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1 Section 4.4, problem 1

In each of Problems l-3, verify that 𝑥(𝑡), 𝑦(𝑡) is a solution of the given system of equations,
and find its orbit.

𝑥̇ = 1

𝑦̇ = 2 (1 − 𝑥) sin �(1 − 𝑥)2�
𝑥 (𝑡) = 1 + 𝑡

𝑦 (𝑡) = cos �𝑡2�
solution

Since 𝑥 (𝑡) = 1 + 𝑡 then 𝑥̇ = 1. Verified OK. And since 𝑦 (𝑡) = cos �𝑡2� then 𝑦̇ = −2𝑡 sin �𝑡2�. But
𝑡 = 𝑥 − 1, hence 𝑦̇ = −2 (𝑥 − 1) sin �(1 − 𝑥)2� or

𝑦̇ = 2 (1 − 𝑥) sin �(1 − 𝑥)2�
Verified OK. Both solutions verified. Now we need to find system orbit. The Orbit is given
by the equation

𝑑𝑦
𝑑𝑥

=
𝑔 �𝑥, 𝑦�

𝑓 �𝑥, 𝑦�

When we write the given system in the following form

𝑥̇ = 𝑓 �𝑥, 𝑦�

𝑦̇ = 𝑔 �𝑥, 𝑦�

We see now that 𝑓 �𝑥, 𝑦� = 1 and 𝑔 �𝑥, 𝑦� = 2 (1 − 𝑥) sin �(1 − 𝑥)2�. Therefore

𝑑𝑦
𝑑𝑥

=
2 (1 − 𝑥) sin �(1 − 𝑥)2�

1
= 2 (1 − 𝑥) sin �(1 − 𝑥)2�

This is first order ODE. Since separable, we can solve it by integration

𝑦 (𝑥) = �2 (1 − 𝑥) sin �(1 − 𝑥)2� 𝑑𝑥

Let 𝑢 = (1 − 𝑥)2, then 𝑑𝑢
𝑑𝑥 = 2 (1 − 𝑥) (−1) = −2√𝑢. Substituting in the above gives

𝑦 (𝑥) = �2√𝑢 sin (𝑢) 𝑑𝑢
−2√𝑢

= −� sin (𝑢) 𝑑𝑢

= − (− cos (𝑢)) + 𝐶
= cos (𝑢) + 𝐶
= cos �(1 − 𝑥)2� + 𝐶
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Therefore the equation of the orbit is

𝑦 (𝑥) = cos �(1 − 𝑥)2� + 𝐶
For di�erent values of 𝐶, di�erent orbit results.
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2 Section 4.4, problem 2

In each of Problems l-3, verify that 𝑥(𝑡), 𝑦(𝑡) is a solution of the given system of equations,
and find its orbit.

𝑥̇ = 𝑒−𝑥

𝑦̇ = 𝑒𝑒𝑥−1

𝑥 (𝑡) = ln (1 + 𝑡)
𝑦 (𝑡) = 𝑒𝑡

Solution

𝑑𝑥
𝑑𝑡
=
𝑑
𝑑𝑡

ln (1 + 𝑡)

𝑥̇ =
1

1 + 𝑡
But 𝑒−𝑥 = 𝑒− ln(1+𝑡) = 1

1+𝑡 . Verified OK. And

𝑑𝑦
𝑑𝑡
=
𝑑
𝑑𝑡
𝑒𝑡

𝑦̇ = 𝑒𝑡

But 𝑥 − 1 = ln (1 + 𝑡) − 1. Hence ln (1 + 𝑡) = 𝑥. Therefore 1 + 𝑡 = 𝑒𝑥 or 𝑡 = 𝑒𝑥 − 1. Therefore
𝑦̇ = 𝑒𝑡 = 𝑒𝑒𝑥−1. Verified OK.

