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1 Problem 6.1.4c

Find and sketch a graph of the derivative (in the context of generalized functions) of the
following functions

sin (71x) x>1
(c)h(x)=9 1-x? -1<x<1
e x<-1
Solution
1 1-x"2
0.5+
y Sin[Pi x
-3 -‘2 -1 3
-0.5
-1.0f
Figure 1: Sketch of the function h(x)
There is only one jump discontinuity at x = —1. The amount of jump [|at x = -1 is %
Hence
77 o8 (T1x) x>1
B (x)=—-e1o(x+1)+ -2x -1<x<1
e’ x<-1
4+ Pi Cos[Pi x]

Expl[x]

-3 -2 1 2 3
2k

-4

=1

Figure 2: Sketch of the function /’(x)

When determining the sign of the jump, we go from left to right always. Dropping down means negative
sign and moving higher means positive sign.



2 Problem 6.1.5b

Find the first and second derivatives of the functions

|| 2<x<2

0 otherwise

(b) k(x) = {

Solution

First, the function k (x) is shown below

20

05

Figure 3: Sketch of the function k(x)

We see there is a jump discontinuity at x = -2 of value 2 and at x = 2 of value -2. Now,
when -2 < x < 0, then k(x) = —x and when 0 < x < 2, then k (x) = x. Hence

0 x< -2

-1 2<x<0
K (x) = 26 (x +2) — 26 (x - 2) + *

1 O<x<?2

0 x> 2

The derivative is not defined at x = 0. A plot of the above gives

Figure 4: Sketch of the function k’(x)

We see that there is now a jump discontinuity at x = -2 of value -1 and jump discontinuity
at x = 0 of value 2 and jump discontinuity at x = 2 of value —1. Hence

K'(x) =20 (x+2)—-20 (x=2)—0(x+2)+20(x) -6 (x—2)
Where ¢’ (x + 2) and ¢’ (x — 2) are called "doublets” at x = -2 and at x = 2 respectively.



3 Problem 6.1.9

1 1
—_ < —_

For each positive integer n, let g, (x) = 2" & n (a) Sketch a graph of g, (x). (b)
0 otherwise

Show that lim,, ., g, (x) = 0 (x). (c) Evaluate f, (x) = f_ * n (y) dy and sketch a graph. Does
the sequence f, (x) converge to the step function o (x) as n — co? (d) Find the derivative
h, (x) = g7, (x). (e) Does the sequence /1, (x) converge to 0’ (x) as n — oo?

Solution
3.1 Parta
Lets try few values of n.
1
= x| <1
n=1 x) =4 2
1) { 0 otherwise
1
1 x| < =
n=2gqg,(x)= 2
£ W { 0 otherwise
§ |x| < 1
n=3¢g(x)=4 2 3
82(%) { 0 otherwise

And so on. We see that as n increases, the function value increases and the domain it is
not zero on becomes smaller. As n — oo this becomes a 6 (x) function. Here is a plot of
few values of increasing n.

— n=1
ettt n=2
n=3
n=4
— n=5

—— n=6

n=8

Figure 5: g,(x) for increasing n

3.2 Partb
lim Ih lim x| < 1
lim ¢, (x) = o2 e n
”—"X’gn( ) { 0 otherwise
] e x| = 0
1o otherwise
=0(x)
3.3 Partc

We want to integrate this function



n
2
| |
| |
- § 1 >
n n

Figure 6: Integrating ¢, (x)

Therefore

0 x<_—1
n

1 n -1
x (;+x)§ —<x<0
= [ sl)ay=1 11 1 ;
o (——x)— 0<x<?i
n 2 n
1
1 x>;

