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1 Problem 1.8a

2 2 2
Find all quadratic polynomial solutions of the 3D Laplace equation % + (;7124 + % =0

Solution
A quadratic polynomial in variables x,y,z is
U= ay + ayX + azy + agz + asx> + agy? + azz% + agxy + agxz + aygyz (1)

Hence u, = a,+2asx+agy+asz which implies that u,, = 2as. Similarly u, = a3 +2asy+agx+a;¢z,
therefore u,, = 24,. And finally u, = a4 + 2a;z + agx + a;oy and u,, = 2a;. Substituting these
results in the Laplace equation gives above result in

2as5 + 2a¢ +2a; =0
as +ag+a; =0
Therefore a5 = — (ag + ay). Using this relation back in (1) gives
U= ay + apx + azy + agz — (ag + a;) X% + agy? + a;z% + agxy + agxz + aygyz
= aq + ayX + azy + agz + ag (—x2 + yz) +ay (—xz + 22) + agxy + agxz + aqgyz
Which can be written as

U (x, y,z) = A + Apx + Asy + Ayz + As (y2 - xz) + Ag (22 - xz) + Ayxy + Agxz + Agyz



2 Problem 1.7

Find all real solutions to 2D Laplace equation u,, + u,, = 0 of the form u = log (p (x, y))

where p (x, y) is a quadratic polynomial.
Solution
A quadratic polynomial p (x, y) in variables x, y is

p (x, y) = aq + ayx + azy + agx® + asy* + agxy

Therefore
u (x, y) = log (a1 + apx + azy + aux® + a5y2 + u6xy)
Hence
ap + 2a4x + agy
Uy, = ——————
p(xy)
and
2
_ 2a, ~ (az + 2a,x + a6y)
xx p (x, ]/) p (x, y)Z
Similarly
. as + 2asy + agx
T py)
And

2
u 245 ~ (a3 + 2asy + a6x)

Yy 2
p (x, y) p (x, y)
Substituting (1,2) into u,, + u,, =0 gives

p(vy) p(x, y)z (xy) p(x, y)2
(az + 2a4x + u6y)2 (a3 + 2asy + a6x)2
20[4 - + 2a5 - =
p(xy) p(vy)

(az + 2a4x + aéy)z + (a3 + 2asy + a6x)

2 2
2a, (az + 2a4x + a6y) ] . [ 245 (a3 + 2asy + a6x)
p

2

2a4+2a5— =0

p(xy)
Or

(2a4 + 2as5)p (x, y) = (az + 2a,4x + aéy)z + (a3 + 2asy + a6x)2

But p (x, _1/) = a4y + ayx + agy + agx?> + asy® + agxy. Hence the above becomes

2
(2a4 + 2as) (al + ayX + azy + azx® + asy? + a6xy) = (az +2a4x + a6y) + (a3 + 2asy + a6x)

1)

(2)

2



Expanding and comparing coefficients gives

20202 + 2x% 0405 + 26, XY + 2a6a5xY + 20,0,X + 28,X05 + 2y?a4a5 + 22 a% + 2aza,y + 2azasy + 2a,a, + 24,45 =

dx?az + x%aZ + dagagxy + dasagxy + 4xayay + 2aza¢x + 4y2a3 + y2a2 + 2aaey + dazasy + a3 + a3
Simplifying
2a,a5x% + 2a,a5x + 20,45y + 2a3a4Y + 2a1a, + 2a1a5 =
2x%a2 + a2x? + 2a4a6xy + 2a5agXy + 2a,a,% + 2a3a6X + 2a2y* + aZy? + 2a,a5y + 2a3asy + a3 + a3

Comparing coefficients of terms that contain no x,y and coefficients of x,y, xy, x?, y* gives
the following equations in order

