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1 Problem 2.2.17

(a) Solve the initial value problem 𝑢𝑡 −𝑥𝑢𝑥 = 0, 𝑢 (0, 𝑥) =
1

1+𝑥2 . (b) Graph the solution at times
𝑡 = 0, 1, 2, 3. (c) What is lim𝑡→∞ 𝑢 (𝑡, 𝑥)?

Solution

1.1 Part a

The characteristic curves equations is given by
𝑑𝑥
𝑑𝑡
= −𝑥

Integrating this results in ln |𝑥| = −𝑡 + 𝐶 or 𝑥 = 𝜉𝑒−𝑡. Hence the characteristic variable is

𝜉 (𝑥, 𝑡) = 𝑥𝑒𝑡

𝑢 on the characteristic curves is an arbitrary function of the characteristic variable. Hence

𝑢 (𝑡, 𝜉) = 𝐹 (𝜉)

𝑢 (𝑡, 𝑥) = 𝐹 �𝑥𝑒𝑡� (1)

Where 𝐹 is arbitrary function determined from initial conditions. Using initial conditions at
𝑡 = 0, the above becomes

1
1 + 𝑥2

= 𝐹 (𝑥)

Using the above in (1) gives the final solution as

𝑢 (𝑡, 𝑥) =
1

1 + (𝑥𝑒𝑡)2
(2)

1.2 Part b

The following are some plots and the code used.

In[ ]:= p = Grid[Partition[Table[Quiet@Plot[u[x, time], {x, -5, 5},

PlotRange → {All, {0, 1.1}},

AxesLabel → {Style["x", 12], Style["u", 14]},

BaseStyle → 12,

ImageSize → 400, PlotStyle → Red, GridLines → Automatic,

GridLinesStyle → LightGray,

PlotLabel → Row[{"time = ", padIt2[time, {1, 1}], " seconds"}]],

{time, {0, 1, 2, 3}}

], 2], Spacings → {1, 1}, Frame → All]

Figure 1: Source code
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Out[ ]=
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Figure 2: Solution at di�erent times

1.3 Part c

From the solution in (2), when 𝑥 = 0, then lim𝑡→∞ 𝑢 (𝑡, 0) = 1. But when 𝑥 ≠ 0, then
lim𝑡→∞ 𝑢 (𝑡, 𝑥) = 0. Therefore

lim
𝑡→∞

𝑢 (𝑡, 𝑥) =
1 𝑥 = 0
0 𝑥 ≠ 0

Hence the solution is discontinuous at 𝑥 = 0 in the limit as 𝑡 → ∞.
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2 Problem 2.2.18

Suppose the initial data 𝑢 (0, 𝑥) = 𝑓 (𝑥) of the nonuniform transport equation (2.28), which
is 𝑢𝑡 + �𝑥2 − 1� 𝑢𝑥 = 0 is continuous and satisfies 𝑓 (𝑥) → 0 as |𝑥| → ∞. What is the limiting
solution profile 𝑢 (𝑡, 𝑥) as (a) 𝑡 → ∞ (b) 𝑡 → −∞ ?

Solution

The characteristic curves equations is given by 𝑑𝑥
𝑑𝑡 = �𝑥

2 − 1�. Integrating this results in

1
2

ln � 𝑥 − 1
𝑥 + 1

� = 𝑡 + 𝐶3

ln � 𝑥 − 1
𝑥 + 1

� = 2𝑡 + 𝐶2

𝑥 − 1
𝑥 + 1

= 𝜉𝑒2𝑡

𝜉 =
𝑥 − 1
𝑥 + 1

𝑒−2𝑡

𝑢 on the characteristic curves is an arbitrary function of the characteristic variable. Hence

𝑢 = 𝐹 (𝜉)

= 𝐹 �
𝑥 − 1
𝑥 + 1

𝑒−2𝑡� (1)

Where 𝐹 is arbitrary function which is determined from initial conditions. From initial
conditions the above becomes

𝑓 (𝑥) = 𝐹 �
𝑥 − 1
𝑥 + 1�

Let 𝑥−1
𝑥+1 = 𝑧. Hence (𝑥 − 1) = 𝑧 (𝑥 + 1) or 𝑥 − 1 − 𝑧 − 𝑧𝑥 = 0 or 𝑥 (1 − 𝑧) − 1 − 𝑧 = 0 or 𝑥 = 1+𝑧

1−𝑧 .
Therefore

𝑓 �
1 + 𝑧
1 − 𝑧�

= 𝐹 (𝑧)

Therefore (1) can now be written as

𝑢 (𝑡, 𝑥) = 𝑓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + � 𝑥−1𝑥+1𝑒
−2𝑡�

1 − � 𝑥−1𝑥+1𝑒
−2𝑡�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

2.1 Part (a)

As 𝑡 → ∞ then solution (2) becomes

lim
𝑡→∞

𝑢 (𝑡, 𝑥) = 𝑓 �
1 + 0
1 − 0�

= 𝑓 (1)
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2.2 Part (b)