This is a sketch of the above We see that as n — oo then f, (x) becomes

0 x<0
. ) _
r}l—{go fn (X) - 2 x=0

1 x>0
Which is the step function o (x)
3.4 Partd
From the plot of g, (x) above, V\;e see there is a jump discontinuity at x = —% of value g
and a jump discontinuity at x = - of value —g. And since g, (x) is constant everywhere else,
then

n 1 n 1
h, (x) = g, (x) = E(S(x+ E)_E(S(x_ﬁ)

3.5 Parte

Yes, lim, ., h, (x) = ¢’ (x). By definition, and as shown in figure 6.6 in textbook, ¢’ (x) is
"doublets". Which is an impulse in positive direction just to the left of x and another impulse
in negative direction just to the right of x and this is what happens when lim,,_,, i, (x) as
seen from the result in part d.



4 Problem 6.1.30

(a) Find the complex Fourier series for the derivative of the delta function ¢’ (x) by direct
evaluation of the coefficient formulas (b) Verify that your series can be obtained by term-
by-term differentiation of the series for 6 (x). (c) Write a formula for the n** partial sum
of your series. (d) Use a computer graphics package to investigate the convergence of the
series.

Solution

41 Parta

By first doing 27t periodic extension (similar to Dirac comb) we can calculate the coeflicients.
First we find the Fourier series for o (x)

k=0
5(x) ~ ) cxe
k=—00
Where ¢ = % f_ Z(S (x) e *xdy = % Hence

1 'S .
5 ~ ikx
()~ o= e

k=—0c0
1 . . . .
~2—(-~-+e‘2’x+e‘1x+1+e”‘+e2”‘+---) 1)
TC
Now
k=00 ‘
& () ~ Y dre™™ (2)
k=—0c0
Where

1 - .
dp = — f & (x) e~ dx
2n J_,

-]

x=0
1 .
_ 1 ,—ikx
=5 [—zke ]x:0
1
= — [-ik
2n[ ik]
k
= —]—
21

Hence from (2) we obtain the Fourier series for &’ (x) as

_j k=
0 (x) ~ i E ke'kx
k=—00

-1 ) ) ) )

- 2_ ( — 020X _ pmix y pix 4 920X 4 )
TC

~ 5 ( + 272 + ie™¥ — jei* — 2ie?¥ + ) (3)

4.2 Partb

To do term by term differentiation of 6 (x), we first have to note the use of the following
relation and the sign change needed to add

lim ¢, (x) = 6(x)

- lim g5, () = o' (¥)



The above means we need to add a minus sign to the RHS when taking derivative of 6 (x).
Therefore, term by term differentiation of the Fourier series for 6 (x) given in (1) now gives

1 d , , ‘ .
’ —2 - 2
o (x)~(—)2—E(---+e Y te Z"+1+el"+e”‘+---)

1 o .
~ ()5 (v = 20072 — i 4 o 4 202 4 - )
TC
1

~ o0 (- +20e72% + de™% — i - 2ig? + - (4)

Comparing (4) and (3) shows they are the same.

4.3 Partc

It is easier to use normal Fourier series for this.

1 TT
o=~ f & (x) cos (kx) dx
-7t

= % [(cos kx)']

x=0
1 )
== [k sin kx]x:0
=0
And

=

1 I
b= — f & () sin (kx) dx

= % [(sin kx)']x=0

1
== [k cos kx]x:O
k
T

Hence
1 (&)
& (x) ~ = Y, ksin (kx) 1)
=
Therefore the n'" partial sum is
1 n
&, (x) ~ = D ksin (kx)
Ti=1

Since [sin (kx)| <1, used partial sum formula for the above given by

S _ nsin((n+1)x) - (n +1) sin (nx)
kz—% fsin ) = 2cos (x) -2 (2)
Hence
5 (x) ~ 1 nsin((n +1)x) — (n +1) sin (nx)

T 2cos(x)—2
It is possible to obtain the above formula by writing sin (kx) = Im (eikx) and then using

Im Y,  ke* =TIm Y}/  kz* where z = ¢™. Since |z| <1 then using the partial sum formula

ik L z(1-z2")  nz"!
Vi
k=1

1-27 1-z
_z(1-2") —n2"1 (1 -2)
) (-2

> — Zn+1 _ 7,lzrz+1 + nzn+2
) (1-2)
_z—(1+n) 2L 4 g2
) (1-2)

Then replacing z back by ¢ in the above, and using ™ = cos x +isin x and simplifying and
taking the imaginary part to obtain (2).