2a1a4 + 2a1a5 = a% + a%
20,05 = 2a,a4 + 2a3a4
2a3a4 = 2a,0a, + 2a34as
0 = 4aya,
2a4a5 = 2a3 + a
2a,4a5 = 242 + a>
Equation 0 = 4a4a4 above implies that a; = 0 or a5 = 0 or both are zero. But if both are zero,

there is no solution. On the other hand, if 4, = 0, then this also leads to no solution as all
equations reduce to 0 = 0. Therefore only choice left is g, = 0. Now the above equations

become
2a1a4 + 2a1a5 = a3 + a3
2a,a5 = 2d,0a,
2aza, = 24345
0=0
2a,a5 = 243
2a405 = Za%
Or
2a1a4 + 2a1a5 = a3 + a3
as = ay
a4 = as
0=0
as = ay
a4 = as
Hence
a, = as (3)
a6 =0 (4)

_ 2,2
2aya4 + 2a1a5 = a5 + a3



Since a4 = a5 then
2a1a5 + 2a1a5 = a3 + a3

2, 2
_ @ +a;

(5)

a
> 201

Using (3,4,5) in p (x,/) = 4y + apx + agy + a,3% + asy? + agxy gives
p (x, y) = aq + ayX + azy + asx? + asy>
= ay + ayx + azy + as (xz + yz)

5+43 (

= a4 + El— 2 2
=t X tazy+ =5 x“+y
a

Only three arbitrary constants are needed. Let a; = a,a;, = b, a3 = ¢ the above becomes

b2 + 2 (xz . yz)

p(x,y) =a+bx+cy+
And the solution becomes

u(X,y) = log(a+bx+cy+ % (x2 +y2))



3 Problem 1.13

Find all solutions u = f (r) of the 3D Laplace equation uy, + u,, + u,, = 0 that depends only
on radial coordinates r = \/x2 + y? + 22

Solution

The Laplacian in 3D in spherical coordinates is

1 [cosO
2

1
—u
r2sin? ¢

5 2
\Y% u(r,6,¢):urr+;u,+ Ug+ Ugg | +

sin 0
The above shows that the terms that depend only on r makes the laplacian
2
V2u(r) = u,, + -u,
r
Hence the PDE V2u (r) = 0 becomes an ODE now since there is only one dependent variable
giving
2
u” (r) + ;u’ (=0
Let v = v’ (r) and the above becomes
2
v (r) + ;v(r) =0

2
This is linear first order ODE. The integrating factor is [ = el 7 = 207 = 12 Therefore the
above becomes (vrz) =0orovr*=Cyoro(r)= % Therefore

dr
u = &
2
G
du = r—2d
Integrating gives the solution
C
u= it + CZ
r

The above is the required solution. Hence

f)=-2+C,

Where Cq, C, are arbitrary constants.



4 Problem 1.20

The displacement u (t,x) of a forced violin string is modeled by the PDE u; = 4u,, + F(t, x).
When the string is subjected to the external force F(f,x) = cosx, the solution is u(t,x) =

cos (x — 2t) + L cos x, while when F (t,x) = sinx, the solution is u (t,x) = sin(x — 2t) + isin X.
Find a solution when the forcing function is (a) cosx —5sinx, (b) sin (x - 3)

Solution

4.1 Part (a)

Since the PDE is linear, superposition can be used. When the input is F (t,x) = cosx —5sinx
then the solution is

1 . 1.
u(t,x) = cos(x—2t)+zcosx -5 sm(x—2t)+ismx
1 . 5 .
:cos(x—2t)+Zcosx—551n(x—2t)—L—lsmx

42 Part (b)

Since the PDE is linear, superposition can be used. When the input is F(f,x) = sin (x — 3)
then the solution same as when the input is sinx but shifted by 3. Hence

u(t,x) =sin ((x —3) —2t) + szin(x—3)



5 Problem 1.27b

Solve the following inhomogeneous linear ODE 5u” — 4u’ + 4u = ¢* cosx
Solution

First the homogeneous solution uj, is found, then a particular solution u, is found. The
general solution will be the sum of both u = u;, + u,,. Since this is a constant coefficient ODE,

. . 2 4. 2 4. .
the characteristic equation is 5% —4A + 4 = 0. The roots are A; = = + =l A= 5~ 3h which

