =1,2,---. This is an infinite system of ordinary boundary value problems in A (x)
where B, (x) acts as the external input.
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6.3 Part c
We now want to find Green function for A/ (x) - n?>n?A, (x) = 0 with A, (0) = 0, A, (1) = 0.
The solution is
A, (x) = A cosh (nmx) + Bsinh (nmx)
Hence the Green function is
Aj cosh (nmx) + By sinh (nmx)  x < xg
G (x; %) =

A, cosh (nmx) + By sinh (nmx) x> xg

At x = 0, the top branch gives 0 = A; and at x = 1 the lower branch gives A, cosh (nm) +
B, sinh (nm) = 0 or A, = —B, tanh (nm). Using these in the above gives

G (x:x0) = B; sinh (n7mx) X < X
e —B, tanh (n7) cosh (nmx) + By sinh (nmx) x> xg
B B sinh (nmx) X < X (1A)
- B, (sinh (nmtx) — tanh (nm) cosh (nmx)) x> xp

There are two unknowns By, B, to solve for. Hence we need two equations. The first equation
is found by equating the above Green function at x = xj. This gives
By sinh (nmtxg) = B, (sinh (n7txy) — tanh (n7n) cosh (nmxg)) (1)
Taking derivatives of G (x;x() gives
%G (6 x0) = { nmB; cosh (nmx) X < X

B, (nm cosh (nmtx) — nmt tanh (nm) sinh (nmx)) X > X

The second equation is found by the condition of the jump discontinutiy on the above
derivative at x = xy. Hence

nmBy cosh (nmxy) — By (n7t cosh (nmxy) — nmtanh (nm) sinh (nmxg)) =1 (2)
Solving (1,2) for By, B, gives

cosh (n7xp) — coth (nm) sinh (nmxg)

B, = sinh (n7 (xg — 1))

nm "~ nmsinh (nm)
coth (nm) sinh (nmxg)  sinh (n7x))

B, = =
2 nm nm tanh (nmn)

Substituting these back in (1A) gives the final Green function

{ . h?n SiI;h(nT() sinh (Tlﬂ (xo - 1)) sinh (nnx) x < Xg <x,
. _ sinh(nmxg . 3
G(x;x) = e tanh(u) (sinh (n7tx) — tanh (nm) cosh (nmx)) x> x

X > Xy

{ s sinh (n7t (xg — 1)) sinh (n7x) X < X
= . sinh(nmxg) sinh(nmxg)
sinh (nnx) nm tanh(nm) h

cosh (nmx) x> xg

1 . .
_ { o) sinh (n7 (xg — 1)) sinh (n7x) X < Xp

e o sinh (n7t (x — 1)) sinh (nmtxg) x> xg

Now that the Green function is found, the solution to A} (x) — n?m2A,, (x) = B, (x) is given
by

A, (x) = fo ’ m sinh (7t (x - 1)) sinh (n7xg) B,, (xg) dxq

sinh (n7 (xg — 1)) sinh (n7tx) B,, (xg) dxg

1 1
" j; n7sinh (nm)

sinh (n7t (x — 1)) fx sinh (n7mtxg) B,, (xg) dxg (3)
0

A () = n7sinh (nm)

1
m sinh (nnx)j; sinh (n7t (xg — 1)) B, (xg) dxg
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Now that A, (x) is found, the solution to the PDE is found from
u (x, y) = E A, (x) sin (nny)
n=1

Where A, (x) is given by (3). B, (x) is the Fourier series coefficient of f (x, y) which needs
to be found depending on f (x, y). This is done below.

6.4 Partd
(i) f (x, y) = sin (ny)

We first need to find the Fourier coefficients B, (x). Since f (x, y) = Z:;l B,, (x) sin (nny),
then multiplying both sides by sin (mny) and integrating gives

fl sin (ny) sin (mny) dy = i B, (x) fl sin (mny) sin (nny) dy
0 n=1 0

= 2B, ()

Therefore
B,(x)=2 fl sin (ny) sin (nny) dy
For n =1 the above becomes 0
By (x) = 2f1 sin? (ny) dy =1
And for all other terms B,, = 0 due to ortl(iogonality of sin functions. Therefore now that

B, (x) is found, then from (3) A, (x) can be found. Only n =1 term is needed.

