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1 Problem 4.3.24

Use the method in Exercise 4.3.23 to solve an Euler equation whose characteristic equation
has a double root 𝑟1 = 𝑟2 = 𝑟

Solution

1.1 Part (a)

Euler ODE is

𝑎𝑥2𝑢′′ (𝑥) + 𝑏𝑥𝑢′ (𝑥) + 𝑐𝑢 (𝑥) = 0

By assuming 𝑢 = 𝑥𝑟 then 𝑢′ = 𝑟𝑥𝑟−1, 𝑢′′ = 𝑟 (𝑟 − 1) 𝑥𝑟−2. Substituting back into the above ODE
gives

𝑎𝑥2𝑟 (𝑟 − 1) 𝑥𝑟−2 + 𝑏𝑥𝑟𝑥𝑟−1 + 𝑐𝑥𝑟 = 0
𝑎𝑟 (𝑟 − 1) + 𝑏𝑟 + 𝑐 = 0
𝑎𝑟2 − 𝑎𝑟 + 𝑏𝑟 + 𝑐 = 0
𝑎𝑟2 + 𝑟 (𝑏 − 𝑎) + 𝑐 = 0

Solving for 𝑟 gives the roots

𝑟1,2 = −
𝑏 − 𝑎
2𝑎

±
1
2𝑎�

(𝑏 − 𝑎)2 − 4𝑎𝑐 (1)

Double root means that 𝑟 = 𝑟1 = 𝑟2 = −
𝑏−𝑎
2𝑎 . Hence the first solution of the ODE is

𝑢1 = 𝑥𝑟1

And now we need to find the second solution. Using reduction of order method, we assume
the second solution is

𝑢2 (𝑥) = 𝑣 (𝑥) 𝑢1 (𝑥) (2)

And we need to determine the function 𝑣 (𝑥). Therefore

𝑢′2 = 𝑣′𝑢1 + 𝑣𝑢′1
𝑢′′2 = 𝑣′′𝑢1 + 𝑣′𝑢′1 + 𝑣′𝑢′1 + 𝑣𝑢′′1

= 𝑣′′𝑢1 + 2𝑣′𝑢′1 + 𝑣𝑢′′1
Substituting the above into the ODE gives

𝑎𝑥2 �𝑣′′𝑢1 + 2𝑣′𝑢′1 + 𝑣𝑢′′1 � + 𝑏𝑥 �𝑣′𝑢1 + 𝑣𝑢′1� + 𝑐𝑣𝑢1 = 0

𝑣′′ �𝑎𝑥2𝑢1� + 𝑣′ �2𝑎𝑥2𝑢′1 + 𝑏𝑥𝑢1� + 𝑣 �𝑎𝑥2𝑢′′1 + 𝑏𝑥𝑢′1 + 𝑐𝑢1� = 0

But 𝑎𝑥2𝑢′′1 + 𝑏𝑥𝑢′1 + 𝑐𝑢1 = 0 since 𝑢1 is a solution. The above now simplifies to

𝑣′′ �𝑎𝑥2𝑢1� + 𝑣′ �2𝑎𝑥2𝑢′1 + 𝑏𝑥𝑢1� = 0
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But 𝑢1 = 𝑥𝑟, hence 𝑢′1 = 𝑟𝑥𝑟−1 and the above becomes

𝑣′′ �𝑎𝑥2𝑥𝑟� + 𝑣′ �2𝑎𝑟𝑥2𝑥𝑟−1 + 𝑏𝑥𝑥𝑟� = 0

𝑎𝑣′′𝑥𝑟+2 + 𝑣′ �2𝑎𝑟𝑥𝑟+1 + 𝑏𝑥𝑟+1� = 0
𝑎𝑣′′𝑥𝑟+2 + 𝑣′ (2𝑎𝑟 + 𝑏) 𝑥𝑟+1 = 0
(𝑎𝑣′′𝑥 + 𝑣′ (2𝑎𝑟 + 𝑏)) 𝑥𝑟+1 = 0

𝑎𝑣′′𝑥 + 𝑣′ (2𝑎𝑟 + 𝑏) = 0

But 𝑟 = 𝑟1 = −
𝑏−𝑎
2𝑎 from (1) since double root. The above simplifies to

𝑎𝑣′′𝑥 + 𝑣′ �2𝑎 �−
𝑏 − 𝑎
2𝑎 � + 𝑏� = 0

𝑎𝑣′′𝑥 + 𝑣′ ((−𝑏 + 𝑎) + 𝑏) = 0
𝑎𝑣′′𝑥 + 𝑎𝑣′ = 0
𝑣′′𝑥 + 𝑣′ = 0

Therefore
𝑑
𝑑𝑥
(𝑥𝑣′) = 0

𝑥𝑣′ = 𝐶1

𝑣′ =
𝐶1
𝑥

𝑣 = 𝐶1 ln 𝑥 + 𝐶2

Now that we found 𝑣 (𝑥), then using (2) we find the second solution to the ODE as