And as 𝑡 → −∞ then

lim
𝑡→−∞

𝑢 (𝑡, 𝑥) = 𝑓 �
+∞
−∞

�

= 𝑓 (−1)
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3 Problem 2.2.26

Consider the transport equation 𝜕𝑢
𝜕𝑡 + 𝑐 (𝑡, 𝑥)

𝜕𝑢
𝜕𝑥 = 0 with time varying wave speed. Define the

corresponding characteristic ODE to be 𝑑𝑥
𝑑𝑡 = 𝑐 (𝑡, 𝑥), the graphs of whose solutions 𝑥 (𝑡) are

the characteristic curves. (a) Prove that any solution 𝑢 (𝑡, 𝑥) to the PDE is constant on each
characteristic curve. (b) Suppose that the general solution to the characteristic equation is
written in the form 𝜉 (𝑡, 𝑥) = 𝑘, where 𝑘 is an arbitrary constant. Prove that 𝜉 (𝑡, 𝑥) defines
a characteristic variable, meaning that 𝑢 (𝑡, 𝑥) = 𝑓 (𝜉 (𝑡, 𝑥)) is a solution to the time-varying
transport equation for any continuously di�erentiable scalar function 𝑓 ∈ 𝐶1.

Solution

3.1 Part (a)

Let 𝑥 (𝑡) be the solution to characteristic ODE 𝑑𝑥
𝑑𝑡 = 𝑐 (𝑡, 𝑥). Then

𝑑
𝑑𝑡
(𝑢 (𝑡, 𝑥 (𝑡))) =

𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑥

𝑑𝑥
𝑑𝑡

=
𝜕𝑢
𝜕𝑡

+
𝜕𝑢
𝜕𝑥
𝑐 (𝑡, 𝑥)

But 𝜕𝑢
𝜕𝑡 +

𝜕𝑢
𝜕𝑥 𝑐 (𝑡, 𝑥) = 0, since this is the given PDE above. The above now reduces to

𝑑
𝑑𝑡
(𝑢 (𝑡, 𝑥 (𝑡))) = 0

Which implies that 𝑢 (𝑡, 𝑥 (𝑡)) is constant on the characteristic curves.

3.2 Part (b)

𝜕
𝜕𝑡
𝑓 (𝜉 (𝑡, 𝑥)) =

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕
𝜕𝑡
(𝜉 (𝑡, 𝑥))�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥

𝑑𝑥
𝑑𝑡 �

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥)�

And
𝜕
𝜕𝑥
𝑓 (𝜉 (𝑡, 𝑥)) =

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕
𝜕𝑥
𝜉 (𝑡, 𝑥)�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

𝑑𝑡
𝑑𝑥
+
𝜕𝜉
𝜕𝑥

𝑑𝑥
𝑑𝑥�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑥�
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Hence
𝜕
𝜕𝑡
𝑓 (𝜉 (𝑡, 𝑥)) + 𝑐 (𝑡, 𝑥)

𝜕
𝜕𝑥
𝑓 (𝜉 (𝑡, 𝑥)) =

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥)� + 𝑐 (𝑡, 𝑥)

𝑑𝑓
𝑑𝜉 (𝑡, 𝑥) �

𝜕𝜉
𝜕𝑥�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥) + 𝑐 (𝑡, 𝑥)

𝜕𝜉
𝜕𝑥�

=
𝑑𝑓

𝑑𝜉 (𝑡, 𝑥) �
𝜕𝜉
𝜕𝑡

+ 2
𝜕𝜉
𝜕𝑥
𝑐 (𝑡, 𝑥)�

But 𝜉 (𝑡, 𝑥) is constant 𝑘. Hence 𝑑𝑓
𝑑𝜉(𝑡,𝑥) = 0. Therefore RHS above is zero, and the above

reduces to
𝜕
𝜕𝑡
𝑓 (𝜉 (𝑡, 𝑥)) + 𝑐 (𝑡, 𝑥)

𝜕
𝜕𝑥
𝑓 (𝜉 (𝑡, 𝑥)) = 0

This shows that 𝑓 (𝜉 (𝑡, 𝑥)) satisfies the given transport PDE. Hence it is a solution. Or
𝑢 (𝑡, 𝑥) = 𝑓 (𝜉 (𝑡, 𝑥)).
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4 Problem 2.2.29

Consider the first-order PDE 𝑢𝑡 + (1 − 2𝑡) 𝑢𝑥 = 0. Use exercise 2.2.26 to: (a) Find and sketch
the characteristic curves. (b) Write down the general solution. (c) Solve the initial value
problem with 𝑢 (0, 𝑥) = 1

1+𝑥2 . (d) Describe the behavior of your solution 𝑢 (𝑡, 𝑥) from part (c)
as 𝑡 → ∞. What about 𝑡 → −∞?