Ay (%) = sinh (7 (x - 1)) f " sinh (xg) dg + ——
0 TC S1

1
e sinh (7rx) L sinh (7t (xg — 1)) dxg

1
7t sinh (1)

sinh (77 (x — 1))

[cosh (71x0) ]x sinh (7tx)

cosh (1t (xg — 1)) !
S

7t sinh (1) 7t sinh (1)

1
= b (o) sinh (7t (x — 1)) (cosh (rx) — 1) +
Hence the solution to the PDE is

u (x, y) = i A, (x)sin (rmy)
n=1

= A; (x)sin (ny)

m sinh (7tx) (1 — cosh (7 (x — 1)))

= (m sinh (77 (x — 1)) (cosh (rx) - 1) +

m sinh (7tx) (1 - cosh (7 (x - 1)))) sin (ny)

1 ) ' ' '
= o anhn (sinh (7w (x — 1)) — sinh (7tx) + sinh 7) sin (ny)

The following is a plot of the above solution
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Figure 7: Plot of above solution

u[x_,y_1 := _r (sinh[x (x-1)] - Sinh[7xx] + Sinh[x]) Sin[xy]
72 Sinh[]

p = Plot3D[u[x, y], {x, 0, 1}, {y, 0, 1},
AXeSLabel - {"X", "y"_v "u(X,y}"},
BaseStyle - 12];

Figure 8: Code for the above plot

(i) f (x, y) = sin (7x) sin (27'cy)

We first need to find the Fourier coefficients B, (x). Since f (x, y) = Z:’:l B,, (x) sin (nny),
then multiplying both sides by sin (mny) and integrating gives

f 1 sin (7rx) sin (271y) sin (mny) dy = i B, (x) f 1 sin (mny) sin (nny) dy
0 n=1 0

: t . 1
sin (7tx) fo sin (2ny) sin (mny) dy = EB’" (%)
Therefore
B,, (x) = 2sin (7tx) f 1 sin (2ny) sin (nny) dy
0

For n = 2 the above gives
1
B, (x) = 2sin (1x) f sin? (2ny) dy
0
= sin (71x)
And for all other terms B, = 0 due to orthogonality. Hence from (3) when n =2

Ay (x) = sinh (27 (x - 1)) f " sinh (27xg) sin (xg) dxg
0

1 ) 1 .
" 27 sinh (271) sinh (2m) j; sinh (27t (xg — 1)) sin (11xg) dxg
But
1
f sinh (27txy) sin (tx) dxg = = (2 cosh (27tx) sin (7x) — cos (7x) sinh (27tx))
0
And

f ' sinh (27 (xg — 1)) sin (7txg) dxg = 5_—711 (2 cosh (27t (x — 1)) sin (7tx) + cos (7tx) sinh (27 (1 — x)))
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Hence

Ay (x) = sinh (27t (x — 1)) (% (2 cosh (27tx) sin (7tx) — cos (7tx) sinh (27zx)))

1
27t sinh (27)

+ m sinh (27tx) (5_—:( (2 cosh (27t (x — 1)) sin (7tx) + cos (rtx) sinh 27 (1 - x))))

Ay (x) = —% sin (7x)
Hence the PDE solution is
u(x,y) = f] A, (x)sin (nmy)
= :21 (x) sin (2my)
= L gin(n)sin (2my)

572
The following is a plot of the above solution

Figure 9: Plot of above solution

-Sin[Pi x] Sin[2Piy]

5 2
P = Plot3D[u[x, Y], {x, 9, 1}: {y) 9, 1}:

AxesLabel -» {"x", "y", "u(x,y}"},
BaseStyle - 12];

ufx_, y_] :=

Figure 10: Code for the above plot

(i) f(x,y) =1

We first need to find the Fourier coefficients B, (x). Since f (x, y) = 2;’;1 B,, (x) sin (nny),
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then multiplying both sides by sin (mny) and integrating gives
1 o 1
- f sin (mny) dy = Z B, (x) f sin (mny) sin (nny) dy
0 n=1 0

1 ) 1
_J; sin (nny) dy = B, (x) 5

1

B, (x) = % (cos (nny))o

= i (cos(nm) —1)
nm
2 n

- 2 (-

Hence from (3)

