
MATH 4512 – DIFFERENTIAL EQUATIONS WITH APPLICATIONS

HW7 - SOLUTIONS

1. (Section 4.1 - Exercise 6) Find all equilibrium values of the given system of differ-
ential equations

dx

dt
= cos y

dy

dt
= sinx− 1.

Equilibrium values are solutions to the system of nonlinear equations

cos y = 0

sinx− 1 = 0.

Solutions of the first equation cos y = 0 are the points

yl =
π

2
+ l π, l ∈ Z,

while solutions of the second equation sinx− 1 = 0 are

xk =
π

2
+ 2 k π, k ∈ Z.

Equilibrium points of this system are

(xk, yl), k, l ∈ Z.
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2. (Section 4.1 - Exercise 8) Find all equilibrium values of the given system of differ-
ential equations

dx

dt
= x− y2

dy

dt
= x2 − y

dz

dt
= ez − x.

Equilibrium values are solutions to the system of nonlinear equations

x− y2 = 0

x2 − y = 0

ez − x = 0.

From x = y2 we obtain y4 − y = 0. Real solutions of this equation are

y1 = 0, y2 = 1.

Then x1 = y21 = 0 and x2 = y22 = 1. Notice that there is no value z1 such that
ez1 = x1 = 0, while z2 = 0, where ez2 = x2 = 1. Therefore, the only equilibrium point
is  x2

y2
z2

 =

 1
1
0

 .
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3. (Section 4.2 - Exercise 9) Determine the stability or instability of all solutions of
the following system of differential equations

ẋ =


0 2 0 0
−2 0 0 0

0 0 0 2
0 0 −2 0

 x.

The characteristic polynomial of the system matrix

A =


0 2 0 0
−2 0 0 0

0 0 0 2
0 0 −2 0


is

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 2 0 0
−2 −λ 0 0

0 0 −λ 2
0 0 −2 −λ

∣∣∣∣∣∣∣∣
= (−λ)(−1)1+1

∣∣∣∣∣∣
−λ 0 0

0 −λ 2
0 −2 −λ

∣∣∣∣∣∣+ 2(−1)1+2

∣∣∣∣∣∣
−2 0 0

0 −λ 2
0 −2 −λ

∣∣∣∣∣∣
= −λ(−λ3 − 4λ)− 2(−2λ2 − 8) = λ2(λ2 + 4) + 4(λ2 + 4) = (λ2 + 4)2.

For finding this determinant we used first-row element expansion.

The eigenvalues of the matrix A are λ1 = 2i, λ2 = −2i, both with multiplicity 2. It
remains to check the number of linearly independent eigenvectors for each λ1 and λ2.

First consider the system (A− λ1I)v = 0, i.e.
−2i 2 0 0
−2 −2i 0 0

0 0 −2i 2
0 0 −2 −2i



v1
v2
v3
v4

 =


0
0
0
0

 .
From the first equation we obtain −2iv1 + 2v2 = 0, and v2 = iv1, while from the third
−2iv3 + 2v4 = 0 it follows v4 = iv3. Thus every eigenvector v has the form

v =


v1
iv1
v3
iv3

 = v1


1
i
0
0

+ v3


0
0
1
i

 .
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Notice that 
1
i
0
0

 and


0
0
1
i


are linearly independent eigenvectors for λ1 = 2i that generate all other eigenvec-
tors. Since the multiplicity of λ1 is the same as the number of linearly independent
eigenvectors, we proceed with analysis of the second eigenvalue.
Consider the system (A− λ2I)v = 0, i.e.

2i 2 0 0
−2 2i 0 0

0 0 2i 2
0 0 −2 2i



v1
v2
v3
v4

 =


0
0
0
0

 .
From the second equation −2v1 + 2iv2 = 0 we obtain v1 = iv2, while from the last
equation −2v3 + 2iv4 = 0 it follows v3 = iv4. Thus every eigenvector v has the form

v =


iv2
v2
iv4
v4

 = v2


i
1
0
0

+ v4


0
0
i
1

 .
Similarly to previous case, vectors

i
1
0
0

 and


0
0
i
1


are linearly independent eigenvectors for λ2 = −2i that generate all other eigenvec-
tors.

Since the multiplicity of each λ1 and λ2 is the same as the number of corresponding
linearly independent eigenvectors, we conclude that every solution of the starting
system of DEs is stable.
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4. (Section 4.2 - Exercise 10) Determine the stability or instability of all solutions of
the following system of differential equations

ẋ =


0 2 1 0
−2 0 0 1

0 0 0 2
0 0 −2 0

 x.