Solution

4.1 Part (a)

The characteristic curves are given by 𝑑𝑥
𝑑𝑡 = (1 − 2𝑡). Therefore

𝑥 (𝑡) = 𝑡 − 𝑡2 + 𝜉

𝜉 = 𝑥 − �𝑡 − 𝑡2�

The following is plot of characteristic curves for di�erent 𝜉 values.

Table[Plot[t - t^2 + k, {t, 0, 4}, PlotRange → {All, {-10, 7}},

AxesLabel → {"t", "x(t)"}, BaseStyle → 14],

{k, 0, 5, 1}];

Show[%]

Out[ ]= 1 2 3 4
t

-10

-5

5

x(t)

Figure 3: Plot of some characteristic curves
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4.2 Part (b)

solution 𝑢 on the characteristic curves is an arbitrary function of the characteristic variable.
Hence

𝑢 (𝑡, 𝑥) = 𝐹 (𝜉)

= 𝐹 �𝑥 − �𝑡 − 𝑡2��

= 𝐹 �𝑥 − 𝑡 + 𝑡2� (1)

Where 𝐹 is arbitrarily function.

4.3 Part (c)

At 𝑡 = 0 the above solution becomes
1

1 + 𝑥2
= 𝐹 (𝑥) (2)

Therefore using (2) in (1), then (1) becomes

𝑢 (𝑡, 𝑥) =
1

1 + �𝑥 − 𝑡 + 𝑡2�
2 (3)

4.4 Part (d)

The solution in (3) shows that

lim
𝑡→∞

𝑢 (𝑡, 𝑥) =
1
∞
= 0

Also

lim
𝑡→−∞

𝑢 (𝑡, 𝑥) =
1
∞
= 0

Hence the solution vanishes for large 𝑡.
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5 Problem 2.4.2

(a) Solve the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 when the initial displacement is the box function

𝑢 (0, 𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 < 2
0 otherwise

, while the initial velocity is zero. (b) Sketch the resulting solution

at several times.

Solution

5.1 Part (a)

d’Alembert solution of the wave equation is given by

𝑢 (𝑡, 𝑥) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

Where 𝑐 is the wave speed which is 𝑐 = 1 in this problem and 𝑓 (𝑥) = 𝑢 (0, 𝑥) and 𝑔 (𝑥) =
𝑢𝑡 (0, 𝑥) = 0. The above simplifies to

𝑢 (𝑡, 𝑥) =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)�

=
1
2

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 − 𝑡 < 2
0 otherwise

+

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑥 + 𝑡 < 2
0 otherwise

⎞
⎟⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩
1 1 + 𝑡 < 𝑥 < 2 + 𝑡
0 otherwise

+

⎧⎪⎪⎨
⎪⎪⎩
1 1 − 𝑡 < 𝑥 < 2 − 𝑡
0 otherwise

⎞
⎟⎟⎟⎟⎟⎠

Complete split of the box function into two separate halves happens at 𝑡 = 0.5 because when
𝑡 = 0.5 in the above gives

𝑢 (𝑡, 𝑥) =
1
2

⎛
⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩
1 1.5 < 𝑥 < 2.5
0 otherwise

+

⎧⎪⎪⎨
⎪⎪⎩
1 0.5 < 𝑥 < 1.5
0 otherwise

⎞
⎟⎟⎟⎟⎟⎠

This shows that just after 𝑡 = 0.5, there is no longer a common region between 1.5 < 𝑥 < 2.5
and 0.5 < 𝑥 < 1.5.

Hence for 𝑡 > 0.5 the solution 𝑢 will be 1
2 when 1 + 𝑡 < 𝑥 < 2 + 𝑡 or when 1 − 𝑡 < 𝑥 < 2 − 𝑡 and

will be zero otherwise.

But when 𝑡 < 0.5, there will still be a common region before the full split. Some region is till
common, and some region is not. For example, picking 𝑡 = 0.25, then there is a common
region between 1.25 < 𝑥 < 2.25 and 0.75 < 𝑥 < 1.75. In this case the common region is
1.25 < 𝑥 < 1.75. Over this region, 𝑢 = 1. But over the non common region 𝑢 = 1

2 when

0.75 < 𝑥 < 1.25 and 𝑢 = 1
2 for 0.1.75 < 𝑥 < 2.25 and 𝑢 = 0 otherwise. In terms of 𝑡 the above

can be written as
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When 𝑡 ≥ 1
2 then the solution is

𝑢 =
1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 1 − 𝑡 < 𝑥 < 2 − 𝑡
1
2 1 + 𝑡 < 𝑥 < 2 + 𝑡
0 otherwise

When 𝑡 < 1
2

𝑢 =
1
2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 1 + 𝑡 < 𝑥 < 2 − 𝑡
1
2 1 − 𝑡 < 𝑥 < 1 + 𝑡
1
2 2 − 𝑡 < 𝑥 < 2 + 𝑡
0 otherwise

It it easier to do all of this using the computer by plotting the solution for di�erent times.