5
implies the solution is
2, 4 . (4
uy, (x) = e5" ¢y cos gx + ¢y sin gx

Using the method of undetermined coefficients, and since the forcing function is ¢* cosx,
then let

u, = Ae* (Bcosx + Csinx) (1)
Hence

u, = Ae* (Bcosx + Csinx) + Ae* (-Bsinx + C cosx) (2)
uy = Ae* (Bcosx + Csinx) + Ae* (-Bsinx + Ccosx) + Ae* (-Bsinx + C cosx) + Ae* (-B cosx — Csinx)

= Ae* (Bcosx + Csinx — Bsinx + Ccosx —Bsinx + Ccosx — Bcosx — Csin x)

= Ae* (-Bsinx + Ccosx — Bsinx + C cosx)

= Ae* (-2Bsinx + 2C cos x) (3)

Substituting (1,2,3) back into the original ODE gives

5Ae* (-2Bsin x + 2C cosx) — 4 (Ae* (Bcosx + Csinx) + Ae* (-Bsinx + Ccosx)) + 4Ae* (Bcosx + Csinx) = e* cosx
Ae* (-10Bsin x + 10C cos x) — Ae* (4B cos x + 4C sinx) — Ae* (—4Bsin x + 4C cos x) + Ae* (4B cosx + 4C sinx) = e* cosx
Ae* (-10Bsinx + 10C cos x —4B cosx —4Csinx + 4Bsin x — 4C cos x + 4B cos x + 4C sin x) = e* cos x

Hence
Ae* (6C cosx —6Bsinx) = e*cosx

Comparing coefficients shows that

0 w »
1 1
N = © =

Hence from (1)

Therefore the general solution is

u(x) = uy (x) + 1y, (x)

2, 4 . (4 sin x
=e5 [cqcos gx +cysin|=x]||+é*

5 6



6 Problem 2.1.6

Solve the PDE

2
;x;y =0 for u (x, y)

Solution

Integrating once w.r.t x gives

0
5 =F0)

Where F (y) acts as the constant of integration, but since this is a PDE, it becomes an
arbitrary function of y only. Integrating the above again w.r.t. y gives

u=[F(y)dy+G

Where G (x) is an arbitrary function of x only. If we let f F (y) dy=H (y) where H (y) is the
antiderivative for the indefinite integral which depends on y only. Then the above can be
written as

u(x,y) = H(y) + G (x)

To verify, from the above g—; =H’ (y) and hence

Pu  d
oxdy  dx (H (y))

=0
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7 Problem 2.2.2

Solve the following initial value problems and graph the solutions at t =1,2,3

a u;,-3u,=0,u(0,x) = e

b u;+2u, =0,u(-1,x) = —

1+x2
1
C up+uy+su=0,u (0, x) = arctan (x)

du—4u,+u=0,u,x) = 1:7

Solution

7.1 Parta

Let & be the characteristic variable defined such that & = x — ¢f. Where characteristic lines
are given by x = x + ct. But ¢ = -3 in this problem. Hence characteristic lines are

X =xy— 3t
Where x; means the same as x(0), i.e. x (t) at time ¢ = 0. Since ¢ = -3 then
E=x+3t
Let
u(t,x) =v(t<)
u; — 3u, = 0 is now transformed to v (t, &) as follows

u 3 3v8t+ dv d&
ot dtdt & It

= % + 33—2 (1)
And
Ju dvdt Jvdé
ox " 9tox ' Jfox
=0+ @
&
dv
=7z (2)
Substituting (1,2) in u; — 3u, = 0 gives the transformed PDE as
P00
Jt & d&
Ju
FT 0

Integrating w.r.t £ gives the solution in v (t, £) space as

v(t, &) =F(&)
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Where F (£) is an arbitrary continuous function of &. Transforming back to u (¢, x) gives
u(t,x) = F(x + 3f) (3)
At t = 0 the above becomes
e = F (xo)
This means that (3) becomes (since x = xy + ct or x = xy — 3t or x5 = x + 3t)

u(t,x) = o3t

7.2 Partb

U +2u, =0

u(-1,x) =

1+x2
Let & be the characteristic variable defined such that & = x — ¢f. Where characteristic lines
are given by x = x + ct. But ¢ = 2 in this problem. Hence characteristic lines are