44 Partd

Using computer graphics, the following is plot of (2) for increasing values of n. This shows
that as n increases 6}, (x) approaches "doublets”, which is a pulse to the left of x = 0 and
one to the right of x = 0.

n=2 n=5 n=10
4l 15
10
05} of
AN YA o
-10  -05 05 10 |-10 \ -05 05 1.0 | -ng/ -0. W 1.0
~05} . -1
-4+ 5

Figure 7: Convergence of Fourier series of 0’(x) as n increases

1 nSin|{(n+1) x| - (n+1) Sin[nx
fb g w2 0SINL(1+2) x] - (n+1) Sintnx
7 2Cos[x] -2
data = Table[Plot[f[Xx, n], {x, -1, 1}, PlotRange -» All, PlotStyle - Red,
PlotLabel -» Row[{"n=", n}]]1, {n, {2, 5, 10, 20, 30, 50, 70, 90, 110}}];

p = Grid[Partition[data, 3], Frame - All];

Figure 8: Code used for the above plot



5 Problem 6.1.36

True or false: If you integrate the Fourier series for the delta function 6 (x) term by term,
you obtain the Fourier series for the step function o (x).

Solution

The Fourier series for delta function 0 (x) is (assuming 27 periodic extension)
1 1
O(x) ~ —+ — E;
(x) o T & COS NX

Integrating RHS term by term gives
0

—N—
T 1S (™ 1 & [sinnx]"
—dx+—2f cosnxdx:1+—2[ }
_n 2T A=Y nel o on |
=1 1)
The step function o (x) is defined as
0 <0
o (x) = *
1 x>0

Its Fourier series was already found on page 83 (assuming 2m periodic extension) in
Example 3.9 as

1 23 1
~ =+ = in((2n -1
o(x) 5 nnz::l(Zn—l)Sln((n ) X)
1+2' +1'3+1'5+ (2)
= -+ —|sin —sin = sin
5+ —|sinx+ g sindx + - sinbx

Comparing (1) and (2), the answer is false.
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6 Problem 6.2.4

d du .
The boundary value problem - (c (x) E) = f(x),u(0) = u (1) = 0, models the displacement

u(x) of a nonuniform elastic bar with stiffness c(x) = Tlxz for 0 < x < 1. (a) Find the
displacement when the bar is subjected to a constant external force, f = 1. (b) Find
the Green’s function for the boundary value problem (c) Use the resulting superposition
formula to check your solution to part (a). (d) Which point 0 < £ < 1 on the bar is
the "weakest”, i.e., the bar experiences the largest displacement under a unit impulse

concentrated at that point?

Solution

6.1 Parta

The ode to solve is

d 1 du -1
de \1+x2dx)

Integrating once gives

T+2dc " G
du
E = (1 +X2) (—X + Cl)
=Ci—x+Cx2 -2
Integrating once more gives
2 3 A
M(X):C1X—3+C1§—Z+C2
4 3,2
:—%+C1%—%+C1X+C2 (1)
Applying left B.C. u(0) = 0 gives
0 = Cz
Hence solution (1) becomes
xt x> X2
u(x):—Z+C1§—?+C1x (2)
Applying left B.C. u (1) = 0 gives
0= L +C L +C
4 13 27
9
C=—
' 16
Hence the solution (2) becomes
43 2.9
wE) = -+ 23 -y 2y

= 11_6 (—4x4 +3x3 - 8x% + 9x)
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-x* 3 9
U[X_] ::T