5.2 Part (b)

The following are plots of the motion of the wave for several times.
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Figure 4: Plots for several times

In[ ]:= u[x_, t_] :=
1

2
(Piecewise[{{1, 1 < x - t < 2}, {0, True}}] + Piecewise[{{1, 1 < x + t < 2}, {0, True}}]);

plots = Table[Grid[{{Row[{"time ", t}]},

{Plot[u[x, t], {x, -1, 4}, Exclusions → None, ImageSize → 300,

PlotPoints → 40,

PerformanceGoal → "Quality", PlotStyle → Red,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotRange → {All, {0, 1.1}}]}

}], {t, {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.1}}];

Grid[Partition[plots, 3], Frame → All]

Figure 5: Code used
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6 Problem 2.4.3

Answer 2.4.2 when the initial velocity is the box function while the initial displacement is
zero.

Solution

6.1 Part (a)

d’Alembert solution of the wave equation is

𝑢 (𝑡, 𝑥) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

Where 𝑐 is the wave speed which is 𝑐 = 1 in this problem and 𝑓 (𝑥) = 0 and 𝑔 (𝑥) = 𝑢𝑡 (0, 𝑥) = 𝑓 (𝑥)
which is the box function given in the last problem. The above becomes

𝑢 (𝑡, 𝑥) =
1
2 �

𝑥+𝑡

𝑥−𝑡
𝑓 (𝑠) 𝑑𝑠

=
1
2 �

𝑠=𝑥+𝑡

𝑠=𝑥−𝑡

⎧⎪⎪⎨
⎪⎪⎩
1 1 < 𝑠 < 2
0 otherwise

𝑑𝑠

6.2 Part (b)

The following are plots of the motion of the wave for several times of the above solution

In[ ]:= u[x_, t_] :=
1

2
Integrate[Piecewise[{{1, 1 < s < 2}, {0, True}}], {s, x - t, x + t}];

plots = Table[Grid[{{Row[{"time ", t}]},

{Plot[u[x, t], {x, -1, 4}, Exclusions → None, ImageSize → 300,

PlotPoints → 40,

PerformanceGoal → "Quality", PlotStyle → Red,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotRange → {All, {0, 1.1}}]}

}], {t, {0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.1}}];

Grid[Partition[plots, 3], Frame → All]

Figure 6: Code used
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Out[ ]=

time 0

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.1

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.2

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.3

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.4

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.5

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.6

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.7

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.8

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 0.9

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 1

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

time 1.1

-1 0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 7: Plots for several times
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7 Problem 2.4.4

Write the following solutions to the wave equation 𝑢𝑡𝑡 = 𝑢𝑥𝑥 in d’Alembert form (2.82) which
is 𝑢 (𝑡, 𝑥) = 𝑓(𝑥−𝑐𝑡)+𝑓(𝑥+𝑐𝑡)

2 + 1
2𝑐
∫𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠. Hint: What is the appropriate initial data? (b)

cos 2𝑥 sin 2𝑡. (d) 𝑡2 + 𝑥2

Solution

7.1 Part(b)

Since 𝑐 = 1, the solution becomes

cos 2𝑥 sin 2𝑡 = 𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)
2

+
1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

Let 𝑓 (𝑥) = 𝑢 (0, 𝑥) = 0. The above solution simplifies to

2 cos 2𝑥 sin 2𝑡 = 1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

cos 2𝑥 sin 2𝑡 = 1
4 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠 (1)

We now need to determine 𝑔 (𝑠) to satisfy the above. By fundamental theorem of calculus

1
4 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠 =

1
4
�𝑔′ (𝑥 + 𝑡) − 𝑔′ (𝑥 − 𝑡)� (2)

Let 𝑔 (𝑥) = 2 cos 2𝑥. Now we need to verify that this will satisfy equation (1). Expanding RHS
of (2) gives

𝑔′ (𝑥 + 𝑡) − 𝑔′ (𝑥 − 𝑡) = 2 (− sin (2 (𝑥 + 𝑡)) + sin (2 (𝑥 − 𝑡)))
= 2 (sin (2𝑥 − 2𝑡) − sin (2𝑥 + 2𝑡))

But sin (𝐴 − 𝐵) = sin𝐴 cos𝐵−cos𝐴 sin𝐵 and sin (𝐴 + 𝐵) = sin𝐴 cos𝐵+cos𝐴 sin𝐵. Substituting
these in the above, where 𝐴 = 2𝑥, 𝐵 = 2𝑡, the above becomes

𝑔′ (𝑥 + 𝑡) − 𝑔′ (𝑥 − 𝑡) = 2 (sin 2𝑥 cos 2𝑡 − cos 2𝑥 sin 2𝑡 − (sin 2𝑥 cos 2𝑡 + cos 2𝑥 sin 2𝑡))
= 2 (sin 2𝑥 cos 2𝑡 − cos 2𝑥 sin 2𝑡 − sin 2𝑥 cos 2𝑡 − cos 2𝑥 sin 2𝑡)
= 4 cos 2𝑥 sin 2𝑡 (3)

Substituting (3) into (1) gives

cos 2𝑥 sin 2𝑡 = 1
4
(4 cos 2𝑥 sin 2𝑡)

= cos 2𝑥 sin 2𝑡
Verified.