𝑢2 = 𝑣𝑢1
= (𝐶1 ln 𝑥 + 𝐶2) 𝑥2

Therefore the complete solution is

𝑢 = 𝐶0𝑥𝑟 + (𝐶1 ln 𝑥 + 𝐶2) 𝑥𝑟

By combining constants, the above simplifies to

𝑢 (𝑥) = 𝐴𝑥𝑟 + 𝐵𝑥𝑟 ln 𝑥
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2 Problem 4.3.25

Solve the following boundary value problems (c) ∇ 2𝑢 = 0, 𝑥2 + 𝑦2 < 4, 𝑢 = 𝑥4, 𝑥2 + 𝑦2 = 4 (d)
∇ 2𝑢 = 0, 𝑥2 + 𝑦2 < 1, 𝜕𝑢𝜕𝑛 = 𝑥, 𝑥

2 + 𝑦2 = 1

Solution

2.1 Part c

In polar coordinates, where 𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin𝜃, we need to solve for 𝑢 (𝑟, 𝜃) inside disk of
radius 𝑟0 = 4. The Laplace PDE in polar coordinates is

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 +

1
𝑟2
𝑢𝜃𝜃 = 0 0 < 𝑟 < 𝑟0, −𝜋 < 𝜃 < 𝜋

𝑢 (𝑟0, 𝜃) = 𝑓 (𝜃) = (𝑟0 cos𝜃)4

𝑢 (−𝜋) = 𝑢 (𝜋)
𝑢𝜃 (−𝜋) = 𝑢𝜃 (𝜋)

The solution to Laplace PDE of radius 𝑟0 can be found using separation of variables and
derived in the textbook (full derivation is also given in this HW in problem 4.3.33 below).
The Fourier series solution is

𝑢 (𝑟, 𝜃) =
𝑎0
2
+�𝑎𝑛 �

𝑟
𝑟0
�
𝑛

cos (𝑛𝜃) + 𝑏𝑛 �
𝑟
𝑟0
�
𝑛

sin (𝑛𝜃)

Since 𝑟0 = 4 the above becomes

𝑢 (𝑟, 𝜃) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 �
𝑟
4
�
𝑛

cos (𝑛𝜃) + 𝑏𝑛 �
𝑟
4
�
𝑛

sin (𝑛𝜃) (1A)

Where 𝑎𝑛 =
1
𝜋
∫𝜋

−𝜋
𝑓 (𝜃) cos 𝑛𝜃𝑑𝜃, 𝑏𝑛 =

1
𝜋
∫𝜋

−𝜋
𝑓 (𝜃) sin 𝑛𝜃𝑑𝜃.

𝑎0 =
1
𝜋 �

𝜋

−𝜋
256 cos4 𝜃𝑑𝜃

=
256
𝜋 �

𝜋

−𝜋
cos4 𝜃𝑑𝜃

=
256
𝜋 �

3𝜃
8
+
1
4

sin (2𝜃) + 1
32

sin (4𝜃)�
𝜋

−𝜋

=
256
𝜋 �

3𝜋
8
+
3𝜋
8 �

=
256
𝜋 �

3𝜋
4 �

= 192
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And

𝑎𝑛 =
1
𝜋 �

𝜋

−𝜋
256 cos4 (𝜃) cos (𝑛𝜃) 𝑑𝜃

=
256
𝜋 �

𝜋

−𝜋
cos4 (𝜃) cos (𝑛𝜃) 𝑑𝜃

To evaluate the above integral, we will start by using the identity

cos4 (𝜃) = 3
8
+
1
8

cos (4𝜃) + 1
2

cos (2𝜃)

Therefore the integral now becomes

𝑎𝑛 =
256
𝜋 �

𝜋

−𝜋
�
3
8
+
1
8

cos (4𝜃) + 1
2

cos (2𝜃)� cos (𝑛𝜃) 𝑑𝜃

=
256
𝜋 �

3
8 �

𝜋

−𝜋
cos (𝑛𝜃) 𝑑𝜃 + 1

8 �
𝜋

−𝜋
cos (4𝜃) cos (𝑛𝜃) 𝑑𝜃 + 1

2 �
𝜋

−𝜋
cos (2𝜃) cos (𝑛𝜃) 𝑑𝜃� (1)

