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1 Problem 1

Show that (assuming sufficient smoothness of the domain and the data) u is a solution to
the Dirichlet boundary value problem

-Au=f
In Q with B.C. u = g on JQ iff u is a minimizer of the energy functional, that is
E (1) = min [E (v) :v e C? (Q)} such that u = g on JQ

Here
E(u) = fQ (% IV u? —fu) dA

(note, I will be using dA in the above integral assuming we are in IR?. But the above can
also be dV for IR? just as well and nothing will change in the derivation below. This is easier
that writing dx and saying that x is a vector).

Solution
Since the proof is an iff, then we need to show both direction.

Forward direction Given that u solves

-Au=f (1)

with u|,, = ¢. Then we need to show that E(v) > E (u) for all v € C? (Q) that also satisfy
same B.C.

Multiplying both sides of (1) by # — v and integrating over the domain gives
—f (Aw) (1t — v) dA = f (1~ 0) fdA )
Q Q

For the left integral L) (Au) (u —v)dA, we will do integration by parts. Let Au =dV,u-v = U,

then LUdV = faQ uv - LVdU. Therefore dU = V(u—-v) and V = Vu. After applying
integration by parts the (2) now becomes

du
—(Lg(u—v)%dL—LVu-V(u—v)dA):fQ(u—v)fdA

But f (u—0) %4 4L = 0 because u# = v on the boundary JQ as both are ¢. The above now
00 on Yy g

simplifies to
fQVu-V(u—v) dA:fQ(uf—vf) aA
fgw.(w_vw dA:fQ(uf—vf) aA
fQ|Vu|2-Vu-VvdA:fQ(uf—vf) dA

f|Vu|2—ffudA:f(Vu-Vv)—vfdA
Q Q Q



Now we use Schwarz triangle inequality and write Vu - Vo < % (IV ul2 + |VU|2). This comes

from using ab < % (a2 + bz). Using this in the RHS of the above gives

1
[ wut da- [ fuaa< [ (vuP+VoP) - foda
Q Q a2

1 1
f IV uf? dA—f fudAsf —IVulsz+(—f|Vv|2—fvdA)
Q 0 0?2 2Jq

1 1
f—|Vu|2dA—ffudAs—f|Vv|2—fodA
0?2 0 2Jg

1 1
f—|Vu|2—fudA§—f|Vv|2—fvdA
YA 2Jq

But by definition L % IV uf? - fudA =E(u) and %{) Vol — fv dA = E (v), therefore the above
becomes

E(u) < E(v)
Which is what we wanted to show. Now we will do the other direction.

Reverse direction Given that ¥ minimizes energy among all test functions, i.e. given that
E (1) = min E (w), then need to show that —Au = f.

Consider w = u + ¢v where v is any test function v € C? (Q) and v = g at JQ. Hence
min (E (w)) = min (E (u + €v))
Therefore min (E (u + €v)) is achieved when ¢ = 0, since this then gives E (1) which by as-

sumption is the minimum. Therefore

d
EE(u+ev)—O

At ¢ = 0. But the above can be written as the following, using the definition of energy

%(L%|V(M+€v)lz—f(u+ev) dA):o

%(fQ%(V(u+ev)-V(u+sv))—f(u+sv) dA):O (3)
Expanding V (u + €v) - V (1 + €v) gives
Vu+ev) - Vu+ev)=Vu+eVo)-(Vu+ eVo)
= |Vu|2+2€Vu-Vv+€2 |Vz)|2 (4)
Substituting (4) into (3) gives

d
- (f U(lvulz +2eVu-Vo+ & |VZJ|2) - fu-efv dA) =0
de Q

Now we move the derivative inside the take derivative w.r.t. ¢ giving

1
(f —(2Vu-Vv+2e|Vv|2)—fvdA):0
02



Evaluate at ¢ = 0 the above becomes
f (Vu-Vv)dA—f FodA=0
Q Q

Integration by parts for the first integral. Let Vu = U,dV = Vo, then I} udv = faQ uv -
L VdU. Hence the above becomes

d
(f hidas dL—f vAudA)—f fodA=0
o0 on Q Q

But v = 0 at boundary JQ. The above simplifies to

—f vAudA—f fodA=0

Q Q
f o(-Au —f )dA=0
Q

Since the above is true for all v test function then this implies that -Au — f =0 or

-Au =f

Which is what we wanted to show.



