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1 Section 4.4, problem 1

In each of Problems I-3, verify that x(t), y(t) is a solution of the given system of equations,
and find its orbit.

x=1
7=2(-x)sin ((l—x)z)
x(t) =1+t

y(t) = cos (tz)
solution
Since x (t) =1+t then & = 1. Verified OK. And since y (t) = cos (tz) then i = —2tsin (tz). But
t=x-1, hence y = -2(x —1)sin ((1 - x)z) or
7=2(1-x)sin ((1 - x)z)

Verified OK. Both solutions verified. Now we need to find system orbit. The Orbit is given
by the equation

dy _g(xy)
dx f (x, y)
When we write the given system in the following form
x=f (x, y)
7=g(xy)
We see now that f (x, y) =landg (x, y) =2(1 -x)sin ((1 - x)z). Therefore
dy 2(1-x)sin ((1 - x)z)

dx 1
=2(1-x)sin ((1 - x)z)

This is first order ODE. Since separable, we can solve it by integration
y(x) = f2(1 —x)sin ((1 - x)z) dx

Letu=(01- x)z, then Z—z =2(1-x)(-1) = -2+/u. Substituting in the above gives
du
=12 i
v = [ 2visinG) o
=- f sin (1) du

=—(-cos(u)+C
=cos(u)+C
= CoS ((1 - x)z) +C




Therefore the equation of the orbit is
Y (x) = cos ((1 - x)z) +C

For different values of C, different orbit results.



2 Section 4.4, problem 2

In each of Problems -3, verify that x(t), y() is a solution of the given system of equations,
and find its orbit.

—X

x=e
]‘/ — eex—l
x(t)=In(1+1¢)
y()=é
Solution
dx d
E = E In (1 + t)
. 1
X=—
1+t
But e = ¢~ In(1+H) = % Verified OK. And
ty_d,
dt  dt
j=¢

But x-1=1In(1+1¢-1. Hence In(1 +f) = x. Therefore 1 +t = ¢* or t = ¢ — 1. Therefore
i =e' = e L. Verified OK.

Now we need to find system orbit. The Orbit is given by the equation

dy _8(vy)
dx f (x, y)

When we write the given system in the following form
x=f (x, y)
i7=g(xy)

We see now that f (x, y) =e*and g (x, y) = ¢“ 1. Therefore
dy ~ e 1
dx e

Integrating

et 1
dy= [ Sd
f Y e X

Let ¢* = u,du = ¢*dx. Hence the RHS fe;—;ldx = ﬁdf = [e*ldu = "1 = ¢* 1. The above

becomes '

y=e1+C



The orbits are given by the above equation for different C



3 Section 4.4, problem 3

In each of Problems -3, verify that x(t), y() is a solution of the given system of equations,
and find its orbit.

k=1+x?
= (1 + xz) sec? x
x(t) = tant
y(t) = tan (tant)
solution
Orbits given by
dy (1 + xz) sec? x

dx 1+ x2
=sec? x
Hence
f dy = f sec? xdx
2 1 d sinx cos? x+sin? x 1 2
But sec®x = ——. And —- = > = ——. Hence fsec xdx = tan x. Therefore the
. COS“ X dx COS X COS“ X COS“ X
above gives
y=tanx+C

The orbits are given by the above equation for different C. (do not know why book gives
only y = tanx)



4 Section 4.4, problem 8

Find the orbits of each of the following systems
X =y +x%y
i = 3x + xy?
Solution
The Orbit is given by the equation
dy _8(x)
dx — f (x, y)
When we write the given system in the following form
x=f (x, y)
7=g(xy)
We see now that f (x, y) =y+x’yand g (x, y) = 3x + xy?. Therefore

dy _ 3x+xy
dx  y+x%y
x(3+y2)
- y(l +x2)
X (3+y2)
(1 +x2) y

y _f X
f3+y2dy_ 1+x2dx

S (E+32) = s n(1+23) + G,

Hence it is separable.

2
ln(3+y2) = ln(l +x2) +C;
Therefore
342 = n(1+2)+C1
— (C1pn(1+2)
=C (1 + x2)
Hence

P2 =C(1+x%)-3
y(x) ==+ C(1+x2)—3

The above gives the equations for the orbit. For each C value, there is a different orbit curve.



Now we need to find equilibrium points, since these are orbits also. We need to solve
0=y+x%y
0 = 3x + xy?

O:y(1+x2)
O=x(3+y2)

First equation gives y = 0 as only real solution. When y = 0 then second equation gives x = 0.
Hence (0,0) is also an orbit. So the orbits are

P=C(1+22)-3 C#3
(v y) = ©,0)

And when C = 3 we obtain orbits y* = 3 (1 + x2) — 3 = 3x%, with additional orbits (notice
that we have to exclude x = 0 from each one below, since x = 0 is allready included in

(x.y) = ©0,0)

yz\/gx x>0
y:\/gx x<0
y:—\/gx x>0
y:—\/gx x<0

Hence there are 6 possible orbits in total.