Hence if initial condition is 𝑓 (𝑥) = 0 and if 𝑔 (𝑥) = 2 cos 2𝑥, then the solution using d’Alembert
form will be the one given 𝑢 (𝑡, 𝑥) = 2 cos 2𝑥 sin 2𝑡 which is what we are asked to show.
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Therefore

cos 2𝑥 sin 2𝑡 = 1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� +

1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

𝑢 (0, 𝑥) = 0
𝑢𝑡 (0, 𝑥) = 2 cos 2𝑥

7.2 Part(d)

Since 𝑐 = 1, the solution becomes

𝑡2 + 𝑥2 =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� +

1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

Let 𝑔 (𝑥) = 𝑢𝑡 (0, 𝑥) = 0. The above reduces to

𝑡2 + 𝑥2 =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)�

Assuming 𝑓 (𝑥) = 𝑥2, now we will see if this assumption generates the solution needed. The
RHS above now becomes

1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� =

1
2
�(𝑥 − 𝑡)2 + (𝑥 + 𝑡)2�

=
1
2
��𝑥2 + 𝑡2 − 2𝑥𝑡� + �𝑥2 + 𝑡2 + 2𝑥𝑡��

=
1
2
�𝑥2 + 𝑡2 + 𝑥2 + 𝑡2�

= 𝑡2 + 𝑥2

Verified.

Hence by setting 𝑔 (𝑥) = 0 and 𝑓 (𝑥) = 𝑥2 the given solution is obtained. Therefore

𝑡2 + 𝑥2 =
1
2
�𝑓 (𝑥 − 𝑡) + 𝑓 (𝑥 + 𝑡)� +

1
2 �

𝑥+𝑡

𝑥−𝑡
𝑔 (𝑠) 𝑑𝑠

𝑢 (0, 𝑥) = 𝑥2

𝑢𝑡 (0, 𝑥) = 0
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8 Problem 2.4.10

Suppose 𝑢 (𝑡, 𝑥) solves the initial value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥+sin (𝜔𝑡) cos (𝑥) , 𝑢 (0, 𝑥) = 0, 𝑢𝑡 (0, 𝑥) =
0. Is ℎ (𝑡) = 𝑢 (𝑡, 0) a periodic function?

Solution

The solution is given by eq (2.96) in the textbook (since 𝑓 (𝑥) = 0 and 𝑔 (𝑥) = 0 and 𝑐2 = 4 or
𝑐 = 2) as the following

𝑢 (𝑡, 𝑥) =
1
4 �

𝑡

0
�

𝑥+(𝑡−𝑠)

𝑥−(𝑡−𝑠)
𝐹 �𝑠, 𝑦� 𝑑𝑦𝑑𝑠

But here 𝐹 �𝑠, 𝑦� = sin (𝜔𝑠) cos �𝑦�. Therefore, using the book example 2.19, where we just
need to change sin 𝑥 to cos 𝑥 in the solution shown, then the above integral gives

𝑢 (𝑡, 𝑥) =
1
4 �

𝑡

0
�

𝑥+(𝑡−𝑠)

𝑥−(𝑡−𝑠)
sin (𝜔𝑠) cos �𝑦� 𝑑𝑦𝑑𝑠

=

⎧⎪⎪⎨
⎪⎪⎩

sin(𝜔𝑡)−𝜔 sin 𝑡
1−𝜔2 cos 𝑥 0 < 𝜔 ≠ 1

sin 𝑡−𝑡 cos 𝑡
2 cos 𝑥 𝜔 = 1

At 𝑥 = 0, then

ℎ (𝑡) = 𝑢 (𝑡, 0) =

⎧⎪⎪⎨
⎪⎪⎩

sin(𝜔𝑡)−𝜔 sin 𝑡
1−𝜔2 0 < 𝜔 ≠ 1

sin 𝑡−𝑡 cos 𝑡
2 𝜔 = 1

Therefore ℎ (𝑡) is periodic only if 𝜔 = 𝑝
𝑞 ≠ 1 is a rational number.
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9 Problem 2.4.11

(a) Write down an explicit formula for the solution to initial value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥, 𝑢 (0, 𝑥) =
sin 𝑥, 𝑢𝑡 (0, 𝑥) = cos 𝑥 for −∞ < 𝑥 < ∞, 𝑡 ≥ 0. (b) True of False: The solution is a periodic
function of 𝑡. (c) Now solve the forced initial value problem 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 + cos 2𝑡, 𝑢 (0, 𝑥) =
sin 𝑥, 𝑢𝑡 (0, 𝑥) = cos 𝑥 for −∞ < 𝑥 < ∞, 𝑡 ≥ 0. (d) True of False: The forced equation exhibits
resonance. Explain. (e) Does the answer to part (d) change if the forcing function is sin 2𝑡 ?