A, (x) = %((—1)”—1) sinh (n7t (x — 1)) f sinh (n7x,) dxg

nmsinh (nm) 0

2 ; : '
+ — ((_1) - 1) sinh (nnx)L sinh (nm (xy — 1)) dxg

nm sinh (nm)

Or
A, () = = ((-1)" ~1) ———— sinh (7 (v ~ 1) [M]
nm n7sinh (nm) nm )
2 " . cosh (n7 (xg — 1)) !
T ((_1) - 1) nmsinh (nm) sinh (nnx)[ nm L
Or
Ay () = % (1" -1) o G, S (17 (x = 1)) (cosh () - 1)
1
+ % (1" -1) T sinT (g S (7)1 cosh (nm (x = 1)
Or
A, (x) = nig%nh_(i)n) (sinh (n7t (x — 1)) (cosh (nmtx) — 1) + sinh (n7tx) (1 — cosh (nm (x —1))))

2((-1)"-1)

= B s (i) (sinh (mtnx) — sinh (7tn) — sinh (mnx — 7n))

Hence the solution is
u (x, y) = Z A, (x)sin (mzy)
n=1

2 Uy
TS “ 3 sinh (nm)

The following is a plot of the above solution

[sinh (7tnx) — sinh (7tn) — sinh (7tn (x — 1))] sin (nny)
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Figure 11: Plot of above solution

ufx_, y_] :=
2 -1)"-1
= Sum[L
73 n3Sinh[n x]
p = Plot3D[u[Xx, y], {X, 0, 1}, {y, 0, 1},
AxesLabel -» {"x", "y", "u(x,y}"},
BaseStyle - 12];

(Sinh[n nx] - Sinh[n x] -Sinh[nrr (x-1)]) Sin[nny], {n, 1, 30}];

Figure 12: Code for the above plot
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7 Problem 6.3.23

Write out the details of how to derive (6.134) from (6.133).

1€l x - &|
1]

G(x;&) = —% log |lx — &l + % log
1, €l x - &|

= o 6.133
2r % e — &l (6.133)
1 1+ r%p? —2rpcos (0 -
G(r,0:p,0) = 7 log| —— (0-9) (6.134)

2 4+ p? = 2rp cos (6 - cp)
Solution
Since x = (rcos 0,rsin0) and & = (p cos ¢, p sin c[)), then
1€ = p? cos? ¢ + p? sin? [0
= p?
Hence
I&I% x = p? (rcos 0, rsin 0)
= (rpz cos 0, rp? sin 6)

And therefore

&P x - & = (rpz cos 0, rp? sin 6) - (p cos ¢, p sin qb)

= (rp2 cos 0 — pcos @, rp?sin O — psin q))

Hence
||||5||2 x - -5” = \/(rp2 cos 0 — p cos cp)z + (,,pz sin 0 — psin cp)z

= \/(72p4 cos? 0 + p? cos? ¢ — 2rp3 cos O cos (p) + (rzp‘*‘ sin 6 + p2 sin® ¢ — 2rp3 sin Bsin <p)

= \/r2p4 (cos2 6 + sin’ 6) + p? ((:os2 ¢ + sin’ <p) - 2rp3 (cos 0 cos ¢ + sin O'sin qb)

= \/r2p4 + p? - 2rp3 (cos 0 cos ¢ + sin Osin qb)
But cos 0 cos ¢ + sin 0sin ¢ = cos (6 - gi)) The above becomes
1612 x - ]| = 2% + p2 2103 cos (6 - ¢)
= pJr?p* +1-2rpcos (6 - ¢)) (1)
The above is the numerator of 6.133. Now we find the denominator |[|&]|||x — &]|.

€]l = yJp? cos? -+ p2 sin®
=p

And
lx = &|| = ”(rcos 0,rsin 0) — (p cos¢,psin¢)”

= \/(rcose—pcos¢)2 + (rsin@—psin¢))2

= \/(rz cos? 0 + p? cos? ¢ — 2rp cos O cos qb) + (,,2 sin 6 + p2 sin® ¢ — 2rp sin Osin gb)

= \/,,2 (cos2 6 + sin’ 6) + p? (cos2 ¢ + sin? cp) -2rp (COS 0 cos ¢ + sin O'sin (p)

= \/rz + p? - 2rp cos (6—¢))

Hence

€]l 1lx = &l = p+[r? + p? = 2rpcos (6 - ¢) (2)



From (1,2)

1 |- g R r2p2 +1-2rp cos (6 - )

2n Ogm_Zﬂ p\/72+p2—2rpcos(6—¢)
1 1+r2p2—2rpcos(6—qb)
_Er2+p2—2rpcos(6—¢)

Which is what required to show.