The characteristic polynomial of the system matrix

A =


0 2 1 0
−2 0 0 1

0 0 0 2
0 0 −2 0


is

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 2 1 0
−2 −λ 0 1

0 0 −λ 2
0 0 −2 −λ

∣∣∣∣∣∣∣∣
= (−λ)(−1)1+1

∣∣∣∣∣∣
−λ 0 1

0 −λ 2
0 −2 −λ

∣∣∣∣∣∣+ (−2)(−1)2+1

∣∣∣∣∣∣
2 1 0
0 −λ 2
0 −2 −λ

∣∣∣∣∣∣
= −λ(−λ3 − 4λ) + 2(2λ2 + 8) = λ2(λ2 + 4) + 4(λ2 + 4) = (λ2 + 4)2.

For finding this determinant we used first-column element expansion.

Eigenvectors for λ1 = 2i solve (A− λ1I)v = 0, i.e.
−2i 2 1 0
−2 −2i 0 1

0 0 −2i 2
0 0 −2 −2i



v1
v2
v3
v4

 =


0
0
0
0

 .
The third equation −2iv3 + 2v4 = 0 implies v4 = iv3. The second equation can be
written as

0 = −2v1 − 2iv2 + v4 = −2v1 − 2iv2 + iv3 = −i(−2iv1 + 2v2 − v3).
Combining the last relation with the first equation −2iv1 + 2v2 + v3 = 0, we obtain
v3 = 0. Consequently v4 = 0 and v2 = iv1. Every eigenvector v corresponding to
λ1 = 2i can be represented as

v =


v1
iv1
0
0

 = v1


1
i
0
0

 .
Since the number of linearly independent eigenvectors is smaller than the multiplicity
2 of λ1, we conclude that every solution of the starting system of DEs is unstable.
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5. (Section 4.3 - Exercise 8) Verify that the origin is an equilibrium point of the
following system of equations

ẋ = y + cos y − 1

ẏ = − sinx+ x3

and determine (if possible) whether it is stable or unstable.

Vector [0, 0]> is obviously an equilibrium point of this system.

First approach.
From the expansions

sinx = x− x3

3!
+
x5

5!
− · · ·

cos y = 1− y2

2!
+
y4

4!
− · · ·

we can write down ẋ = y + cos y − 1, and ẏ = x3 − sinx, as

ẋ = y − y2

2!
+
y4

4!
− · · · = y + g1(y)

ẏ = x3 − x+
x3

3!
− x5

5!
− · · · = −x+ g2(x).

Then [
ẋ
ẏ

]
=

[
0 1
−1 0

] [
x
y

]
+

[
g1(y)
g2(x)

]
.

The characteristic polynomial of the previous matrix is

p(λ) = det

[
−λ 1
−1 −λ

]
= λ2 + 1.

Since its roots λ1 = i, λ2 = −i, both have zero real part, we cannot determine whether
the vector [0, 0]> is stable or not.
(At this point of the course, we can only apply the theory from Sections 4.1-4.3).

Second approach.
Let f1(x, y) = y + cos y − 1 and f2(x, y) = − sinx + x3. The Jacobian matrix for
nonlinear vector-valued function

f(x, y) =

[
f1(x, y)
f2(x, y)

]
evaluated at the equilibrium point [0, 0]> is

A =


∂f1
∂x

(0, 0)
∂f1
∂y

(0, 0)

∂f2
∂x

(0, 0)
∂f2
∂y

(0, 0)

 =

[
0 1− sin y

− cosx+ 3x2 0

]
x=0,y=0

=

[
0 1
−1 0

]
.

We obtained the same matrix and we can proceed as in the first approach.
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6. (Section 4.3 - Exercise 10) Verify that the origin is an equilibrium point of the
following system of equations

ẋ = ln(1 + x+ y2)

ẏ = −y + x3

and determine (if possible) whether it is stable or unstable.

Again the vector [0, 0]> is obviously an equilibrium point of this system.

First approach.
Here we will use expansion

ln(1 + x+ y2) = x+ y2 − (x+ y2)2

2
+

(x+ y2)3

3
− · · · .

Then [
ẋ
ẏ

]
=

[
1 0
0 −1

] [
x
y

]
+

[
g(x, y)
x3

]
,

where

g(x, y) = y2 − (x+ y2)2

2
+

(x+ y2)3

3
− · · · .

The characteristic polynomial of the previous matrix is

p(λ) = det

[
1− λ 0

0 −1− λ

]
= −(1− λ)(1 + λ).

Since one eigenvalue of A has positive real part, the equilibrium value [0, 0]> for this
system is unstable.

Second approach.
Let f1(x, y) = ln(1+x+y2) and f2(x, y) = −y+x3. The Jacobian matrix for nonlinear
vector-valued function

f(x, y) =

[
f1(x, y)
f2(x, y)

]
evaluated at the equilibrium point [0, 0]> is

A =


∂f1
∂x

(0, 0)
∂f1
∂y

(0, 0)

∂f2
∂x

(0, 0)
∂f2
∂y

(0, 0)

 =

 1

1 + x+ y2
2y

1 + x+ y2

3x2 −1


x=0,y=0

=

[
1 0
0 −1

]
.

We obtained the same matrix and we can proceed as in the first approach.
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