But ∫
𝜋

−𝜋
cos (𝑛𝜃) 𝑑𝜃 = 0 and ∫𝜋

−𝜋
cos (4𝜃) cos (𝑛𝜃) 𝑑𝜃 is not zero, only for 𝑛 = 4 by orthogonality

of cosine functions. Hence

�
𝜋

−𝜋
cos (4𝜃) cos (𝑛𝜃) 𝑑𝜃 = �

𝜋

−𝜋
cos2 (4𝜃) 𝑑𝜃

= 𝜋

And similarly, ∫
𝜋

−𝜋
cos (2𝜃) cos (𝑛𝜃) 𝑑𝜃 is not zero, only for 𝑛 = 2 by orthogonality of cosine

functions. Hence

�
𝜋

−𝜋
cos (2𝜃) cos (𝑛𝜃) 𝑑𝜃 = �

𝜋

−𝜋
cos2 (2𝜃) 𝑑𝜃

= 𝜋

Using these results in (1) gives, for 𝑛 = 2

𝑎2 =
256
𝜋 �

1
2 �

𝜋

−𝜋
cos2 (2𝜃) 𝑑𝜃�

=
256
𝜋

�
𝜋
2
�

= 128

And for 𝑛 = 4

𝑎4 =
256
𝜋 �

1
8 �

𝜋

−𝜋
cos2 (4𝜃) 𝑑𝜃�

=
256
𝜋

�
𝜋
8
�

= 32
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And all other 𝑎𝑛 are zero. Now that we found all 𝑎𝑛, and since 𝑏𝑛 = 0 for all 𝑛 (because 𝑓 (𝜃)
is even function) then the solution (1A) becomes

𝑢 (𝑟, 𝜃) =
192
2
+ 𝑎2 �

𝑟
4
�
2
cos (2𝜃) + 𝑎4 �

𝑟
4
�
4
cos (4𝜃)

= 96 + 128 �
𝑟2

16�
cos (2𝜃) + 32 𝑟

4

256
cos (4𝜃)

Therefore

𝑢 (𝑟, 𝜃) = 96 + 8𝑟2 cos (2𝜃) + 1
8𝑟

4 cos (4𝜃)

Here is plot of the above solution.

sol = 96 + 8 r2 Cos[2 θ] +
1

8
r4 Cos[4 θ];

ParametricPlot3D[{r Cos[θ], r Sin[θ], sol}, {r, 0, 4}, {θ, 0, 2 Pi},

AxesLabel → {x, y, "u(x,y"}, ImageSize → 400, BoxRatios → {1, 1, 1}, BaseStyle → 14]

Figure 1: Solution plot to the above problem with code used

It is also possible to use, as shown in textbook, the closed form sum as given in theorem 4.6
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as

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
𝑓 �𝜙�

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos �𝜃 − 𝜙�
𝑑𝜙

Notice that theorem 4.6 is for a unit disk. Since the disk here has radius 4 then 𝑟 is changed
to 𝑟

4 in 4.126 as given in book. Here 𝑓 (𝜃) = (4 cos𝜃)4. Hence the above becomes

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
256 cos4 �𝜙�

1 − � 𝑟4�
2

1 + � 𝑟4�
2
− 2 � 𝑟4� cos �𝜃 − 𝜙�

𝑑𝜙

=
128
𝜋 �

𝜋

−𝜋
cos4 �𝜙�

1 − 𝑟2

16

1 + 𝑟2

16 −
𝑟
2 cos �𝜃 − 𝜙�

𝑑𝜙

=
128
𝜋 �

𝜋

−𝜋
cos4 �𝜙� 16 − 𝑟2

16 + 𝑟2 − 8𝑟 cos �𝜃 − 𝜙�
𝑑𝜙

But evaluating the above integral was hard to do by hand. It should of course give the same
solution as found above using Fourier series.

2.2 Part d

In polar coordinates, where 𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin𝜃, we need to solve for 𝑢 (𝑟, 𝜃) inside disk of
radius 𝑟0 = 1. The Laplace PDE in polar coordinates is

𝑢𝑟𝑟 +
1
𝑟
𝑢𝑟 +

1
𝑟2
𝑢𝜃𝜃 = 0 0 < 𝑟 < 1, −𝜋 < 𝜃 < 𝜋

𝑢𝑟 (1, 𝜃) = 𝑓 (𝜃) = cos𝜃
𝑢 (−𝜋) = 𝑢 (𝜋)
𝑢𝜃 (−𝜋) = 𝑢𝜃 (𝜋)

Using separation of variables, let 𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃) the solution is given by

𝑢 (𝑟, 𝜃) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛𝑟𝑛 cos (𝑛𝜃) + 𝑏𝑛𝑟𝑛 sin (𝑛𝜃) (1)

At 𝑟 = 𝑟0 = 1 we have that
𝜕𝑢(𝑟,𝜃)
𝜕𝑟 = cos𝜃 (since 𝑥 = 𝑟 cos𝜃 but 𝑟 = 1 at boundary). The above

becomes

cos𝜃 =
∞
�
𝑛=1

𝑛𝑎𝑛𝑟𝑛−1 cos (𝑛𝜃) + 𝑛𝑏𝑛𝑟𝑛−1 sin (𝑛𝜃)

Therefore 𝑛 = 1 is only term that survives in the sum. Hence 𝑎1 = 1 and all others are zero.
The solution (1) becomes

𝑢 (𝑟, 𝜃) =
𝑎0
2
+ 𝑟 cos (𝜃)

The solution is not unique as there is 𝑎0 arbitrary constant.
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3 Problem 4.3.33

Write out the series solution to the boundary value problem 𝑢 (1, 𝜃) = 0, 𝑢 (2, 𝜃) = ℎ (𝜃) for
the Laplace equation on an annulus 1 < 𝑟 < 2.