X2

+ — X - — + — X;
16 2 16
Plot[u[x], {x, @, 1}, PlotStyle - Red,

GridLines -» Automatic, GridLinesStyle - LightGray]

0.15
0.10
0.05
0.2 0.4 0.6 0.8 1.0
Figure 9: Plot of the above solution
6.2 Partb
. . d dG(xy) :
When x # y, then Green function satisfies - c(x) — = 0. This means that
dG (x,
LEIC)
dx
But c(x) = ﬁ, therefore
G (x, y)
_ 2
= A (1+x2)

Integrating gives

G(xy)=Ax+ Alx—3 + A,
3
Therefore Green function is
3
Ax+A =+ A x <
G (x,y) _ 1 1XBé 2 y
B1X+B1?+B2 x>y

(1)

Notice we used different constants of integrations for each side of the delta location y.
Now we use boundary conditions on the left and right end to find these unknowns. Since
Green function satisfies same boundary conditions as the solution, then at x = 0 we need

G(0,y)=0
= A,
And at x =1
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Which means —gBl = B,. Using these results in (1) gives
x3
Aq (x + ?) x<y
B4
le-l-Blg—gBl x>y
x3
A1 (x + ?) x<y

= (1A)
Bl(x+J;—3—§) x>y

We now need to determine A;, B. From continuity condition of G (x, y) at x = y we obtain
the first equation

3 3 4
Al(y+y§):Bl(y+yg—§) (2)

And

dG(x,y) Ap(1+2%)  x<y
- B1(1+x2) x>y

Evaluated at x =y

dG(xy) A(1+92)  x<y
dx B1(1+y2) x>y

dG(x,y)

dx

There is a jump discontinuity in

dG(x
—% (c (x) G[Exj)) = f(x) shows that p = % = (1 +x2) or (1 +y2) at x = y. Therefore this

of value % where — (py”) = 0. Comparing this with

condition gives the second equation we need
A (1+92) =B (1+12) = (3)
=(1+9?) (1)
We now have the two equations we want (2,3) to solve for A;, B;. Solving for Aj, By gives

m=§@—w—f)

1
Bi =7 (-3y-¥°)
Substituting the above into (1A) gives the Green function

==

i(4—3y—y3)(x+x3—3) x<y

(—3y—y3)(x+x3—3—§) x>y

(4—3y—y3)(x+%3) x<y
3

4-3x-x3)[y+ L x>
( J(+%) x>y

we now see the symmetry above as expected.

[ B N I N I

6.3 Part (c)

Now we check the solution of part (a) for f(x) =1 using the superposition formula and
noting that f (y) =1 we obtain

y<x y>x

0= [ () r)av+ [ G (un) (o)




Hence

Which agree with solution obtain in part (a)

6.4 Part (d)

From the solution above u (x) = % (—4x4 +3x3 —8x% + 9x). Hence

du 1
_ 3 2
16 (—16x +9xc —16x + 9)
du _ 0 gives

Solving for —

11—6 (1623 +9x% = 16x +9) = 0
—11—6 (16x-9)(1+x2) =0

(l + x2) = 0 does not give real solutions. Hence —% (16x-9)=0o0r16x—9 =0 or

_2
16
At this x is the largest displacement which is found by evaluating the solution at this x

)] ) o)

262144
=0.167

X

13
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7 Problem 6.2.7

1 1
-n x—-E&|l < -

For n a positive integer, set f, (x) = { 2 | | _ " (a) Find the solution u, (x) to the
0 otherwise

boundary value problem -u” = f, (x),u(0) = 0,u(1) =0, assuming 0 < £ — = < & + - <1.
(b) Prove that lim,_,,, u, (x) = G(x;&) converges to the Green’s function (6. 51) glven by
solution to —cu” = f (x) with same BC as

(1—5)x—p<x—5):{<1—é>’—; xs<&

c (1—x)§ x> &

G(x; &) =

But here ¢ =1, so the above becomes
1-&)x  x<&
1-x& x=¢&

Where p is the ramp function. Why should this be the case? (c) Reconfirm the result in
part (b) by graphing us (x), 15 (x) , ups5 (x), along with G (x; &) when & = 0.3.

