Homework 4 Solutions
3.2.34

f'(z) is even.

3.2.37

(a) True. * (b) False. Only the restriction of f(z) to [—m, ] is odd. Its values outside
that range are irrelevant as far as its periodic extension is concerned.

3.2.40a
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3.2.54

We substitute z = 7 into the Fourier series (3.68) for e”:
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which gives the result.

3.2.60
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Differentiation does not produce the series for 322 because the periodic extension of z3
is not continuous, and so Theorem 3.22 doesn’t apply.
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3.4.4 (for 3.4.3 b,d)

.4. The differentiated Fourier series only converges when the periodic extension of the function
is continuous:
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(b) = > . sin—5—: converges to the 4-periodic extension of 2z;
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does not converge to the 20—periodic extension of cos z.

3.4.5 (for 3.4.3 b,d)
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(d) cosz ~ sinl + 2sinl z (— k%.
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3.5.5a,fi

(a) Pointwise, but not uniformly: % (f) neither; * (i) both.

3.5.7b,d,f

(b) pointwise; % (d) pointwise and uniformly; % (f) neither pointwise nor uniformly.