Now we need to find system orbit. The Orbit is given by the equation

𝑑𝑦
𝑑𝑥

=
𝑔 �𝑥, 𝑦�

𝑓 �𝑥, 𝑦�

When we write the given system in the following form

𝑥̇ = 𝑓 �𝑥, 𝑦�

𝑦̇ = 𝑔 �𝑥, 𝑦�

We see now that 𝑓 �𝑥, 𝑦� = 𝑒−𝑥 and 𝑔 �𝑥, 𝑦� = 𝑒𝑒𝑥−1. Therefore

𝑑𝑦
𝑑𝑥

=
𝑒𝑒𝑥−1

𝑒−𝑥
Integrating

�𝑑𝑦 = �
𝑒𝑒𝑥−1

𝑒−𝑥
𝑑𝑥

Let 𝑒𝑥 = 𝑢, 𝑑𝑢 = 𝑒𝑥𝑑𝑥. Hence the RHS ∫ 𝑒𝑒𝑥−1

𝑒−𝑥 𝑑𝑥 = ∫
𝑒𝑢−1
1
𝑢

𝑑𝑢
𝑢 = ∫ 𝑒𝑢−1𝑑𝑢 = 𝑒𝑢−1 = 𝑒𝑒𝑥−1. The above

becomes

𝑦 = 𝑒𝑒𝑥−1 + 𝐶
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The orbits are given by the above equation for di�erent 𝐶
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3 Section 4.4, problem 3

In each of Problems l-3, verify that 𝑥(𝑡), 𝑦(𝑡) is a solution of the given system of equations,
and find its orbit.

𝑥̇ = 1 + 𝑥2

𝑦̇ = �1 + 𝑥2� sec2 𝑥
𝑥 (𝑡) = tan 𝑡
𝑦 (𝑡) = tan (tan 𝑡)

solution

Orbits given by

𝑑𝑦
𝑑𝑥

=
�1 + 𝑥2� sec2 𝑥

1 + 𝑥2
= sec2 𝑥

Hence

�𝑑𝑦 = � sec2 𝑥𝑑𝑥

But sec2 𝑥 = 1
cos2 𝑥 . And

𝑑
𝑑𝑥

sin 𝑥
cos 𝑥 =

cos2 𝑥+sin2 𝑥
cos2 𝑥 = 1

cos2 𝑥 . Hence ∫ sec2 𝑥𝑑𝑥 = tan 𝑥. Therefore the
above gives

𝑦 = tan 𝑥 + 𝐶
The orbits are given by the above equation for di�erent 𝐶. (do not know why book gives
only 𝑦 = tan 𝑥)
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4 Section 4.4, problem 8

Find the orbits of each of the following systems

𝑥̇ = 𝑦 + 𝑥2𝑦
𝑦̇ = 3𝑥 + 𝑥𝑦2

Solution

The Orbit is given by the equation

𝑑𝑦
𝑑𝑥

=
𝑔 �𝑥, 𝑦�

𝑓 �𝑥, 𝑦�

When we write the given system in the following form

𝑥̇ = 𝑓 �𝑥, 𝑦�

𝑦̇ = 𝑔 �𝑥, 𝑦�

We see now that 𝑓 �𝑥, 𝑦� = 𝑦 + 𝑥2𝑦 and 𝑔 �𝑥, 𝑦� = 3𝑥 + 𝑥𝑦2. Therefore

𝑑𝑦
𝑑𝑥

=
3𝑥 + 𝑥𝑦2

𝑦 + 𝑥2𝑦

=
𝑥 �3 + 𝑦2�

𝑦 �1 + 𝑥2�

=
𝑥

�1 + 𝑥2�

�3 + 𝑦2�
𝑦

Hence it is separable.

�
𝑦

3 + 𝑦2
𝑑𝑦 = �

𝑥
1 + 𝑥2

𝑑𝑥

1
2

ln �3 + 𝑦2� = 1
2

ln �1 + 𝑥2� + 𝐶2

ln �3 + 𝑦2� = ln �1 + 𝑥2� + 𝐶1

Therefore

3 + 𝑦2 = 𝑒ln�1+𝑥
2�+𝐶1

= 𝑒𝐶1𝑒ln�1+𝑥
2�

= 𝐶 �1 + 𝑥2�

Hence

𝑦2 = 𝐶 �1 + 𝑥2� − 3

𝑦 (𝑥) = ±�𝐶 �1 + 𝑥
2� − 3

The above gives the equations for the orbit. For each 𝐶 value, there is a di�erent orbit curve.
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Now we need to find equilibrium points, since these are orbits also. We need to solve