G(x;5)=(1—§)x_p(x_§):{

Solution
71 Parta
) : d2G(xy) )
When x # &, then Green function satisfies ol 0. This means that

G (x,y) =Aix+ A,
Hence Green function is

G(x )_ A1X+A2 xSé
)= B1X+B2 x=&

At x =0, G(O,y) =0=Ayand atx =1, G(l,y) =0 = B; + B,. Hence B, = —B;. The above

becomes
Alx x < 6
G (x, y) =
Bix-B; x>¢&

(A)

_ A1x xSE
| Byx-1)  x>¢&

Where A;,B; are constants to be found. These are found from the continuity condition

and the jump discontinuity condition on Z—f both at x = £. The continuity condition at
x = ¢ gives the first equation as

A& =B(&-1) 1)
And Z—i at x = & gives

dG A] x<¢&
im
x—¢& dx B1 X 2> 5
Hence the jump discontinuity condition gives the second equation we want which is

A; =By =1 (2)
Where 1 is used in RHS above since ¢ = 1. From (1,2) we solve for A;, B;. Which gives

B1 = —(S

Ar=1-¢
Substituting the above back into Eq (A) gives the Green function

o) A=8Hx  x<£
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The solution is now found using superposition formula

E<x E>x

1
n@= [ Gwaf @i [ ceafiOd

¥ 1
:f (1—x)5fn(§)dg+f Q=& xf,(&)dE
0 X

X 1
=(1- Efn(E)dE+ 1-8&) fu(&)de 4
-9 [ ef@deax [ -9, )
In |x—£|<l
Butfn(x):{2 n .Wearetoldthat0<£—l<5+1<1.Hence (4) becomes
0 otherwise n n

@ =00 [ e [T a-otas

X—= X
n

1
1_ X x+;
_ ! Zx)nf L&+ Sn [T -9

n

= “‘x’n(‘f_z)x +Zn

2 2
X—; X
1\ 1\?
(1-x) |22 (x—;) i +1 (x+;) x?
= n|l—=- —nfl{x+=]- —(x-=
2 2 2 2 n 2 2

! + 1 1 1o 1 2 2n+1)
=|lzx+—x-— - =x*|-|—xQ2nx-2n
Tt T ) T\t

—ﬁ (4mc2 —4nx + 1)

=x-x*- 1
4n
7.2 Partb
lim u, (x) = lim x - x> - —
n—oo n—oo 4dn
=x(1-x%)
7.3 Partc
1- <
This is plot of Green function G (x; &) = I-&x  x= for £ =0.3
EQ-x) x>¢&

G(x,0.3

0.20F

0.15F

0.10F

0.05F

[ ]

0.2 0.4 0.6 0.8 1.0

Figure 10: Green function
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green[x_, z_] :=Piecewise[{{(1-2) x, x <z}, {(1-x) z, x> z}}]
p = Plot[green([x, 0.3], {Xx, 90, 1}, PlotStyle - Red,
GridLines - Automatic, GridLinesStyle - LightGray,
AxesLabel -» {"x", "G(x,0.3"}, BaseStyle -» 12,
Epilog » {Red, {PointSize[.025], Point[{©.3, 0}]1}}];

Figure 11: Code for the above plot

2

These are plots of u, (x) = x —x* - 41—n for different n values.

