Homework 4 Solutions

3.2.34

f'(x) is even.

3.2.37

(a) True. \star (b) False. Only the restriction of f(x) to $[-\pi, \pi]$ is odd. Its values outside that range are irrelevant as far as its periodic extension is concerned.

3.2.40a

(a) $\frac{1}{2} + \frac{2}{\pi} \sum_{j=0}^{\infty} \frac{(-1)^j \cos(2j+1)x}{2j+1}$; the Fourier series converges non-uniformly to the periodically extended box function, namely to 1 when $\left(2k - \frac{1}{2}\right)\pi < x < \left(2k + \frac{1}{2}\right)\pi$; to $\frac{1}{2}$ when $x = \left(k + \frac{1}{2}\right)\pi$; and to 0 when $\left(2k + \frac{1}{2}\right)\pi \le x \le \left(2k + \frac{3}{2}\right)\pi$ for $k = 0, \pm 1, \pm 2, \ldots$

3.2.54

We substitute $x = \pi$ into the Fourier series (3.68) for e^x :

$$\frac{1}{2}(e^{\pi} + e^{-\pi}) = \frac{\sinh \pi}{2\pi} \sum_{k=-\infty}^{\infty} \frac{(-1)^k (1 + i k)}{1 + k^2} e^{i k \pi} = \frac{e^{\pi} - e^{-\pi}}{2\pi} \left(1 + \sum_{k=1}^{\infty} \frac{2}{1 + k^2} \right),$$

which gives the result.

3.2.60

$$\sum_{k=-\infty}^{\infty} c_k e^{\mathrm{i} k x} \sim f(x) = \overline{f(x)} \sim \sum_{k=-\infty}^{\infty} \overline{c_k} e^{-\mathrm{i} k x} \text{ is real if and only if } c_{-k} = \overline{c_k}.$$

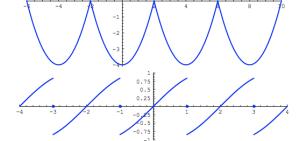
3.3.2

$$x^3 \sim \sum_{k=1}^{\infty} (-1)^k \left(\frac{12}{k^3} - \frac{2\pi^2}{6k} \right) \sin kx.$$

Differentiation does not produce the series for $3x^2$ because the periodic extension of x^3 is not continuous, and so Theorem 3.22 doesn't apply.

3.4.3 b,d

(b)
$$-\frac{8}{3} + \frac{16}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \cos \frac{k \pi x}{2};$$



(d)
$$2\pi \sin 1 \sum_{k=1}^{\infty} (-1)^k \frac{k \sin k \pi x}{1 - k^2 \pi^2};$$

3.4.4 (for 3.4.3 b,d)

- .4. The differentiated Fourier series only converges when the periodic extension of the function is continuous:
- (b) $\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sin \frac{k \pi x}{2}$: converges to the 4-periodic extension of 2x;
- (d) $2\pi^2 \sin 1 \sum_{k=1}^{\infty} (-1)^k \frac{k^2}{1 k^2 \pi^2} \cos k \pi x$:

does not converge to the 20-periodic extension of $\cos x$.

3.4.5 (for 3.4.3 b,d)

(b)
$$\frac{x^3}{3} - 4x \sim -\frac{8}{3}x + \frac{32}{\pi^3} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^3} \sin \frac{k\pi x}{2} \sim \frac{32}{3\pi} \sum_{k=1}^{\infty} \left(\frac{\pi^2 k^2 + 3}{\pi^2 k^3}\right) \sin \frac{k\pi x}{2}$$

(d)
$$\cos x \sim \sin 1 + 2\sin 1 \sum_{k=1}^{\infty} (-1)^k \frac{\cos k \pi x}{1 - k^2 \pi^2}$$
.

3.5.5a,f,i

(a) Pointwise, but not uniformly: \star (f) neither; \star (i) both.

3.5.7b,d,f

(b) pointwise; \star (d) pointwise and uniformly; \star (f) neither pointwise nor uniformly.