0 = 𝑦 + 𝑥2𝑦
0 = 3𝑥 + 𝑥𝑦2

Or

0 = 𝑦 �1 + 𝑥2�

0 = 𝑥 �3 + 𝑦2�

First equation gives 𝑦 = 0 as only real solution. When 𝑦 = 0 then second equation gives 𝑥 = 0.
Hence (0, 0) is also an orbit. So the orbits are

𝑦2 = 𝐶 �1 + 𝑥2� − 3 𝐶 ≠ 3

�𝑥, 𝑦� = (0, 0)

And when 𝐶 = 3 we obtain orbits 𝑦2 = 3 �1 + 𝑥2� − 3 = 3𝑥2, with additional orbits (notice
that we have to exclude 𝑥 = 0 from each one below, since 𝑥 = 0 is allready included in
�𝑥, 𝑦� = (0, 0))

𝑦 = √3𝑥 𝑥 > 0

𝑦 = √3𝑥 𝑥 < 0

𝑦 = −√3𝑥 𝑥 > 0

𝑦 = −√3𝑥 𝑥 < 0

Hence there are 6 possible orbits in total.
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5 Section 4.7, problem 3

Draw the phase portraits of each of the following systems of di�erential equations

𝒙̇ =
⎛
⎜⎜⎜⎜⎝
4 −1
−2 5

⎞
⎟⎟⎟⎟⎠ 𝒙

solution

det (𝐴 − 𝜆𝐼) = 0

�
4 − 𝜆 −1
−2 5 − 𝜆

� = 0

(4 − 𝜆) (5 − 𝜆) − 2 = 0
𝜆2 − 9𝜆 + 18 = 0

Hence

𝜆1 = 6
𝜆2 = 3

Case 𝜆1 = 6
⎛
⎜⎜⎜⎜⎝
4 − 𝜆 −1
−2 5 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4 − 6 −1
−2 5 − 6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−2 −1
−2 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first row −2𝑣1 −𝑣2 = 0. Hence 𝑣2 = −2𝑣1. Therefore the first eigenvector is 𝒗1 =
⎛
⎜⎜⎜⎜⎝
𝑣1
−2𝑣1

⎞
⎟⎟⎟⎟⎠ =

𝑣1

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ by setting 𝑣1 = 1

Case 𝜆1 = 3

⎛
⎜⎜⎜⎜⎝
4 − 𝜆 −1
−2 5 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4 − 3 −1
−2 5 − 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −1
−2 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠
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From first row 𝑣1 − 𝑣2 = 0. Hence 𝑣2 = 𝑣1. Therefore the second eigenvector is 𝒗2 =
⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣1

⎞
⎟⎟⎟⎟⎠ =

𝑣1

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ by setting 𝑣1 = 1

Since eigenvalues are both real and both are positive, then (0, 0) is unstable node. Here is
a the Phase portrait. The lines marked red and blue are the two eigenvectors found above.
The arrows are all leaving (0, 0) which means this is unstable equilibrium point.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 1: Phase portrait

p = StreamPlot[{4 x - y, -2 x + 5 y}, {x, -2, 2}, {y, -2, 2},

StreamPoints → {

{

{{1, 1}, {Thick, Red}},

{{1, -2}, {Thick, Blue}},

{{-1, -1}, {Thick, Red}},

{{-1, 2}, {Thick, Blue}},

Automatic}

}, Epilog → {Red, PointSize[0.03], Point[{0, 0}]},

Axes → True];

Figure 2: Code used
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6 Section 4.7, problem 6

Draw the phase portraits of each of the following systems of di�erential equations

𝒙̇ =
⎛
⎜⎜⎜⎜⎝
3 −1
5 −3

⎞
⎟⎟⎟⎟⎠ 𝒙

Solution

det (𝐴 − 𝜆𝐼) = 0

�
3 − 𝜆 −1
5 −3 − 𝜆

� = 0

(3 − 𝜆) (−3 − 𝜆) + 5 = 0
𝜆2 − 4 = 0

Hence

𝜆1 = 2
𝜆2 = −2

We see that one eigenvalue is stable and one is not stable.