23
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8 Problem 6.3.27

Consider the wave equation uy = c?u,, on the line —co < x < co. Use the d’Alembert formula
(2.82) to solve the initial value problem u (x,0) = 6 (x — a), u; (x,0) = 0. Can you realize your
solution as the limit of classical solutions?

u(x, t) = % (fa—ch+fx+ch)+ zlc fxmg(s) ds (2.82)
x—ct

Solution

In (2.82), the function f is the initial conditions and the function g is the initial velocity.
Hence the above becomes

u(x,t) = %(6((x—a)—ct)+6((x—u)+ct))

Butd((x—a)—-ct)=6(x—a-ct)=6(x—(a+ct))and6((x —a) +ct) =6 (x—a+ct) = 6(x— (a—ct)).
Hence the above becomes

u(x,t) = %6 (x—(a+ct)+ %6 (x=(a—ct)) 1)

The above is two half strength delta pulses, one traveling to the left and one traveling to
the right from the starting position. Using the limiting definition of delta function, the
solution is the limit of sequence of classical solutions lim,_,, u, (x,t) — u(x,t) which has
initial position that converges to the delta function and initial velocity which converges to
zero as given in this problem. Hence

lim u, (x,0) = 6 (x — a)
. d
31_1)130 Eun (x,00=0

Using one such definition of limiting function given in 6.10, page 218

. T (1 + nzxz)
Then
n
u,(x—a)=
2 ) n(l+n2(x—a)2)
Hence

n
e (1 +n2(x—(a+ ct))z)

u, (x —(a+ct)) =

n

i, (x = (a —ct)) = 1+ (x - (a—ct)))

Using the classical solution u (x,t) = % (u,, (x = (a + ct)) + u, (x — (a — ct))) becomes

u(x t)—1 " +1 "
e 2n(1+n2(x—(a+ct))2) 2n(1+n2(x—(a—ct))2)

Which converges to (1) u(x,t) = éé(x —(a+ct) + %6 (x—(a—ct)) as n — oo.
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9 Problem 6.3.31

(a) Write down a Fourier series for the solution to the initial-boundary value problem

Uy = Uyxy
u(-1,6)=0
ul,)=0
u(x,0)=0(x)
du (x,0) —0

at

(b) Write down an analytic formula for the solution, i.e., sum your series. (c) In what sense
does the series solution in part (a) converge to the true solution? Do the partial sums
provide a good approximation to the actual solution?

Solution

9.1 Part (a)

Since the boundary conditions are at x = -1 and at x =1, it is a little easier to solve this
by first shifting the boundaries to x = 0 and x = 2. This is done by transformation. Let

z=x+1

When x = -1 then z = 0 and when x =1 then z = 2. The PDE in terms of z remains the
same but the B.C. are shifted. Hence we want to solve for v (z,x) in

Oy = Uy
v(0,t)=0
v(2,)=0

No need to worry about initial conditions now, since we will transform back to x before
applying initial conditions and therefore will use the original initial conditions. This PDE
is now solved by separation. Let v = Z () T (t). Substituting into the PDE gives

T"Z=27"T
TI’ Z’/
—_— = — = —A
T Z
This gives the boundary value ODE
7"+ AZ =0 (1)
Z0)=0
Z(2)=0
And the time ODE
T + AT =0 (2)

Solving (1). From the boundary conditions we know only A > 0 is an eigenvalue. Hence
for A > 0 the solution is

Z (z) = Acos (\/Zz) + Bsin (\/Xz)

At z = 0 this gives A = 0. Hence the solution now becomes Z (z) = Bsin (\/Xz) At z =2 the
above gives 0 = Bsin (2\5) For non-trivial solution we want sin (Zﬁ) = 0 which implies
Zﬁ = nm or

nm

2
/\,,,:(7) n=123

And the corresponding eigenfunctions
. (nm
Z, (z) = sin (?z) n=1,2,3,--
The time ODE (2) now becomes
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Which has solution
nmn . (N7
T, (t) = A, cos (?t) + B,, sin (71‘)