Solution

9.1 Part (a)

Using d’Alembert formula where 𝑢 (0, 𝑥) = 𝑓 (𝑥) = sin 𝑥 and 𝑢𝑡 (0, 𝑥) = 𝑔 (𝑥) = cos 𝑥, then the
solution is

𝑢 (𝑡.𝑥) =
1
2
�𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)� +

1
2𝑐 �

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔 (𝑠) 𝑑𝑠

But 𝑐 = 2, 𝑓 (𝑥) = sin 𝑥, 𝑔 (𝑥) = cos 𝑥, then the above becomes

𝑢 (𝑡, 𝑥) =
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4 �
𝑥+2𝑡

𝑥−2𝑡
cos (𝑠) 𝑑𝑠

=
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4
[sin (𝑠)]𝑥+2𝑡𝑥−2𝑡

=
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4
(sin (𝑥 + 2𝑡) − sin (𝑥 − 2𝑡))

=
1
2

sin (𝑥 − 2𝑡) + 1
2

sin (𝑥 + 2𝑡) + 1
4

sin (𝑥 + 2𝑡) − 1
4

sin (𝑥 − 2𝑡)

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡)

9.2 Part (b)

True.

If we can find a common multiple between 𝑥 − 2𝑡 and 𝑥 + 2𝑡 then the solution is periodic.
i.e. if 𝐹1 (𝑧) has period 𝑝1 and 𝐹2 (𝑧) has period 𝑝2, then if we can find positive integers 𝑎1, 𝑎2
such that 𝑎1𝑝1 = 𝑎2𝑝2 = 𝑟, then 𝑟 is the period of 𝐹1 (𝑥) + 𝐹2 (𝑥).

In this problem, 𝐹1 = sin (𝑥 − 2𝑡) , 𝐹2 = sin (𝑥 + 2𝑡). But both of these have period 2𝜋. Hence
𝑝1 = 2𝜋, 𝑝2 = 2𝜋. Therefore choosing 𝑎1 = 1, 𝑎2 = 1, then 𝑟 = 2𝜋. The period of sum.
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9.3 Part (c)

When the PDE becomes 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 + cos 2𝑡, then we need to add forcing solution part of the
solution. Hence the solution now becomes, using 2.97 in the book as (using 𝑐 = 2)

𝑢 (𝑡, 𝑥) =
1
2
(sin (𝑥 − 2𝑡) + sin (𝑥 + 2𝑡)) + 1

4 �
𝑥+2𝑡

𝑥−2𝑡
cos (𝑠) 𝑑𝑠 + 1

4 �
𝑡

0
�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
𝐹 �𝑠, 𝑦� 𝑑𝑦𝑑𝑠

Where 𝐹 �𝑠, 𝑦� = cos (2𝑡). Hence the above becomes (using result from part (a) for the non
forcing part) as

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
cos (2𝑠) 𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠)�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) ((𝑥 + 2 (𝑡 − 𝑠)) − (𝑥 − 2 (𝑡 − 𝑠))) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − (𝑥 − 2𝑡 + 2𝑠)) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − 𝑥 + 2𝑡 − 2𝑠) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
cos (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠

But 1
4
∫𝑡

0
cos (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠 = sin2 𝑡

2 . Hence the above solution becomes

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + sin2 𝑡
2

Which can also be written as

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
2 �

1
2
−
1
2

cos (2𝑡)�

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4
−
1
4

cos (2𝑡)

9.4 Part (d)

False. No resonance. Solution is periodic. There is no term in the solution which is being
multiplied by 𝑡. Hence solution do not grow with time which indicates no resonance.
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9.5 Part (e)

If the PDE now becomes 𝑢𝑡𝑡 = 4𝑢𝑥𝑥 + sin 2𝑡, 𝑢 (0, 𝑥) = sin 𝑥, 𝑢𝑡 (0, 𝑥) = cos 𝑥, then the solution
becomes

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
sin (2𝑠) 𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠)�

𝑥+2(𝑡−𝑠)

𝑥−2(𝑡−𝑠)
𝑑𝑦𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) ((𝑥 + 2 (𝑡 − 𝑠)) − (𝑥 − 2 (𝑡 − 𝑠))) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − (𝑥 − 2𝑡 + 2𝑠)) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) (𝑥 + 2𝑡 − 2𝑠 − 𝑥 + 2𝑡 − 2𝑠) 𝑑𝑠

=
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4 �

𝑡

0
sin (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠

But 1
4
∫𝑡

0
sin (2𝑠) (4𝑡 − 4𝑠) 𝑑𝑠 = 1

4
(2𝑡 − sin (2𝑡)). Hence the solution now becomes

𝑢 (𝑡, 𝑥) =
1
4

sin (𝑥 − 2𝑡) + 3
4

sin (𝑥 + 2𝑡) + 1
4
(2𝑡 − sin (2𝑡))