0.25

0.20

0.15

0.10

0.05

25

" " " " " " " " " " " " " 1
0.2 0.4 06 0.8 &o 15
-0.05 5

Figure 12: Plot of u,,(x) for different n values

ufx_, n_] :=x-x"2-1/(4n)

p = Plot[Evaluate[Table[Callout[u[Xx, n], n], {n, {5, 15, 25}}1], {x, 9, 1},
AxesOrigin -» {0, 0}, GridLines - Automatic,
GridLinesStyle - LightGray];

Figure 13: Code for the above plot

Please note that the plots above do not seem to converge well with what is expected which
is the Green function plot earlier. I am not able to find out so far where the problem is.
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8 Problem 6.2.11

Let w > 0. (a) Find the Green’s function for the mixed boundary value problem

-u" +w?u=f(x), u0)=0,u"1)=0

1

1 O<x<-=

(b) Use your Green’s function to find the solution when f (x) = { . 1 i
- <Xx

Solution
81 Parta
. . dZG(x,y) 2 .
When x # &, then Green function satisfies ——z -t G(x, y) = (0. This means that
dZG(x,y)

2 w?G (x, y) = 0 which has solution

G (x, y) = A; cosh (wx) + A, sinh (wx)

Hence Green function is

A h + A, sinh 0<x<

G (x y) _ 1 cosh (wx) 28.111 (wx) x<y (1A)

B, cosh (wx) + B, sinh (wx) y<x<l
Atx=0,G (0, y) =0 = A;. And to find conditions at x =1, then G’ (x, y) = wBy sinh (wx) +
wB, cosh (wx). Hence at x =1 this gives

G’ (1,y) =
= wB; sinhw + wB, cosh w

Therefore By sinh w + B, coshw = 0. Or B, = —B; tanh w. Hence (1A) becomes

G(x )_ A, sinh (wx) O<x<y
Y= B, cosh (wx) — By tanh wsinh (wx) y<x<1

3 A, sinh (wx) O<x<y
- By (cosh (wx) — tanh wsinh (wx)) y<x<1

But cosh (wx) — tanh w sinh (wx) = W The above becomes

cosh(w—wx) (1)

Aysinh(wx) O<x<y
G(x,y)—{ y<x<l

1™ coshw

We now need to determine A, B;. From continuity condition of G (x, y) at x = y we obtain
the first equation

cosh (a) - a)y)

Ay sinh (a)y) = (2)

cosh w
And

Aza) cosh (wx) x<y
—a) sinh(w— mx))

X >
coshw Yy

Evaluated at x = y

>
coshw r=>Yy

Ayw Cosh a)y) x<y
—a) smh (u wy))

There is a jump discontinuity i in
the second equation we need

of value 1 at x = y. Therefore this condition gives

w sinh (a) - a)y)

Ayw cosh (wy) + B =1 (3)

coshw
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Solving (2,3) for A,, By gives

cosh (a) (l - y))

w cosh (w)

A2:

sinh (wy)
=

Substituting the above into (1) gives the Green function

cosh(a)(l—y)) .

sinh (wx 0<x<
Glvy) =1 gy " ! 4)
Wsinh(a)y) y<x<l
8.2 Partb
Using the superposition formula
y<x y>x
X 1
u(x) = fo G(xy)f(v)dy + f G(xy) f(y)dy
_ (*cosh(w(1-x)) . fl cosh (a) (1 - y)) '
- j;) w cosh (w) sinh (a)y)f(y) W+ «  wcosh(w) sinh (wx) f (y ) dy
1 O<x<1
But f(x) = 1 , hence the above reduces to
-1 E <x< 1
1
case x < 7
1
cosh(w (1 -x)) . 5 cosh (cu (1 - y)) 1 cosh (1 - y)) .
[l [ b | !
u(x) j: w cosh (@) sin (a)y) dy + ) w cosh (@) sinh (wx) dy — w cosh (@) sinh (wx) dy
1 (e%) Ty e‘w) evr + (e“’ Tt e_g) e
T w? w? (e” +e@)
case x > %
1
z cosh(w(-x)) . fx cosh (a) (1 - y)) f1 cosh (1 - y)) _
= — ~ “Zsinh - h h
u(x) j(; w cosh (w) S (a)y) 4y 1 wcosh(w) sinh (wx)dy - w cosh (w) sinh (wx) dy

