MATH 4512 — DIFFERENTIAL EQUATIONS WITH APPLICATIONS
HW?7 - SOLUTIONS

1. (Section 4.1 - Exercise 6) Find all equilibrium values of the given system of differ-
ential equations

T

E = COSs Yy

dy .

o =sinx — 1.

Equilibrium values are solutions to the system of nonlinear equations
cosy =0
sinz —1=0.
Solutions of the first equation cosy = 0 are the points

yl:g—f—lﬂ, leZ,

while solutions of the second equation sinx — 1 = 0 are

xk:g—i—Zlmr, kel

Equilibrium points of this system are

(ﬂ:a?ﬂ)» kvl GZ



2. (Section 4.1 - Exercise 8) Find all equilibrium values of the given system of differ-
ential equations

dz 9
=Y
dy —
at Y
dz o

— — X
dt

Equilibrium values are solutions to the system of nonlinear equations

r—y*=0
22 —y=0
e —x=0.

From z = y? we obtain y* — y = 0. Real solutions of this equation are
Y1 = 0, Yo = 1.

Then z; = y7 = 0 and 3 = y3 = 1. Notice that there is no value z; such that
e*l = x1; = 0, while 2z, = 0, where e = x5 = 1. Therefore, the only equilibrium point
is

T 1
v | =1
Z9 0



3. (Section 4.2 - Exercise 9) Determine the stability or instability of all solutions of
the following system of differential equations

02 00
-2 0 00 .
00 0 2 ’
00 -2 0
The characteristic polynomial of the system matrix
02 00
-2 0 00
A= 00 0 2
00 -2 0
is
-2 2 0 0
-2 =X 0 0
det(A — \I) = 0 0 -\ 2
0 0 —2 =\
-2 0 0 -2 0 0
= (== 0 =X 2 |+2(-=D'* 0 -x 2
0 -2 =\ 0 —2 =\

= —A(=A% —4X) = 2(=2X% = 8) = N2(\2 +4) +4(\* +4) = (\* + 4)%.
For finding this determinant we used first-row element expansion.

The eigenvalues of the matrix A are A\ = 2i, Ay = —2¢, both with multiplicity 2. It
remains to check the number of linearly independent eigenvectors for each A; and \,.

First consider the system (A — A\ I)v =0, i.e.

2 2 0 0][wm 0
—2 =2 0 0| |wl| |oO
0 0 -2 2| |lw |~ ]oO
0 0 -2 =2 || uw 0

From the first equation we obtain —2iv; +2vy = 0, and vy = 7v1, while from the third
—2ivg + 2v4 = 0 it follows vy, = tv3. Thus every eigenvector v has the form

(%] 1 0

. iUl - 1 0
v = V3 = U1 0 + U3 1
13 0 l



Notice that

and

O ==
_ o O

o

1

are linearly independent eigenvectors for A; = 2¢ that generate all other eigenvec-
tors. Since the multiplicity of A; is the same as the number of linearly independent
eigenvectors, we proceed with analysis of the second eigenvalue.

Consider the system (A — Aol)v =0, i.e.

222 0 O (1
-2 20 0 0 (%)
0 0 21 2 (%]

0 0 -2 2 Uy

From the second equation —2wv; 4+ 2ivy = 0 we obtain v; = ive, while from the last
equation —2vs + 2ivy = 0 it follows vz = iv4. Thus every eigenvector v has the form

oo OO

iUg 1 0
. (%) o 1 0
S I B IV R I
(W 0 1
Similarly to previous case, vectors
? 0
1 0
0 and ;
0 1
are linearly independent eigenvectors for A = —2i¢ that generate all other eigenvec-

tors.

Since the multiplicity of each \; and A, is the same as the number of corresponding
linearly independent eigenvectors, we conclude that every solution of the starting
system of DEs is stable.