X =x+2t
And
E=x-2t

Let u(t,x) = v(t,&). Then u; + 2u, = 0 is transformed to v (¢,£) as was done in part (a) (will
not be repeated) which results in

Jv 0
at

Integrating w.r.t £ gives the solution

v(t, &) =F(&)

Where F (&) is an arbitrary continuous function of £. Transforming back to u (f, x) results in

u(t,x) =F(x -2t (3)
At t = -1 the above becomes
N Py +2)
_— = X,
1+x3 0

Let xg + 2 = z. Then x5 = z— 2. And the above becomes
z-2

— —=F(z
1+ (z-2)7 @
This means that (3) becomes
-2t)-2
u(t,x) = (x ) >
1+ ((x—2t)-2)
x—-2t-2

1+ (x—2t-2)>
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7.3 Part c

1
ut+ux+§u:0 (1)
u (0, x) = arctan (x)

Let & be the characteristic variable defined such that & = x — ¢f. Where characteristic lines

are given by x = xy + ct. But ¢ =1 in this problem. Hence characteristic lines are given by
solution to

dx 3

i

x(t)=xp+t

1

And
E=x—-ct
=x-—-t
Then u; + u, are transformed to v(t, &) as was done in part (a) (will not be repeated) which

results in

do
ot

Substituting the above into (1) gives (where now v is used in place of u).

ut+1/lx:

This is now first order ODE since it only depends on t. Therefore v" + %v = 0. This is linear

1 1
in v. Hence the solution is % (vef Edt) =0orove2 =F (&) where F is arbitrary function of &.

Hence
0(t,&) = e E ()
Converting back to u (t, x) gives
u(t,x) = e;F(x —t) (2)
At t = 0 the above becomes
arctan (xg) = F (xg)

From the above then (2) can be written as

—t
u(t,x) =e2 arctan (x — t)

7.4 Partd

uy—4u, +u=0

u(0,x) =

1+ x2
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Let & be the characteristic variable defined such that £ = x — ct. Where characteristic lines
are given by x = x( + ct. But ¢ = —4 in this problem. Hence characteristic lines are

X =xg—4t
And
E=x+4t

Then u; —4u, are transformed to v (¢, &) as was done in part (a) (will not be repeated) which
results in

dv
Uy —4u, = 3
Substituting the above into (1) gives (where now v is used in place of u).
dv
a3 +0v=0

This is now first order ODE since it only depends on t. Therefore v + v = 0. This is linear in

v. Hence the solution is - (Uef dt) =0 or ve! = F (&) where F is arbitrary function of . Hence

dt
v (&) =eF(&)

Converting to u (¢, x) gives

u(t,x) = e'F(x + 4t) (2)
At u(0,x) = L the above becomes
1+x2
1
- F
1+ x(z, (o)

From the above then (2) can be written as
-t
u(t,x) = —m
1+ (x+ 4~_if)2
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8 Problem 2.2.3

Graph some of the characteristic lines for the following equation and write down the formula
for the general solution

(b) u; +5u, =0, (d) u, —4u,+u=20

Solution

81 Partb
u; +5u, =0

Let & be the characteristic variable defined such that & = x — ¢f. Where characteristic lines
are given by x = xq + ct. But ¢ = 5 in this problem. Hence characteristic lines are

x(t) = xo + 5¢ (1)

And
E=x-"5t

Then u; —5u, = 0 is transformed to v (t, £) as was done in earlier (will not be repeated) which
results in

5y dv
Mo = 5y
Therefore % = 0 which has the general solution v (t, £) = F (£) where F is arbitrary function
of &. Transforming back to u (t, x) gives

u(t,x) = F(x —5¢)

On the characteristic lines given by (1) the solution u (¢,x) is constant. The slope of the
characteristic lines is 5 and intercept is x;. The following is a plot of few lines using different
values of x.