Solution

Using 𝑎 for the inner radius and 𝑏 for the outer radius to keep the solution more general. At
the end these are replaced with 𝑎 = 1, 𝑏 = 2.

a

b
r
θ

u(a, θ) = 0

u(b, θ) = h(θ)

∇2u(r, θ) = 0

a = 1, b = 2

Figure 2: PDE to solve using polar coordinates

The Laplace PDE in polar coordinates is

𝑟2
𝜕2𝑢
𝜕𝑟2

+ 𝑟
𝜕𝑢
𝜕𝑟

+
𝜕2𝑢
𝜕𝜃2

= 0 (A)

With

𝑢 (𝑎, 𝜃) = 0
𝑢 (𝑏, 𝜃) = ℎ (𝜃) (B)

Let the solution be

𝑢 (𝑟, 𝜃) = 𝑅 (𝑟)Θ (𝜃)

Substituting this assumed solution back into the (A) gives

𝑟2𝑅′′Θ + 𝑟𝑅′Θ + 𝑅Θ ′′ = 0

Dividing the above by 𝑅Θ gives

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
+
Θ ′′

Θ
= 0

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
Since each side depends on di�erent independent variable and they are equal, they must
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be equal to the same constant. say 𝜆.

𝑟2
𝑅′′

𝑅
+ 𝑟

𝑅′

𝑅
= −

Θ ′′

Θ
= 𝜆

This results in the following two ODE’s. The boundaries conditions in (B) are also transferred
to each ODE. Hence

Θ ′′ + 𝜆Θ = 0 (1)

Θ(−𝜋) = Θ (𝜋)
Θ ′ (−𝜋) = Θ ′ (𝜋)

And

𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆𝑅 = 0 (2)

𝑅 (𝑎) = 0

Starting with ODE (1) with periodic boundary conditions.

Case 𝜆 < 0 The solution is

Θ(𝜃) = 𝐴 cosh �√|𝜆|𝜃� + 𝐵 sinh �√|𝜆|𝜃�
First B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cosh �−√|𝜆|𝜋� + 𝐵 sinh �−√|𝜆|𝜋� = 𝐴 cosh �√|𝜆|𝜋� + 𝐵 sinh �√|𝜆|𝜋�

𝐴 cosh �√|𝜆|𝜋� − 𝐵 sinh �√|𝜆|𝜋� = 𝐴 cosh �√|𝜆|𝜋� + 𝐵 sinh �√|𝜆|𝜋�

2𝐵 sinh �√|𝜆|𝜋� = 0
But sinh = 0 only at zero and 𝜆 ≠ 0, hence 𝐵 = 0 and the solution becomes

Θ(𝜃) = 𝐴 cosh �√|𝜆|𝜃�

Θ ′ (𝜃) = 𝐴√𝜆 cosh �√|𝜆|𝜃�
Applying the second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

𝐴√|𝜆| cosh �−√|𝜆|𝜋� = 𝐴√|𝜆| cosh �√|𝜆|𝜋�

𝐴√|𝜆| cosh �√|𝜆|𝜋� = 𝐴√|𝜆| cosh �√|𝜆|𝜋�

2𝐴√|𝜆| cosh �√|𝜆|𝜋� = 0
But cosh is never zero, hence 𝐴 = 0. Therefore trivial solution and 𝜆 < 0 is not an eigenvalue.

Case 𝜆 = 0 The solution is Θ = 𝐴𝜃 + 𝐵. Applying the first B.C. gives

Θ(−𝜋) = Θ (𝜋)
−𝐴𝜋 + 𝐵 = 𝜋𝐴 + 𝐵

2𝜋𝐴 = 0
𝐴 = 0

And the solution becomes Θ = 𝐵0. A constant. Hence 𝜆 = 0 is an eigenvalue.
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Case 𝜆 > 0

The solution becomes

Θ = 𝐴 cos �√𝜆𝜃� + 𝐵 sin �√𝜆𝜃�

Θ ′ = −𝐴√𝜆 sin �√𝜆𝜃� + 𝐵√𝜆 cos �√𝜆𝜃�

Applying first B.C. gives

Θ(−𝜋) = Θ (𝜋)