We see now that resonance now occurs due to above term 1
2 𝑡 in the solution. This means as

𝑡 increases, the solution will keep increasing with no limit.
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10 Problem 2.4.13

Let 𝑢 (𝑡, 𝑥) be a classical solution to the wave equation 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥. The total energy

𝐸 (𝑡) = �
∞

−∞

1
2

⎛
⎜⎜⎜⎜⎝�
𝜕𝑢
𝜕𝑡 �

2

+ 𝑐2 �
𝜕𝑢
𝜕𝑥�

2⎞⎟⎟⎟⎟⎠ 𝑑𝑥

Represents the sum of kinetic and potential energies of the displacement 𝑢 (𝑡, 𝑥) at time 𝑡.
Suppose that Δ𝑢 → 0 su�ciently rapidly as 𝑥 → ±∞; more precisely, one can find 𝛼 > 1

2 and

𝐶 (𝑡) > 0 such that |𝑢𝑡 (𝑡, 𝑥)| , |𝑢𝑥 (𝑡, 𝑥)| ≤
𝐶(𝑡)
|𝑥|𝛼

for each fixed 𝑡 and all su�ciently large |𝑥| ≫ 0.
For such solutions establish the law of conservation of energy by showing that 𝐸 (𝑡) is finite
and constant. Hint: You do not need the formula for the solution.

Solution

To show 𝐸 (𝑡) is constant, it is su�cient to show that 𝑑
𝑑𝑡𝐸 (𝑡) = 0. From above

𝑑
𝑑𝑡
𝐸 (𝑡) =

𝑑
𝑑𝑡 �

∞

−∞

1
2
�𝑢2𝑡 + 𝑐2𝑢2𝑥� 𝑑𝑥

Moving 𝑑
𝑑𝑡 inside the integral (assuming solution is piecewise smooth), the above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2 �

𝑑
𝑑𝑡
𝑢2𝑡 + 𝑐2

𝑑
𝑑𝑡
𝑢2𝑥� 𝑑𝑥

But 𝑑
𝑑𝑡𝑢

2
𝑡 = 2𝑢𝑡𝑢𝑡𝑡 and

𝑑
𝑑𝑡𝑢

2
𝑥 = 2𝑢𝑥𝑢𝑥𝑡. The above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2
�2𝑢𝑡𝑢𝑡𝑡 + 2𝑐2𝑢𝑥𝑢𝑥𝑡� 𝑑𝑥

= �
∞

−∞
𝑢𝑡𝑢𝑡𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

But 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 from the PDE itself. The above now simplifies to
𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞
𝑐2𝑢𝑡𝑢𝑥𝑥 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= 𝑐2�
∞

−∞
𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡𝑑𝑥

But 𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡 =
𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥). The above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = 𝑐2�

∞

−∞

𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥) 𝑑𝑥

= 𝑐2�
∞

−∞
𝑑 (𝑢𝑡𝑢𝑥)

= 𝑐2 [𝑢𝑡𝑢𝑥]
∞
−∞

But the problem says that as 𝑥 → ±∞ then 𝑢𝑥 → 0. It also say that |𝑢𝑡| is bounded. This
shows that the RHS above is zero. Therefore 𝑑

𝑑𝑡𝐸 (𝑡) = 0 or 𝐸 (𝑡) is constant. The fact constant
is bounded is seen by noting that the problems says that |𝑢𝑥| and |𝑢𝑡| are bounded. This
completes the proof.
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11 Problem 2.4.15

The telegraph equation 𝑢𝑡𝑡 + 𝑎𝑢𝑡 = 𝑐2𝑢𝑥𝑥 with 𝑎 > 0, models the vibration of a string under
frictional damping. (a) Show that, under the decay assumption of exercise 2.4.13, the wave
energy (2.98)

𝐸 (𝑡) = �
∞

−∞

1
2

⎛
⎜⎜⎜⎜⎝�
𝜕𝑢
𝜕𝑡 �

2

+ 𝑐2 �
𝜕𝑢
𝜕𝑥�

2⎞⎟⎟⎟⎟⎠ 𝑑𝑥

of a classical solution is a nonincreasing function of 𝑡. (b) Prove uniqueness of such solutions
to the initial value problem for the telegraph equation.