5 Section 4.7, problem 3

Draw the phase portraits of each of the following systems of differential equations
(4 4
¥ = x
-2 5
det(A-AI) =0
4-1 -1
-2 5-A

4-1)5-4)-2=0
A2-91+18 =0

solution

Hence

Case 1, =6
4-A -1 |[{vy
-2 5-A (%)
4-6 -1 |[vg
-2 5-6 (%)

2 -1\(y
2 -1{w,

o o O o O O

v
From first row —20; — v, = 0. Hence v, = —20;. Therefore the first eigenvector is v! = [ ! ) =

—2'01
U 1 = 1 b ett'ng v =1
y setu
! -2 -2 !

Case A; =3

4-2 -1 \(v
-2 5-A (%)

4-3 -1 (o
-2 5-3 (%)

o O O o o O
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From first row 01— 0y = 0. Hence Uy = 01. I'herefore the second eigenvector is 7)2 = ( 1) =
U1
(% L = ! b ett'ng =1
y setu (%
! 1 1 !

Since eigenvalues are both real and both are positive, then (0,0) is unstable node. Here is
a the Phase portrait. The lines marked red and blue are the two eigenvectors found above.
The arrows are all leaving (0,0) which means this is unstable equilibrium point.

Figure 1: Phase portrait

p = StreamPlot[{4x -y, -2Xx+ 5y}, {x, -2, 2}, {y, -2, 2},
StreamPoints - {
{
{{1, 1}, {Thick, Red}},
{{1, -2}, {Thick, Blue}},
{{-1, -1}, {Thick, Red}},
{{-1, 2}, {Thick, Blue}},
Automatic}
}, Epilog -» {Red, PointSize[0.03], Point[{@, ©0}]},
Axes - True];

Figure 2: Code used



6 Section 4.7, problem 6

11

Draw the phase portraits of each of the following systems of differential equations

Solution
det(A-A) =0
3-A -1
5 —3-a""
B-A)(-3-A)+5=0
A2-4=0
Hence
Ay =2
Ay =-2

We see that one eigenvalue is stable and one is not stable.

Case 1, =2

3-4 -1 (o) (0
5 -3-A)lw,) |0
3-2 -1 (o) _(0
5 -3-2]lv,] |0
1 -1)(or) (0
5 —5)lo,] |0

From first row v; —v, = 0. Hence v, = v;. Therefore the first eigenvector is v! = [

1 .
(1] by setting v; =1

b



Case Ay =-2
3-4 -1
( 5 -3-A7
3+2 -1
( 5 -3+2
5 -1
-

From first row 5v; — v, = 0. Hence v, = 5v;. Therefore the first eigenvector is v

! = ! b tti =1
(% y setung o .
! 5 5 !

0

(%)

0

U

01

|
o O O o o O

(%)
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-

Since one eigenvalue is stable and one is not, then (0,0) is unstable saddle point. Here is a

the Phase portrait. The lines marked red and blue are the two eigenvectors found above.
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Figure 3: Phase portrait



p = StreamPlot[{3x -y, 5x-3y}, {x, -2, 2}, {y, -5, 5},
StreamPoints - {
{
{{1, 1}, {Thick, Red}},
{{1, 5}, {Thick, Blue}},
{{-1, -1}, {Thick, Red}},
{{-1, -5}, {Thick, Blue}},
Automatic}
}, Epilog -» {Red, PointSize[0.03], Point[{0, ©}]},
Axes - True];

Figure 4: Code used
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7 Section 4.7, problem 9

Draw the phase portraits of each of the following systems of differential equations

(2 1
X = X
-5 -2

solution
det(A-A) =0
2-A -1
5o 7Y
2-A)(-2-1)+5=0
A2+1=0
Hence
A =1
Ay =—i

The real part is zero. Hence (0,0) equilibrium point is called CENTER. it is stable, but not
asymptotically stable.

Case Ay =1
2-A 1 o] [0
-5 —2-Alw,) |0
2—-i 1 o] [0
-5 -2-illw,) |0
From second row -5v; — (2 + i) v, = 0. Hence v, = —ivl. Therefore the first eigenvector is

(2+1)

1 -2+
vlz[_g ):vl(_i]:[ (5+l))bysettingvlzl

2 1

(2+1)
Case A = —i
2-A 1 01 _ 0
-5 —2-A)lw,) |0
2+1 1 (4] _ 0
5 2+i)lo,) (0
From second row -5v; + (-2 + i) v, = 0. Hence v, = —Lvl. Therefore the first eigenvector

(—2+1)

. 1 0 1 -2+ .
isv' = 5 =7 5 | = by setting v; =1
! " (—2+i) 5
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(0,0) equilibrium point is called CENTER with curves making closed circles around (0, 0)
as shown below
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Figure 5: Phase portrait

p = StreamPlot[{2x+Yy, -5x-2YVy}, {x, -4, 4}, {y, -4, 4}
, Epilog » {Red, PointSize[0.03], Point[{0, ©}]},
Axes - True];

Figure 6: Code used
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