𝐴 cos �−√𝜆𝜋� + 𝐵 sin �−√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

𝐴 cos �√𝜆𝜋� − 𝐵 sin �√𝜆𝜋� = 𝐴 cos �√𝜆𝜋� + 𝐵 sin �√𝜆𝜋�

2𝐵 sin �√𝜆𝜋� = 0 (3)

Applying second B.C. gives

Θ ′ (−𝜋) = Θ ′ (𝜋)

−𝐴√𝜆 sin �−√𝜆𝜋� + 𝐵√𝜆 cos �−√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋� + 𝐵√𝜆 cos �√𝜆𝜋�

𝐴√𝜆 sin �√𝜆𝜋� = −𝐴√𝜆 sin �√𝜆𝜋�

2𝐴 sin �√𝜆𝜋� = 0 (4)

Equations (3,4) can be both zero only if 𝐴 = 𝐵 = 0 which gives trivial solution, or when
sin �√𝜆𝜋� = 0. Therefore taking sin �√𝜆𝜋� = 0 gives a non-trivial solution. Hence

√𝜆𝜋 = 𝑛𝜋 𝑛 = 1, 2, 3,⋯
𝜆𝑛 = 𝑛2 𝑛 = 1, 2, 3,⋯

Hence the eigenfunctions are

{1, cos (𝑛𝜃) , sin (𝑛𝜃)} 𝑛 = 1, 2, 3,⋯ (5)

Now the 𝑅 equation is solved

The case for 𝜆 = 0 gives from (2)

𝑟2𝑅′′ + 𝑟𝑅′ = 0

𝑅′′ +
1
𝑟
𝑅′ = 0 𝑟 ≠ 0

As was done in last problem, the solution to this is

𝑅0 (𝑟) = 𝐴 ln 𝑟 + 𝐶
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Applying the B.C. 𝑅 (𝑎) = 0 gives

0 = 𝐴 ln 𝑎 + 𝐶
𝐶 = −𝐴 ln 𝑎

Hence the solution becomes

𝑅0 (𝑟) = 𝐴 ln 𝑟 − 𝐴 ln 𝑎

= 𝐴 ln 𝑟
𝑎

Case 𝜆 > 0 The ODE (2) becomes

𝑟2𝑅′′ + 𝑟𝑅′ − 𝑛2𝑅 = 0 𝑛 = 1, 2, 3,⋯

Let 𝑅 = 𝑟𝑝, the above becomes

𝑟2𝑝 �𝑝 − 1� 𝑟𝑝−2 + 𝑟𝑝𝑟𝑝−1 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� 𝑟𝑝 + 𝑝𝑟𝑝 − 𝑛2𝑟𝑝 = 0

𝑝 �𝑝 − 1� + 𝑝 − 𝑛2 = 0
𝑝2 = 𝑛2

𝑝 = ±𝑛

Hence the solution is

𝑅𝑛 (𝑟) = 𝐶𝑟𝑛 + 𝐷
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

Applying the boundary condition 𝑅 (𝑎) = 0 gives

0 = 𝐶𝑎𝑛 + 𝐷
1
𝑎𝑛

−𝐶𝑎𝑛 = 𝐷
1
𝑎𝑛

𝐷 = −𝐶𝑎2𝑛

The solution becomes

𝑅𝑛 (𝑟) = 𝐶𝑟𝑛 − 𝐶𝑎2𝑛
1
𝑟𝑛

𝑛 = 1, 2, 3,⋯

= 𝐶𝑛 �𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �

Hence the complete solution for 𝑅 (𝑟) is

𝑅 (𝑟) = 𝐴 ln 𝑟
𝑎
+

∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �
(6)

Using (5),(6) gives

𝑢𝑛 (𝑟, 𝜃) = 𝑅𝑛Θ𝑛

𝑢 (𝑟, 𝜃) = �𝐴 ln 𝑟
𝑎
+

∞
�
𝑛=1

𝐶𝑛 �𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �� �
𝐴0 +

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)�
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Combining constants to simplify things gives

𝑢 (𝑟, 𝜃) = 𝐴 ln 𝑟
𝑎
+

∞
�
𝑛=1

�𝑟𝑛 −
𝑎2𝑛

𝑟𝑛 �
(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃))

But 𝑎 = 1, then above simplifies to

𝑢 (𝑟, 𝜃) = 𝐴 ln 𝑟 +
∞
�
𝑛=1

�𝑟𝑛 −
1
𝑟𝑛 �

(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃)) (7)

At 𝑟 = 𝑏 we use 𝑢 (𝑏, 𝜃) = ℎ (𝜃) to find 𝐴0, 𝐴𝑛, 𝐵𝑛.

