Problem 1
Proof. 1. Choose w € A. Then (46) implies

= [ (-au- - wa
An integration by parts yields

=j{;Du-D(u—wj—f(u—w]d$,
and there is no boundary term since 4 — w — 9 —g=0onadU. Hence

L]Du{z—ufdx=LDu-Dw—wfdm

1
Sf —-[Du|2dw+f 1|Dw|2—wfda:,
v 2 U2

where we employed the estimates

|Du - Dw| < |Dul |Dw|<—|Du|2 |}:>wr2

following from the’ Cauchy-Schwarz and Cauchy inequalities (§B.2). Rear-
rangmg we conclude




We have already employed the maximum principle in §2.2.3 to show
uniqueness, but now set forth a simple alternative proof. Assume U is open,

bounded, and dU is G

niqueness). There cxists at most one solution u e

THEOREM 16 (U
C?(U) of (46).

Proof. Assume i is another solution and set
U, and so an integration by parts shows

0=——[wAwd:c=f |wa|2da:.
i U

0 on U, we deduce w = u— 4 =0in
O

w = u—u: Then Aw=0in

Thus Dw = 0 in U, and, since w =

characterized as the minimizer of an
define the energy functional

w =g on oU }.

Assume u € C2(U) solves (46)-

equivalent to the statement
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7.1.3a,b

(a) By the Shift Theorem 7.4, f(z) = 1\/;6 192 Gion .
(b) Using the Table, if b > 0, then f(z) = iv27 €% (o(z) — 1), while if b < 0, then
f(z) = iv27 €% o(z). For b= 0, use part (a).

7.1.13

Use the change of variables & = z — £ in the integral:

f[f(a:—s)l—\%— [ ta-gea = [ f@e HE0
—iké& _ ) R
f f@ e R dz = e P F(k).

To prove the second statement

Fle'™ f(=)] \/_f f@)e™ 7 dg = F(k — ).

7.1.20 a): (i), (iii), and b)
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(a) k\/; /27 8(k).

7.2.3d



2
* (d) _ [\/ﬂe_ma(m)} = \/ﬁ[—e_ma(m) + 6(x) —5’(:5)}.

7.2.12

(a) Indeed, applying the inverse Fourier transform:

oo oo

f@) ~ [T iwetTd= 3 ¢, [ dk-n)etTdb= 3 c.e'tT
- n=—00 - n=—00
recovers the complex Fourier series for f(z), proving the result.
oo _1\n
(b) (i) 5id(z+2)— 5id(x—2), (i) i > &5@—7;).
HZ;OO n
n+0

7.3.4

. The Fourier transformed equation is (k? + 4) @i(k) = 1/v/27, and hence a solution is

u(z) = 21£8—2|:n|.