Hence the complete solution is

[o¢]

v(z,t) = E (An coS (n;t) + B, sin (n?nt)) sin (n_nz)

2
n=1
We are now ready to switch back from z to x. Since z = x + 1 then the above becomes
< nm nm nm
0= 5 (A cos (12 By (24) i (22 ¢+ ) ;
u(x,t) nz::l( , COS > , Sin > sin > (x+1) (3)

Now we apply initial conditions to find A,, B,. At t = 0,u(x,0) = 0(x). Hence the above
gives

— . (nT
o(x) = nz:]l A, sin (7 (x+ 1))
Multiplying both sides by sin (% (x + 1)) and Integrating gives
1 o 1
f 5(x) sin(T (x + 1)) dr=Y Anf sin(E (x + 1)) sin(T (x +1))dx
4 2 o) 2

By orthogonality of sin functions only term survives and the above simplifies to
1

jjé(x)sin(%(x+1))dx:Amf_llsinz(%(x+1))dx

=A,

But f_i 0 (x) sin (% (x + 1)) dx = sin (%) since that is where x = 0. The above reduces to

. (nm
An:sm(?) n=1,2,3,--
The solution (1) becomes
> nm nm nm nT
= 3 o () con (250) s (22 in (1 e+ ) ;
u(x,t) Z}l(sm(z)cos(z )+ . Sin 5 sin > (x+1) (4)
Taking time derivatives
& (o]
Eu (x,t) = 7;1 (—% sin (%) sin (?t) + %Bn cos (?t)) sin (% (x+ 1))
At t =0 the above becomes
<\ NTT nm
0=, TB,sin (2 e+ 1)
,12::1 5 , Sin > (x+1)
Therefore B,, = 0. Hence the solution (4) becomes
il nm nm nm
=Y sin(— —t)sin|— (x+1 ) 5
u(x,t) nz::lsm(z)cos(z )s1n(2 (x+1) (5)
Notice that sin (nz—n) is zero when 7 is even.
9.2 Partb
sin (% (x+ 1)) = sin (%x + %)

Using sin (A + B) = cos Asin B + sin A cos B, the above becomes, where A = %ﬂx and B = %ﬂ

. (nm nmn o\ . (nm . (nT nm
sin (— (x+ 1)) = Ccos (—x) sin (—) + sin (—x) CoS (—)
2 2 2 2 2
Hence (5) becomes

u(x,t) = i sin (%) cos (n?nt) (cos (n?nx) sin (1/%71) + sin (n;x) cos (n%z))
n=1

(o]

= nz::l cos (%—(t) (cos (T%nx) sin® (n;) + sin (%x) sin (%Z) cos (%)) (6)



But sm( > )cos( ;) 0, since using sin A cosB = % (sin (A + B) + sin (A - B)) gives

. (nm nm 1 . .
sin (7) cos (?) =3 (sin (nm) + sin (0))
=0
Therefore (6) simplifies to
MY s () sin? (77
u(x,t) —nz:lcos( > t)cos( > x)sm ( > )

But sin? (%n) = 0 when 7 is even and 1 when 7 is odd. Hence the above becomes

[o¢]

u(x,t) = E Cos(n?nt)cos(n?nx)

n=1,3,5,
- ((2n+1)7'c) ((2n+1)7z )
Z t]cos| ———x
= 2
Using cos AcosB = %(COS (A+ B) 4+ cos(A - B)), then using A = @t,B - @t

above becomes

/t: ~
u(x,t) nz;)z coS > > > >

_ i ((2n+1)n(t+x))+%icos((2n+1)n(_ ))

n=0
But with help of the computer, found that the sums give

icos(@(t+x)):0

n=0

ico ((2n+1)n(t_ ))
n=0

1 ( ((2n+1)71t+ (2n +1)7'(x) +cos((2n +1)nt_ (2n+1)nx))

Hence (7) becomes

u(x,t) =

9.3 Partc

27

x the

(7)

The solution given by the part b converges to the true solution in the mean sense. Since
with wave PDE, there will two pulses, each of half strength moving back and forth on the
string each wave with very small width but large amplitude. Solution in part b is giving

an averaging value for the solution as zero.
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