𝑢 (𝑏, 𝜃) = ℎ (𝜃)

ℎ (𝜃) = 𝐴0 ln 𝑏 +
∞
�
𝑛=1

�𝑏𝑛 +
1
𝑏𝑛 �

(𝐴𝑛 cos (𝑛𝜃) + 𝐵𝑛 sin (𝑛𝜃))

Hence

𝐴0 ln 𝑏 = 2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃

𝐴𝑛 �𝑏𝑛 +
1
𝑏𝑛 �

=
1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃

𝐵𝑛 �𝑏𝑛 +
1
𝑏𝑛 �

=
1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) sin (𝑛𝜃) 𝑑𝜃

The solution (7) becomes

𝑢 (𝑟, 𝜃) = �
2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃�

ln 𝑟
ln 𝑏

+
∞
�
𝑛=1

�𝑟𝑛 − 1
𝑟𝑛
�

𝑏𝑛 + 1
𝑏𝑛

��
1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� cos (𝑛𝜃) + �

1
𝜋 �

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� sin (𝑛𝜃)�

But 𝑏 = 2 and the above becomes

𝑢 (𝑟, 𝜃) = �
2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃�

ln 𝑟
ln 2

+
1
𝜋

∞
�
𝑛=1

�𝑟𝑛 − 1
𝑟𝑛
�

2𝑛 + 1
2𝑛

���
𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� cos (𝑛𝜃) + ��

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� sin (𝑛𝜃)�

= �
2
𝜋 �

𝜋

−𝜋
ℎ (𝜃) 𝑑𝜃�

ln 𝑟
ln 2

+
1
𝜋

∞
�
𝑛=1

2𝑛

𝑟𝑛
�𝑟2𝑛 − 1�
22𝑛 + 1 ���

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� cos (𝑛𝜃) + ��

𝜋

−𝜋
ℎ (𝜃) cos (𝑛𝜃) 𝑑𝜃� sin (𝑛𝜃)�
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4 Problem 4.3.38

Suppose ∫
𝜋

−𝜋
|ℎ (𝜃)| 𝑑𝜃 < ∞. Prove that (4.115) converges uniformly to the solution to the

boundary value problem (4.101) on any smaller disk 𝐷𝑟∗ = {𝑟 ≤ 𝑟∗ < 1}  𝐷1

Solution

4.115 is solution for 𝑢 (𝑟, 𝜃) inside unit disk 0 < 𝑟 < 1 and 𝑢 = ℎ (𝜃) at 𝑟 = 1.

𝑢 (𝑟, 𝜃) =
𝑎0
2
+

∞
�
𝑛=1

𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)) (4.115)

This problem is asking to show that the Fourier series solution 4.115 converges uniformly to
solution of Laplace PDE ∇ 2𝑢 = 0 inside disk with radius less than unity with above boundary
conditions.

Let 𝑓𝑛 = 𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)), then to show uniform convergence, we need to show
that for any 𝜀 > 0, there exist integer 𝑁 (𝜀) such that for all 𝑛 > 𝑁 the following is true

|𝑢𝑛 − 𝑢∗| < 𝜀

Where

𝑢∗ = �
𝑟
𝑟∗
�
𝑛

(𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))

Hence we need to show, we can find 𝑁 such that for all 𝑛 > 𝑁

�𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)) − �
𝑟
𝑟∗
�
𝑛

(𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))� < 𝜀

But

�𝑟𝑛 (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)) − �
𝑟
𝑟∗
�
𝑛

(𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))� = ��𝑟𝑛 − �
𝑟
𝑟∗
�
𝑛

� (𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃))�

= ��𝑟𝑛 − �
𝑟
𝑟∗
�
𝑛

�� |𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)|

(1)

But |𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)| can be made as small as we want by increasing 𝑛. This is because

|𝑎𝑛 cos (𝑛𝜃) + 𝑏𝑛 sin (𝑛𝜃)| ≤ |𝑎𝑛 cos (𝑛𝜃)| + |𝑏𝑛 sin (𝑛𝜃)|
And since ∫

𝜋

−𝜋
|ℎ (𝜃)| 𝑑𝜃 < ∞ it implies the Fourier series coe�cients 𝑎𝑛, 𝑏𝑛 → 0 as 𝑛 → ∞ per

Lemma 3.40 on page 112. Hence (1) can be made as small as we want for large 𝑛 and it will

remain smaller as 𝑛 increases because ��𝑟𝑛 − �
𝑟
𝑟∗
�
𝑛
�� < 1.