2 Problem 71.1f

o 0
Find the Fourier transform of (f) f(x) = { e sinx x>

0 x<0

Solution

f (x) e~ dx
e~ sin xe *dy
sin xe *kx=x gy

sin xe A+ gy 1)

o-x(1+ik)
—(1+ik)

Integration by parts. fudv = uv - fvdu. Let do = ¢¥1+0) ¢ = u = sinx,du = cosx.

Hence
I= f sin xe¥(1+k) gy
0

- x(1+ik) - x(1+ik)

= [SIHXW]O —j(; COSdeX

-1 . 900 00 .
— : —x(1+ik) —x(1+ik)
—1+ik[smxe" ! ]0 +1+ikf0 cos xe X gy

But ¢*1+%) = ¢=*¢~* and this goes to zero as x — oo and since sinx = 0 at x = 0 then the
first term above is zero. The above reduces to

00 .
f cos xe X(1+ik) g
0

T 1+ik
R —x(1+ik)
Integration by parts. fudv = uv — fvdu. Let dv = ¢4 o = e_(1+ik) ,u = cosx,du = —sinx.
The above becomes
1 o~ x(1+ik) 0 ) . o~ x(L+ik) ;
Tk ||“ Tas zk)] fo (= sinx) =g 759
1 e—x(1+zk) 1 0o )
— _ : —x(1+zk)d
1+ik( Cosx—(1+ik)]0 1+ikf0 e




But fo sin xe *1*%)dx = . The above becomes

1 e—x(1+ik) 0 1
= - I
1+ ik ““—Q+ML 1+ik
1 o—x(1+ik) 1 \?
= - | - I
1+ik[cosx—(1+ik)0 (1+ik)
2
1 1 e
+ [ = —x(1+ik)
(1-+ik) 0,+ik)2[cosxe |

Now [cos xe~x(1+ik) ];o =0-1 = -1. Hence the above reduces to

11+(1)2— !
1+ik) ) (1 +ik)?

1

(1+ik)?
[= —————
1 \2
T
3 1
1+ @ +ik)?
3 1
2 — k2 +2ik
Therefore
00 ‘ 1
. —x(1+ik) 3. —
‘[(; Sl xe x(1+i )dx = m

Using (1) the Fourier transform becomes

This can be written as real and imaginary parts

2 — k%) - 2ik
fl= 1 Var ((2- Wﬁ+m@%@—kﬁ—2%)
1 (2-K2)-2ik
- (2 k2)2 + 4k2




3 Problem 7.1.3 (a,b)

Find the inverse Fourier transform of the function i when (a) ¢ = a is real (b) ¢ = ib is
pure imaginary.

Solution

3.1 Parta

Using shifting property where {7[ f (x)] = f (k) and let f (k) = % then by shifting property
5’7[3"”" f (x)] = f (k- a), (Theorem 7.4) therefore

Fle™f @)] = f(k+a)
1
= 1
k+a @
We now just need to find f (x). From table of Fourier transforms on page 272, we see that

Flsgn (x)] = %\/g% Hence
- [r 1
5{1\/; sgn (x)] =%

Therefore f (x) = i\/g sgn (x). Substituting this back into (1) gives

i ,—1ax E — 1
t?[ze \/zsgn (x)] = as
F1 LI ie‘”’x\/E sgn (x)
k+a 2

3.2 Partb

Using shifting property, given that 7| ( f (x)) = f(k), let f (k) = % then by shifting property
(Theorem 7.4) F[e™*f (x)| =  (k - ib), then
Flf @] = f e+ ib)
1
= 1
k+ib @)
We now just need to find f (x). From table of Fourier transforms on page 272, we see that

Flsgn (x)] = %\/E% Hence
ﬁ{i\/gsgn (x)] = %




Therefore f (x) = i\/g sgn (x). Substituting this back into (1) gives

i ,bx E — 1
] 5
= iebx\/g sgn (x)