Case 𝜆1 = 2
⎛
⎜⎜⎜⎜⎝
3 − 𝜆 −1
5 −3 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 − 2 −1
5 −3 − 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −1
5 −5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first row 𝑣1−𝑣2 = 0. Hence 𝑣2 = 𝑣1. Therefore the first eigenvector is 𝒗1 =
⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣1

⎞
⎟⎟⎟⎟⎠ = 𝑣1

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ by setting 𝑣1 = 1
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Case 𝜆1 = −2
⎛
⎜⎜⎜⎜⎝
3 − 𝜆 −1
5 −3 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 + 2 −1
5 −3 + 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
5 −1
5 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first row 5𝑣1 − 𝑣2 = 0. Hence 𝑣2 = 5𝑣1. Therefore the first eigenvector is 𝒗1 =
⎛
⎜⎜⎜⎜⎝
𝑣1
5𝑣1

⎞
⎟⎟⎟⎟⎠ =

𝑣1

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ by setting 𝑣1 = 1.

Since one eigenvalue is stable and one is not, then (0, 0) is unstable saddle point. Here is a
the Phase portrait. The lines marked red and blue are the two eigenvectors found above.

-2 -1 0 1 2

-4

-2

0

2

4

Figure 3: Phase portrait
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p = StreamPlot[{3 x - y, 5 x - 3 y}, {x, -2, 2}, {y, -5, 5},

StreamPoints → {

{

{{1, 1}, {Thick, Red}},

{{1, 5}, {Thick, Blue}},

{{-1, -1}, {Thick, Red}},

{{-1, -5}, {Thick, Blue}},

Automatic}

}, Epilog → {Red, PointSize[0.03], Point[{0, 0}]},

Axes → True];

Figure 4: Code used
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7 Section 4.7, problem 9

Draw the phase portraits of each of the following systems of di�erential equations

𝒙̇ =
⎛
⎜⎜⎜⎜⎝
2 1
−5 −2

⎞
⎟⎟⎟⎟⎠ 𝒙

solution

det (𝐴 − 𝜆𝐼) = 0

�
2 − 𝜆 −1
−5 −2 − 𝜆

� = 0

(2 − 𝜆) (−2 − 𝜆) + 5 = 0
𝜆2 + 1 = 0

Hence

𝜆1 = 𝑖
𝜆2 = −𝑖

The real part is zero. Hence (0, 0) equilibrium point is called CENTER. it is stable, but not
asymptotically stable.

Case 𝜆1 = 𝑖
⎛
⎜⎜⎜⎜⎝
2 − 𝜆 1
−5 −2 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 − 𝑖 1
−5 −2 − 𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From second row −5𝑣1 − (2 + 𝑖) 𝑣2 = 0. Hence 𝑣2 = −
5

(2+𝑖)𝑣1. Therefore the first eigenvector is

𝒗1 =
⎛
⎜⎜⎜⎜⎝

𝑣1
− 5
(2+𝑖)𝑣1

⎞
⎟⎟⎟⎟⎠ = 𝑣1

⎛
⎜⎜⎜⎜⎝

1
− 5
(2+𝑖)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
− (2 + 𝑖)

5

⎞
⎟⎟⎟⎟⎠ by setting 𝑣1 = 1

Case 𝜆1 = −𝑖
⎛
⎜⎜⎜⎜⎝
2 − 𝜆 1
−5 −2 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 + 𝑖 1
−5 −2 + 𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From second row −5𝑣1 + (−2 + 𝑖) 𝑣2 = 0. Hence 𝑣2 = −
5

(−2+𝑖)𝑣1. Therefore the first eigenvector

is 𝒗1 =
⎛
⎜⎜⎜⎜⎝

𝑣1
− 5
(−2+𝑖)𝑣1

⎞
⎟⎟⎟⎟⎠ = 𝑣1

⎛
⎜⎜⎜⎜⎝

1
− 5
(−2+𝑖)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−2 + 𝑖
5

⎞
⎟⎟⎟⎟⎠ by setting 𝑣1 = 1
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(0, 0) equilibrium point is called CENTER with curves making closed circles around (0, 0)
as shown below

-4 -2 0 2 4

-4

-2

0

2

4

Figure 5: Phase portrait

p = StreamPlot[{2 x + y, -5 x - 2 y}, {x, -4, 4}, {y, -4, 4}

, Epilog → {Red, PointSize[0.03], Point[{0, 0}]},

Axes → True];

Figure 6: Code used
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