Therefore there exist such an 𝑁 (𝜀). Hence 𝑢 converges uniformly to 𝑢∗.
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5 Problem 4.3.42

Complete the proof of Theorem 4.9 by showing that 𝑢 �𝑥, 𝑦� = 𝑀∗ for all �𝑥, 𝑦� ∈ Ω. Hint:

Join �𝑥0, 𝑦0� to �𝑥, 𝑦� by curve 𝐶 ⊂ Ω of finite length, and use the preceding part of the proof

to inductively deduce the existence of a finite sequence of points �𝑥𝑖, 𝑦𝑖� ∈ 𝐶, 𝑖 = 0,⋯ , 𝑛 with
�𝑥𝑛, 𝑦𝑛� = �𝑥, 𝑦� and such that 𝑢 �𝑥𝑖, 𝑦𝑖� = 𝑀∗

Solution

Theorem 4.9 : Let 𝑢 be a nonconstant harmonic function defined on a bounded domain
Ω and continuous on 𝜕Ω. Then 𝑢 achieves its maximum and minimum values only at
boundary points of the domain. In other words, if 𝑚 = min{𝑢 �𝑥, 𝑦� | �𝑥, 𝑦� ∈ 𝜕Ω}, 𝑀 =
max{𝑢 (𝑥, 𝑡) | �𝑥, 𝑦� ∈ 𝜕Ω} are respectively, its maximum and minimum values on the boundary,

then 𝑚 < 𝑢 �𝑥, 𝑦� < 𝑀 at all interior points �𝑥, 𝑦� ∈ Ω.

The book gives the proof showing that maximum 𝑀∗ occurs on the boundary 𝜕Ω. We are
asked here to show that once we determined that given a circle inside Ω and assuming the
maximum is at it center meaning all points inside this disk are 𝑢 = 𝑀∗ then this implies
that all points inside Ω must also be 𝑢 = 𝑀∗ leading to contradiction of the nonconstant
requirement. Hence the starting point is this diagram

u = M∗

C

(x0, y0) Ω

∂Ω

Figure 3: All points inside 𝐶 have same value 𝑀∗

Now, we pick a new point from inside the disk 𝐶 near the edge and apply the first part of
the proof to show that all points inside the new disk 𝐶2 also have 𝑢 = 𝑀∗ there. So we have
this new diagram.
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C

Ω

∂Ω

(x0, y0)

(x1, y1)

All points here
have u = M∗

C2

Figure 4: All points inside 𝐶2 have same value 𝑀∗

We continue this way connecting points and adding the domain where all points have 𝑢 = 𝑀∗

values.

C

Ω

∂Ω

(x0, y0)

(x1, y1)

All points here
have u = M∗

C2
(x2, y2)

All points here
have u = M∗

C3

Figure 5: All points inside 𝐶3 have same value 𝑀∗

Since Ω is connected then we can cover the whole region Ω this way all the way to the
boundary 𝜕Ω. This complete the proof given in the book.
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6 Problem 4.3.46

Write down an integral formula for the solution to the Dirichlet boundary value problem on
a disk of radius 𝑅 > 0, namely, ∇ 2𝑢 = 0, 𝑥2 + 𝑦2 < 𝑅2, 𝑢 = ℎ, 𝑥2 + 𝑦2 = 𝑅2

Solution

The closed form sum as given in theorem 4.6 in the book as the Poisson kernel integral
formula

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
ℎ �𝜙�

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos �𝜃 − 𝜙�
𝑑𝜙

Theorem 4.6 is for a unit disk. Since the disk here has radius 𝑅 then 𝑟 is changed to 𝑟
𝑅 in

the above giving

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
ℎ �𝜙�

1 − � 𝑟𝑅�
2

1 + � 𝑟𝑅�
2
− 2 � 𝑟𝑅� cos �𝜃 − 𝜙�

𝑑𝜙

Which can be simplified to

𝑢 (𝑟, 𝜃) =
1
2𝜋 �

𝜋

−𝜋
ℎ �𝜙�

𝑅2 − 𝑟2

𝑅2 + 𝑟2 − 2𝑟𝑅 cos �𝜃 − 𝜙�
𝑑𝜙
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7 Problem 4.4.4

Consider the following partial di�erential equations. At what points of the plane is the
equation elliptic? hyperbolic? parabolic? degenerate?

(a) 𝑥2𝑢𝑥𝑥 + 𝑥𝑢𝑥 + 𝑢𝑦𝑦 = 0 (c) 𝑢𝑡 =
𝜕
𝜕𝑥
((𝑥 + 𝑡) 𝑢𝑥)

Solution

7.1 Part a

The general form of two variables �𝑥, 𝑦� PDE is

𝐿 [𝑢] = 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺 (1)

The type of PDE depends on value of the discriminant

Δ = 𝐵2 − 4𝐴𝐶

Comparing the PDE 𝑥2𝑢𝑥𝑥 + 𝑥𝑢𝑥 + 𝑢𝑦𝑦 to (1) shows that 𝐴 = 𝑥2, 𝐵 = 0, 𝐶 = 1. Hence

Δ = −4𝑥2

This is always negative (𝑥 = 0 is not possible, since this would made the PDE not a PDE
any more). Therefore using definition 4.12 this means the PDE is elliptic.