4 Problem 7.1.13

Prove the Shift Theorem 7.4 which is

Theorem 7.4: if f (x) has Fourier transform f (k), then the Fourier transform of the shifted
function f (x - &) is e7*¢ f (k). Similarly the transform of the product function ¢**f (x) for real
a is the shifted transform f (k — a) (note: using « in place of the strange second k that the
book uses)

41 Parta

Showing if f (x) has Fourier transform f (k), then Fourier transform of the shifted function
flx=&)is e f (k). From definition, the Fourier transform of f (x — &) is given by

Afe-9)= v%f_if(x—ae-ikxdx
d

Let x — & = u. Then —z =1. The above becomes (limits do not change)

d
Ffx-9]= \/% [ et

1 00 . .
— f (u) e—zkue—zkédu
fk)

| f‘x’ .
— e—lké (M) e—zkudu
V 21 Y -0 f

Therefore

Ff -] =e™F k)
Which is what asked to show.

4.2 Partb

Showing that the Fourier transform of ¢®*f (x) is f (k= a). From definition, the Fourier
transform of e~ f(x)is

ﬂeiaxf (x)] — \/%_T( j:oo eiaxf (x) e **dx

1 f°° .
= — (x) e =D gy
\Y 21 Y —c0 f
But \/% f - f(x)e ™k =gy is f (k- a) by replacing k with k — & in the definition of Fourier
T Y—00

transform. Hence
Flefw]=fk-a)
Which is what asked to show.
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5 Problem 7.1.20 (a)

The two-dimensional Fourier transform of a function f (x, y) defined for (x, y) € R? is
Zlf(oy)]=F D
1 00 00 .
=5 f_ f_ f (x, y) e_l(kx”y)dxdy

(a) compute the Fourier transform of the following functions (i) e_|x|_|y|, (iii) The delta

function 6 (x — &) 0 (y - 17)
(b) Show that if f (x,y) = g(x)h(y) then f (k) = 3 (k) i (1)

Solution

51 Parta

(i) The Fourier transform of e P i

Fon= o [ [ erbleitetay

1 00 00 ) )
— —|x| —|y| —ikx —1lyd d
on f_w f_of ¢ e e Ty

1 o ] i 00 .
N —y| —ily f —|x| ,—ikx 1
o j: Ooe e ( Ooe e dx) dy (1)

But f * eMek*dx is the Fourier transform of f(x) = e ™ with v2n factor. In other words

f ey = \2ma (k)

—00

Where § (k) is used to indicate the Fourier transform of ¢™*. Hence (1) becomes

A 27T 00 _
f k1) = gfl (k) f_ N e Me-itvgy

But f_ * e_|y|e‘”ydy = 27th (1) Where 1 (1) is used to indicate the Fourier transform of e M. The
above becomes

fle D)= ‘g“g () V2rih (1

=3 k)R 2)



So now we need to determine § (k) and /z (/) and multiply the result.

gk)=— e Meikxdy

1
&l

1 0 00 .
= ( f e dx + f e‘xe‘lkxdx)
0

\/__ (fo e—zkx+xdx + foo e—ikx—xdx)

00 0

1 —zkx+x —zkx X
= zk}]

1 1 e~ tkx x _ 1 —ikx ,—x 17
E(1 S o L ]o)
1 1 1 0
e e )

1 1
\/2_71 (1 1 + zk)

1 (A +ik) + (1 —ik)
\/2_71 ( —ik) (1 + ik) )

1
E( 7

Similarly

hi(l) = =) |y|e‘llydy

_\/E 1
N nm1+12

Hence from (2) the Fourier transform of e Ml i

fkD) =g h0)

s
1+k2 1412

Tt (1 +k2) (1 + lz)

11
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(i) The Fourier transform of 6 (x — &) 6 (y - 17). First we find the Fourier transform of 6 (x — &)

and then the Fourier transform of 6 (y - 17)

1 00 .
¢ (k) = —f 5 (x — &) e kxdy
3( =) (
_ 1 o-ike

V2n

And

) 1 ‘
h(l) = Ef_wa(y_n)e—zzydy

= —1 e—ﬂfl

V2n

Hence the Fourier transform of the product 6 (x - E)é(y— 17) is (Using the product rule,
which will be proofed in part b also).

fkD) =gk M0

_1 k& p=iln
2n
The above could be rewritten in terms of trig functions using Euler relation if needed.