Figure 1: Showing some characteristic lines for part b
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8.2 Partd

Uy —4u, +u=0

Let & be the characteristic variable defined such that £ = x — ct. Where characteristic lines
are given by x = x( + ct. But ¢ = —4 in this problem. Hence characteristic lines are

x(t) = xo — 4t 1)

And
E=x+4t

Then u; — 4u, is transformed to v (¢,£) as was done in earlier (will not be repeated) which
results in

Jdv

Jt

Therefore the original PDE becomes (;—l; + v = 0, where u is replaced by v. This is linear
first order ODE which has the solution v (t, &) = ¢7'F (£) where F is arbitrary function of &.
Transforming back to u (t, x) gives the general solution as

u(t,x) = e 'F (x + 4t)

Uy —4u, =

The following is a plot of few characteristic lines x = x;, — 4t using different values of x.

Figure 2: Showing some characteristic lines for part d
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9 Problem 2.2.5

Solve u; + 2u, = sinx, u (0,x) = sinx
Solution

Let & be the characteristic variable defined such that £ = x — ct. Where characteristic lines
are given by x = x + ct. But ¢ = 2 in this problem. Hence characteristic lines are

x:x0+2t (1)

And
E=x-2t

Then u; + 2u, is transformed to v (t, &) as was done in earlier (will not be repeated) which
results in

Jdv
up +2u, = 3
Substituting this into the original PDE gives
v (t,
U;t &) _ sin (s + 20

Integrating w.r.t t gives

ot &) = fsin(£+2t)dt+F(5)

cos (& + 2t
=R p
Transforming back to u (, x) gives
-2t+2
w(t ) = -8 5 L2 L re-op)

= ;COS (x) + F(x —2¢) 1)

When ¢ =0, u(0,x) = sinx, therefore the above becomes

i 1
sinxg = F (xg) — 5 €08 Xp

i 1
F (xp) = sinxy + 5 €08 Xp

Therefore the solution (1) becomes

1 1
u(t,x) (sin(x—Zt)+ Ecos(x—Zt) —Ecosx

1 1
sin (x — 2t) + Ecos(x—Zt) - Ecosx
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10 Problem 2.2.9

(a) Prove that if the initial data is bounded, | f (x)| < M for all x € R, then the solution to the
damped transport equation (2.14) u; + cu, + au = 0 with a > 0 satisfies u (t,x) = 0 as t — oo,
(b) Find a solution to (2.14) that is defined for all (¢, x) but does not satisfy u(t,x) — 0 as

t — oo,

Solution

10.1 Part(a)

u;+cu,+au = 0 is solved to show what is required. Let £ be the characteristic variable defined
such that & = x — ct. Where characteristic lines are given by x = x( + ct. Hence characteristic
lines are

X =Xx9+ct (1)
And
E=x—ct

Then u; + cu, is transformed to v (t,£) as was done in earlier (will not be repeated) which
results in

v
Up + Clly = =
Substituting this into the original PDE gives
v
— +tav=0

at
Where u is replaced by v. This can be viewed as first order linear ODE since it depends on
t only. Its solution is v (t, &) = e F (&) where F is arbitrary function of &. Transforming back
to u (t, x) gives

u(t,x) = e ™F(x -ct) (1)
At t = 0 initial data is f (x). Hence the above becomes at t =0
fx)=F(x)
Hence (1) now becomes
u(t,x)=ef(x-ct) (2)

But since |f (x)| is bounded, and since a > 0 then ¢ — 0 as t — co. Which implies the
solution itself u (¢, x) goes to zero as well. This is the reason why initial data needed to be
bounded for this to happen.
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10.2 Part(b)

Keeping a > 0. If initial data have the form f (x)e™** where |b| > 4, then at t = 0 the solution
found in (1) becomes

f (xp) €770 = F (xo)
Then the solution (2) now becomes, after replacing x; by x —ct
u(t,x) = e e tC=H £ (x —ct)
— e—at+bct€—bxf (x _ Ct)
— e(bc—a)te—bxf (x _ Ct)
The problem is asking to show that this does not go to zero for all x € R as t — oco. Since

|b| > a then bc — a is positive quantity (c is assumed positive)ﬂ

Therefore e*~* will blow up as t — co. And therefore the whole solution will not go to zero.
For any x, no matter how large x is, a large enough ¢ can be found to make the product
elbe=Dte=bx plow up.

f ¢ was negative then initial data could be choosen to be f (x)e” where |b| > a which will lead to same
result.
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