4. (Section 4.2 - Exercise 10) Determine the stability or instability of all solutions of
the following system of differential equations

02 10
| -2 0 01
00 02]|"
00 -2 0
The characteristic polynomial of the system matrix
02 10
-2 0 01
A=1 00 02
00 —2 0
is
-2 2 1 0
-2 =X 0 1
det(A — \I) = 0 0 -\ 2
0 0 -2 =X\
-2 0 1 2 1 0
=DM 0 =X 2 [+ (=2 (=10 =X 2
0 —2 =\ 0 —2 =\

= A=A = AN+ 2202 £ 8) = A2\ 4 4) + 4N+ 4) = (A2 +4)2
For finding this determinant we used first-column element expansion.
Eigenvectors for A\; = 2i solve (A — A\ I)v =0, i.e.

2% 2 1 0 v
2 -2 0 1 vy
0 0 -2 2 Vs
0 0 -2 —2i s 0

The third equation —2iv3 + 2v, = 0 implies vy = 2v3. The second equation can be
written as

o O O

0 = —2v; — 2ivy + vy = =201 — 2ivg + iv3 = —i(—2iv; + 2y — v3).

Combining the last relation with the first equation —2iv; 4+ 2v9 + v3 = 0, we obtain
vy = 0. Consequently vy = 0 and vy = 1v;. Every eigenvector v corresponding to
A1 = 2i can be represented as

U1 1

iUl 1

| o g
0 0

Since the number of linearly independent eigenvectors is smaller than the multiplicity
2 of A1, we conclude that every solution of the starting system of DEs is unstable.

5



5. (Section 4.3 - Exercise 8) Verify that the origin is an equilibrium point of the
following system of equations

T=y+cosy—1
= —sinz + 2>

and determine (if possible) whether it is stable or unstable.

Vector [0,0]" is obviously an equilibrium point of this system.

First approach.
From the expansions

B A
smaj—x—§+§—
2 4
1YYy _
Ccosy = 2'—1—4!
we can write down @ =y +cosy — 1, and ¢ = 2® — sinz, as
2 4
Y )
35:?/—54'1—"':244‘91(9)
3 5
e
A =~z + ga(T)

e MR

The characteristic polynomial of the previous matrix is

- A 1|
p()\)—det{_l _)\]—/\ + 1.
Since its roots \; = 7, Ay = —1, both have zero real part, we cannot determine whether

the vector [0,0]" is stable or not.
(At this point of the course, we can only apply the theory from Sections 4.1-4.3).

Second approach.
Let fi(x,y) = y +cosy — 1 and fo(x,y) = —sinx + 2°. The Jacobian matrix for
nonlinear vector-valued function

fla,y) = { ig:cyg }

evaluated at the equilibrium point [0,0]" is

df1 df1
g ax(o’o) ay<0’0> _[ 0 1—siny] o1
| afy O fs ~ | —cosx + 3a? 0 P B O
500,00 5200 ,

We obtained the same matrix and we can proceed as in the first approach.



6. (Section 4.3 - Exercise 10) Verify that the origin is an equilibrium point of the
following system of equations

i =In(1+x+1y?)
y=—y+a’

and determine (if possible) whether it is stable or unstable.

Again the vector [0,0]" is obviously an equilibrium point of this system.

First approach.
Here we will use expansion

(@+y?)®  (@+y’)®

In(l+z+y°)=z+y’ - 5 3

Then
O N R )
Y 0 -1 y 3 ’
where ( e 2y
] Tty
gy =y -+
The characteristic polynomial of the previous matrix is

p(A):det[l‘g _1_2] — (1= N1+ N,

Since one eigenvalue of A has positive real part, the equilibrium value [0,0]" for this
system is unstable.

Second approach.
Let fi(z,y) = In(14+z+y?) and fo(z,y) = —y+x>. The Jacobian matrix for nonlinear
vector-valued function ) (.9)
fl r,y :|
x,y) =
f( y> L fQ(Iv y)
evaluated at the equilibrium point [0,0]" is

Moo Lo ] 12 2
A= 8}6 (9]3”/ = | 1+z+y? 14+2+y?
2 2 2
i 255(070) Eﬁ;(o’o) R -1 2=0,y=0
1 o0
10 —1 |

We obtained the same matrix and we can proceed as in the first approach.