52 Partb
By definition, the Fourier transform of f (x, y) is

flk D= i f_ : f_ Z f(xy) e ) gy
But f (x, y) =g(Xx)h (y) Hence the above becomes

f k1) = % j: j::g(x)h (v) e_i(k”ly)dxdy

1 00 00 ) )
=5 f j: g(x)h (y) e e~y dxdy

= % f h (y) ey ( f_ 0; g (x) e‘ikxdx) dy

—00

But f_ * g (x) e~k gy = \/ﬂg (k). The above reduces to
A 1 00 ‘
- 5 il
Fk D) = E\/Z_ng(k)f_wh(y)e iy gy
But f_oo h (y) e"dy = \27th (I). Hence the above becomes

FkD) = %\/2_7@ (k) V2rh (1)

=g h()
Which is what asked to show.
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6 Problem 7.2.2 (a)

Find the Fourier transform of (a) the error function erf (x) = % Lx e dz

Solution

6.1 Parta
Using
1+erf(x) = 2 fx e dz (1)
NN
Taking Fourier transform of both sides, and using the known relation from tables which says
X 1., A
?[f f(u)du] ==/ 0+ 7] 05K
And using that Fourier transform of 1 is V276 (k) then (1) becomes

V276 (k) + Flerf (x)] = (k) + f (0)6 (k))

¥

Where f (k) is the Fourier transform of e (Gaussian) we derived in class as e o $6T.

1 ﬁ] ]
—eh | o)
V2 b

The above becomes

V2rs (k) + Flerf (x)] = 2 (il—e_: + 7

TC

T
211 #
= ———e1 +V2no(k)
T
Therefore the above simplifies to

Flerf (x)] =
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7 Problem 7.2.3 (d)

Find the inverse Fourier transform of the following functions (d) kk—_zl
Solution
Using property that
FIf 0] = ikf (k)
FLf" 0] = -K2f (k) (1)
Where in the above 5"[ f (x)] = f (k). Comparing the above with kk—_zl,, we see that

A 1
f(k):ﬁ

Hence we need to find inverse Fourier transform of k_—_ll first in order to find f (x), and then
take second derivative of the result. Writing

1 1

SR
1
i(-ik - 1)

4
ik +1)
1
(1 + ik)
From table (page 272 in textbook) we see that

=1

F1 (ik1+1) = V2re o (x)

Using a =1 in the table entry. Where o (x) is the step function. Hence

1
i7 1 il iV2re ™o (x)

Therefore
£ () = iV2me ™o (x)
Now we take derivative of the above (using product rule)
f(x) = —iV2ne o (x) +iV2me™6 (x)

Where 0 (x) is added since derivative of ¢ (x) has jump discontinuity at x = 0. Taking one
more derivative gives

f"(x) = iV2re o (x) - iV2me ™6 (x) - iV2me™s (x) + iV2me o’ (%)
= iV2ne o (x) - 2iV2me*6 (x) + iV2me s’ (%)



Therefore

)

k2
k—i

] = iV2ne o (x) - 2iV2me 6 (x) + iV2me s (x)

15
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8 Problem 7.2.12

(a) Explain why the Fourler transform of a 27 periodic function f (x) is a linear combinations
of delta functions f (k) =% __ cq0 (k—n)where c, are the complex Fourier series coefficients

(3.65) of f(x) on [- 7'(,71]
) 1 Tt )
:<f,e””‘>: » f F () eimidy (3.65)

(b) Find the Fourier transform of the following periodic functions (i) sin2x (ii) cos®x (iii)
The 27 periodic extension of f(x) = x (iv) The sawtooth function % (x) = xmod1. i.e. the
fractional part of x