7.2 Part b

𝑢𝑡 =
𝜕
𝜕𝑥

((𝑥 + 𝑡) 𝑢𝑥)

= �
𝜕
𝜕𝑥

(𝑥 + 𝑡)� 𝑢𝑥 + (𝑥 + 𝑡)
𝜕
𝜕𝑥
𝑢𝑥

= 𝑢𝑥 + (𝑥 + 𝑡) 𝑢𝑥𝑥
Hence

𝑢𝑥 + (𝑥 + 𝑡) 𝑢𝑥𝑥 − 𝑢𝑡 = 0 (2)

The general form of two variables (𝑡, 𝑥) PDE is

𝐿 [𝑢] = 𝐴𝑢𝑡𝑡 + 𝐵𝑢𝑡𝑥 + 𝐶𝑢𝑥𝑥 + 𝐷𝑢𝑡 + 𝐸𝑢𝑥 + 𝐹𝑢 = 𝐺 (3)

Comparing (2) to (3) shows that 𝐶 = (𝑥 + 𝑡) , 𝐴 = 0, 𝐵 = 0. Hence

Δ = 𝐵2 − 4𝐴𝐶
= 0

Hence PDE is parabolic.
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8 Problem 4.4.11

Prove that the complex change of variables 𝑥 = 𝑥, 𝑡 = 𝑖𝑦, maps the Laplace equation 𝑢𝑥𝑥+𝑢𝑦𝑦 =
0 to the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥. Explain why the type of a partial di�erential equation is
not necessarily preserved under a complex change of variables.

Solution

Given 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0, let 𝑥 = 𝑥, 𝑡 = 𝑖𝑦. Hence we are to go from 𝑢 �𝑥, 𝑦� to 𝑣 (𝑡, 𝑥). Therefore

𝜕𝑢 �𝑥, 𝑦�
𝜕𝑥

=

0
�𝜕𝑢
𝜕𝑡

𝑑𝑡
𝑑𝑥
+
𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑥

=
𝜕𝑢
𝜕𝑥

And
𝜕2𝑢
𝜕𝑥2

=
𝜕
𝜕𝑥 �

𝜕𝑢
𝜕𝑥�

=
𝜕2𝑢
𝜕𝑥𝜕𝑡

𝑑𝑡
𝑑𝑥
+
𝜕2𝑢
𝜕𝑥2

𝑑𝑥
𝑑𝑥

=
𝜕2𝑢
𝜕𝑥2

(1)

And

𝜕𝑢
𝜕𝑦

=
𝜕𝑢
𝜕𝑡

𝑑𝑡
𝑑𝑦
+

0
�𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑦

= 𝑖
𝜕𝑢
𝜕𝑡

And
𝜕2𝑢
𝜕𝑦2

=
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑦�

= 𝑖
𝜕
𝜕𝑦 �

𝜕𝑢
𝜕𝑡 �

= 𝑖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕2𝑢
𝜕𝑡2

𝑑𝑡
𝑑𝑦
+

0

���������𝜕2𝑢
𝜕𝑡𝜕𝑥

𝑑𝑥
𝑑𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑖 �𝑖
𝜕2𝑢
𝜕𝑡2 �

= −
𝜕2𝑢
𝜕𝑡2

(2)
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Substituting (1,2) into 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 gives

𝜕2𝑢
𝜕𝑥2

−
𝜕2𝑢
𝜕𝑡2

= 0

𝑢𝑡𝑡 = 𝑢𝑥𝑥
Which is the wave equation.

When change of variables contains only real quantities, then no sign change will occur. Only
stretching (scaling) can occur, so the type of the PDE do not change. But with complex
variables, a sign change can occur as in this example due to multiplying 𝑖 with 𝑖. And this
is what causes the PDE type to change.
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9 Problem 4.4.16

True or false: The characteristic curves of the Helmholtz equation 𝑢𝑥𝑥+𝑢𝑦𝑦−𝑢 = 0 are circles.

Solution

Comparing the above to 𝐿 [𝑢] = 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 = 𝐺 shows that

𝐴 = 1
𝐵 = 0
𝐶 = 1

Hence the characteristic curves are given by (4.151) as (where we choose 𝑦 ≡ 𝑦 (𝑥) and hence
𝑠 = 𝑥 here)

𝐴�𝑥, 𝑦� �
𝑑𝑦
𝑑𝑥�

2

− 𝐵 �𝑥, 𝑦�
𝑑𝑦
𝑑𝑥
+ 𝐶 �𝑥, 𝑦� = 0

�
𝑑𝑦
𝑑𝑥�

2

+ 1 = 0

�
𝑑𝑦
𝑑𝑥�

2

= −1

𝑑𝑦
𝑑𝑥

= ±𝑖

There are no real characteristic curves. Therefore the answer is false.


	Problem 4.3.24
	Part (a)

	Problem 4.3.25
	Part c
	Part d

	Problem 4.3.33
	Problem 4.3.38
	Problem 4.3.42
	Problem 4.3.46
	Problem 4.4.4
	Part a
	Part b

	Problem 4.4.11
	Problem 4.4.16