Solution

11.1 Part (a)

𝑑
𝑑𝑡
𝐸 (𝑡) =

𝑑
𝑑𝑡 �

∞

−∞

1
2
�𝑢2𝑡 + 𝑐2𝑢2𝑥� 𝑑𝑥

Moving 𝑑
𝑑𝑡 inside the integral (assuming solution is smooth), the above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2 �

𝑑
𝑑𝑡
𝑢2𝑡 + 𝑐2

𝑑
𝑑𝑡
𝑢2𝑥� 𝑑𝑥

But 𝑑
𝑑𝑡𝑢

2
𝑡 = 2𝑢𝑡𝑢𝑡𝑡 and

𝑑
𝑑𝑡𝑢

2
𝑥 = 2𝑢𝑥𝑢𝑥𝑡. The above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞

1
2
�2𝑢𝑡𝑢𝑡𝑡 + 2𝑐2𝑢𝑥𝑢𝑥𝑡� 𝑑𝑥

= �
∞

−∞
𝑢𝑡𝑢𝑡𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

But 𝑢𝑡𝑡 = 𝑐2𝑢𝑥𝑥 − 𝑎𝑢𝑡 from the PDE itself, hence the above simplifies to
𝑑
𝑑𝑡
𝐸 (𝑡) = �

∞

−∞
𝑢𝑡 �𝑐2𝑢𝑥𝑥 − 𝑎𝑢𝑡� + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= �
∞

−∞
𝑐2𝑢𝑡𝑢𝑥𝑥 − 𝑎𝑢2𝑡 + 𝑐2𝑢𝑥𝑢𝑥𝑡𝑑𝑥

= 𝑐2�
∞

−∞
𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡𝑑𝑥 − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

But ∫
∞

−∞
𝑢𝑡𝑢𝑥𝑥 + 𝑢𝑥𝑢𝑥𝑡𝑑𝑥 =

𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥), then the above becomes

𝑑
𝑑𝑡
𝐸 (𝑡) = 𝑐2�

∞

−∞

𝑑
𝑑𝑥
(𝑢𝑡𝑢𝑥) 𝑑𝑥 − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

= 𝑐2�
∞

−∞
𝑑 (𝑢𝑡𝑢𝑥) 𝑑𝑥 − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

= 𝑐2 [𝑢𝑡𝑢𝑥]
∞
−∞ − 𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥
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As in the previous problem [𝑢𝑡𝑢𝑥]
∞
−∞ = 0 since 𝑢𝑥 → 0 for 𝑥 → ±∞. Then the above now

reduces to
𝑑
𝑑𝑡
𝐸 (𝑡) = −𝑎�

∞

−∞
𝑢2𝑡 𝑑𝑥

But ∫
∞

−∞
𝑢2𝑡 𝑑𝑥 is either zero or positive because the integrand is always positive.

Hence 𝑑
𝑑𝑡𝐸 (𝑡) is negative quantity because 𝑎 > 0. This shows that rate of change of energy is

either zero or negative and can not be positive. This means 𝐸 (𝑡) is non increasing which is
what we are asked to show.

11.2 Part (b)

Let 𝑢1 (𝑡, 𝑥) and 𝑢2 (𝑡, 𝑥) be two di�erent solutions to same 𝑢𝑡𝑡 + 𝑎𝑢𝑡 = 𝑐2𝑢𝑥𝑥 with same initial
data. Let 𝑤 (𝑡, 𝑥) = 𝑢1 (𝑡, 𝑥) − 𝑢2 (𝑡, 𝑥). Therefore

𝑤𝑡𝑡 + 𝑎𝑤𝑡 = 𝑐2𝑤𝑥𝑥

Applying the energy formula to 𝑤 (𝑡, 𝑥) shows that

𝐸 (𝑡) = �
∞

−∞

1
2
�(𝑤𝑡)

2 + 𝑐2 (𝑤𝑥)
2� 𝑑𝑥

𝑑𝐸
𝑑𝑡

=
𝑑
𝑑𝑡 �

∞

−∞

1
2
�(𝑤𝑡)

2 + 𝑐2 (𝑤𝑥)
2� 𝑑𝑥

Following same steps in problem 2.4.13, the above becomes zero. Which means that 𝑑𝐸
𝑑𝑡 = 0

or 𝐸 (𝑡) is constant. But 𝐸 (−∞) = 𝐸 (∞) = 0 which means that 𝐸 (𝑡) = 0. In other words

�
∞

−∞

1
2
�(𝑤𝑡)

2 + 𝑐2 (𝑤𝑥)
2� 𝑑𝑥 = 0

But since the integrand is positive, then this means 𝑤𝑡 = 0 and 𝑤𝑥 = 0. But this implies that
𝑤 (𝑡, 𝑥) is itself a constant.

We now need to show that this constant is zero. i.e. to show that 𝑤 (𝑡, 𝑥) = 0 to finish the
proof.

Since 𝑤 (0, 𝑥) = 0, because this is the initial data, which is the di�erence between the initial
data of the two solutions 𝑢1, 𝑢2 which is the same, hence the di�erence of the initial data is
zero.

But if 𝑤 (0, 𝑥) = 0 and 𝑤 (𝑡, 𝑥) is constant, it must be that 𝑤 (𝑡, 𝑥) = 0 for all time and space.

But since 𝑤 (𝑡, 𝑥) = 𝑢1 (𝑡, 𝑥) = 𝑢2 (𝑡, 𝑥) then

𝑢1 (𝑡, 𝑥) = 𝑢2 (𝑡, 𝑥)

Which mean that the solution to the telegraph PDE is unique.
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