N

—w 3 3 w
1 (e 2 —e ¥ 4 e_Z“’) evr + (eZ“) —e? + eZ)e““x

w? w2 (e® + ™)
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9 Problem 6.2.12

Suppose @ > 0. Does the Neumann boundary value problem —u” + w?u = f(x),u’ (0) =
u’ (1) = 0 admit a Green’s function? If not, explain why not. If so, find it, and then write
down an integral formula for the solution of the boundary value problem.

Solution

To find out if it admits a Green function, we will see if we can solve for the constants that
show up in the formulation of Green function. If not able to find a solution, then no Green
function.

A2G(x,
When x # &, then Green function satisfies —# + w?G (x, y) = 0. This means that

G (x, _1/) = A; cosh (wx) + A, sinh (wx)
Hence Green function is
Ajcosh (wx) + Aysinh (wx) 0<x<
Glry)=1"" > / 1)
B, cosh (wx) + B, sinh (wx) y<x<l1

On the left end, %G (x, y) = wA;j sinh (wx) + w A, cosh (wx). Hence At x =0, G’ (O, y) =0=

wA;. Therefore A, = 0. On the right side %G (x,y) = wBy sinh (wx) + wB, cosh (wx). At

x =1, then G’ (x,y) = wBj sinh (w) + wB, cosh (w) = 0. Therefore B; sinh w + B, coshw = 0.
Or B, = -Bj tanh w. Hence (1A) becomes

G(x )_ A; cosh (wx) O<x<y
Y= B, cosh (wx) — By tanh wsinh (wx) y<x<1
3 Aj cosh (wx) O<x<y
- B; (cosh (wx) —tanh wsinh (wx)) y<x<1
But cosh (wx) — tanh w sinh (wx) = W The above becomes
Ajcosh(wx) O<x<y
G (X, y) = cosh(w(1-x))
coshw y<x< 1

Now we will try to see if we can determine Aj, B;. Continuity condition at x = y gives the
first equation

A cosh (a)y) = oo cosh (a) (1 - y)) (1)
And
dG(xy) Ajwsinh (wx) 0O<x<y
dx —Col:;wa)sinh(a)(l—x)) y<x<l1
H B ) i ) . ... dG(xy) ..
ence at x = y to satisfy the jump discontinuity in — the second equation is
. B, .
Awsinh (a)y) + P sinh (a) (1 - y)) =1 (2)

Solving (1,2) for A, B gives
_ cosh (a) (1 - y))

1™ wsinh (w)

cosh (wy)
1= wsinh (w) cosh (@)

Hence Green function exist. Substituting the above in Green function above gives
cosh(w(l—y))
Gvy) =1 ot

w sinh(w)

cosh(wx) O<x<y

cosh (a)y) y<x<l

Here is a plot of the above when the pulse at y = 0.25 with w =1
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Figure 14: Plot of the Green function found

p=With[{y =0.25, w=1},
Cosh[w (1-y)]

Plot[ Cosh [wx] HeavisideTheta[-x +y] +
wSinh[w]
Cosh[w (1-x)] o
——————— = Cosh[wy] HeavisideTheta[x -y], {x, 0, 1},
w Sinh[w]

PlotStyle - Red, GridLines - Automatic, GridLinesStyle - LightGray|

B

Figure 15: Code used for the above plot

The integral formula is

u(x):foCOSh(w(l_x))f(y)dy+fl cosh(a)(l—y))

o wsinh (w) . wsinh(w)

_ cosh (@1 - x) Ox cosh (wy) f (v)dy + cosh (@ (1-y))  (v)dy

cosh (wx) f (y) dy

cosh (wx) 1

w sinh (w) w sinh (w) J,
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