Solution

81 Parta

Since f (x) is periodic, then its can be expressed as

fo= 3 a7

n=—00
But the period T = 2r and the above simplifies to
f= 3] ce™ (1)
Taking the Fourier transform of the above gives
A 1 0 .
0 == [ F@et @
Tt

Substituting (1) into (2) gives

fi= = f ( e )e i g
L[S
TT Y -0

n=—oco

Changing the order of summation and integration

Fo) = 2n n_z_:w ( f p-ixk=n) dx)
E c, (f —ix(k—n)dx) (3)

27'[ n=—00

But from tables we know that (1) = V276 (k). Which means that

1 f‘x’ ik
— e dx = V21d (k)
V27T —00



Therefore, replacing k by k —n in the above gives

1 f°° ;
— e~ k=1 gy = 215 (k — n)
V 277 —00
f ¥k gy = (271) 5 (k — 1)

—00

Substituting (4) into (3) gives

A | —
fl)=—= D ca@m)o(k-n)

V27 ke
= V21 Y, .0 (k-n)

n=—00

17

(4)

Note: The books seems to have a typo. It gives the above without the factor V27 at the

front.

8.2 Partb

(i) sin2x. Since this is periodic, then ¢, = zin fﬂ sin (2x) e dx. For n = 2 this gives ¢, = —é
—_— =Tt

and for n = -2 it gives c_, = é and it is zero for all other n values due to orthogonality of

sin functions. Using the above result obtained in part (a)

Fk)=V2n f] 0,0 (k - 1)

n=—00

= V2mc_»6 (k + 2) + V27,6 (k - 2)

= Jz_néé(kn)—\/ﬂéa(k-z)

:i\/gé(k+2)—i\/§6(k—2)

.. . . . 1 ' 1
(ii) cos®x. Since this is periodic, then ¢, = = f " cos? (x) e dx. But cos®(x) = 7 cos (3x) +
A Cos7 X |

Zcos (x). Hence only n = +1,n = +3 will have coefficients and the rest are zero.

1 (™3 , 3
1= o 1 cos (x) e¥dx = 3

1 ™3 : 3
0 =— f —cos (x)e ™ dx = -
2nJ_; 4 8

C

€3 = L f i 1cos (3x) e~ 3% dx =
2nJ_, 4

|- |

3 = L f i 1cos (3x) e dx =
2nJ_, 4
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Therefore, using result from part (a)

F0=Vam S o k-n)

n=—00

1 3 3 1
= Zn(gé(k+3)+gé(k+1)+§6(k—1)+§6(k—3))

= }L\/g(é(k+3)+36(k+1)+36(k—1)+5(k—3))

(iii) The 27 periodic extension of f (x) = x

= — f xe gy

- n_ (nn cos (nm) — sin (nm))

Since this is periodic, then

j (n (-1)")
= ;77 (_1)n

Therefore, using result from part (a)

F k) =V2n i ¢, (k — 1)

_«/_2—n< )6 (k~n)
271 C ) n#+0

(iv) The sawtooth function

Plot [FractionalPart[x], {x, -Pi, Pi}, Ticks » {{-Pi, -Pi/2, @, Pi/2, Pi}, Automatic}]

A/
07 b

Figure 1: Plot of f(x) (Fractional part of x)
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9 Problem 7.3.4

Find a solution to the differential equation —ZZTZ +4u = 6 (x) by using the Fourier transform
Solution
Taking Fourier transform of both sides gives
= (i) 2. (k) + 4 (k) = 710 ()]
K21 (k) + 41 (k) = L

V27
Solving for # (k)
it (k) (k? + 4) = \/%_n

1 1

2 k2 +4

Finding inverse Fourier transform. From tables we see that .7| (e‘”|x|) = \/Z aaz. Using a =2

7 k2+
2 2
1 1

|1 1
—F|=e 2| = ——
\/; Y

(k) =

L\/Egr le—Zle = LL
Vo V2 |20 | onk*+4
1 _[1 ] 1 1
_F| e | = ——
27120 | T onke v 4
T le—lel 1 1

1" |7 amk2+4
Therefore

1
u(x) = Ze‘zb"
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