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1 Section 2.6, problem 4

A small object of mass 1 kg is attached to a spring with spring constant k = 2 N/m. This
spring-mass system is immersed in a viscous medium with damping constant ¢ = 3 N s/m.

At time t = 0, the mass is lowered - m below its equilibrium position, and released. Show

that the mass will creep back to its equilibrium position as t approaches infinity.

Solution
The ODE is

my” (t) +cy’ +ky =0
Where m =1,c = 3,k = 2. The above becomes

y' () +3y +2y=0

And initial conditions, using equilibrium position as ¥ = 0 and hence below the equilibrium

position y is taken as negative. Therefore

1
0)=-2
y(0) =3
y'(0)=0
The characteristic equation is

P +3r+2=0

Hence

Therefore the solution to the ODE is
y(t) = cret + e
At t = 0 the above becomes
—% =c1+0
Taking derivative of (1) gives
Y () = —cre™t — 2cpe7
At t = 0 the above becomes

0=-c1 —2c

(1)

(2)

(3)



From (3) ¢y = —2c,. Substituting into (2) gives

1 =-2c) + ¢
2
=—c,
Hence
1
==
Therefore from (3)
0=-c;-2 (1)
2
0=-—-1
cp=-1

Hence the solution (1) becomes

1
y(t)=—t+ Ee‘Zt

We see now that as t — oo the terms ¢, e %

both go to zero. Therefore
tlim y(#) =0

Hence the mass will go back to equilibrium position y = 0 after long time.



The following is a plot of the solution above

y(t)

Figure 1: Plot showing solution in time

y[t_] := -Exp[-t] + iExp[—2t];
2

p = Plot[y[t], {t, 9, 5}, GridLines -» Automatic, GridLinesStyle - LightGray,
PlotStyle » Red, AxesLabel » {"t", "y(t)"}, BaseStyle » 12];

Figure 2: Code used for the above plot



2 Section 2.9, problem 18

Find the Laplace transform of the solution of the following initial value problem.
Yy’ +y=t*sint
y(©0)=0
y'(©0)=0
Solution

First we find the solution to the ODE then find its Laplace transform. The solution is given
by

y(&) =yn () +y, 1)
Where y;, () is the homogeneous solution to y” +y = 0 and y, (#) is the particular solution to
Yy’ +y=tsint.
The characteristic equation is r* +1 = 0. Hence * = -1 or

r=i

Therefore

yi (8) = e + cpe™ 1)

To find the particular solution, we find the particular solution for y”” +y = %" instead, and
then take the imaginary part. For this ODE, the RHS is %", therefore we start by guessing
the particular solution to be

Yy = (Ai,‘2 +Bt+C)el!

But from (1) we see that ¢ is a fundamental solution to the homogeneous ode. Hence we
adjust the above by multiplying by an extra t giving

yp = (AP + B2 + Ct) e’
We now substitute the above back into '’ + y = t2¢' in order to find A, B, C.
= (SAt2 +2Bt +C)elt +i (At3 + Bt? + Ct) et
And
yy = (6At +2B)e" +1(3A1 + 2Bt + C) et +i (3A12 + 2Bt + C) e + 2 (AP + B + Ct) '
= (6At +2B) e +i(3A2 + 2Bt + C) ¢ +(3A1 + 2Bt + C) e — (AP + B2 + Ct) '
Substituting the above in y; +y, = ?¢" gives
(6At +2B) e +i(3AF2 + 2Bt + C) ¢ +(3A1 + 2Bt + C) e’
— (AP + B2 + Ct) e + (A£ + B2 + Ct) et = 2"



Canceling ¢
(&M+2m+i@Aﬂ+2m+{j+i@A¥+2Bij—(Aﬁ+Bﬂ+CQ+(A§+BF+CQ
(6At +2B) +i(3Af2 + 2Bt + C) +i (3At2 + 2Bt + C)
(6At +2B) +2i (3A12 + 2Bt + C) = 12
(2B + 2iC) + t (6A + 4iB) + t2 (6iA) = 12

t2
t2

Comparing coefficients gives

2B+2iC=0
6A+4iB=0
6Ai =1
Hence A = é = —é. From the second equation

i
6|-=|+4iB=0
)

~i+4iB=0
i 1
B = —_ = -
4 4
From the first equation
1
-=+2iC=0
5 +2
2C = !
2
co i
4

Substituting the above back into y, = (At3 + Bt? + Ct) et gives

i, 1 i\
=(—=8B+ -2 + —t|e"
7r (6 1 4)6
1

i i
= (—gt3 + th + Zt) (cost +isint)

i 1 i i 1 i
= _8t3 cost + th cost + Ztcost— 6t3 (isint) + th (isint) + it(isin t)

I 4 1 9 1 1 3 . 1_2 . 1
= ——t°cost+ —=t°cost+ —tcost+ —=t°sint + —it*sint — —tsint
6 4 4 6 4 4
1 9 1 3 - 1 1 3 1 1 5 .
=|-tfcost+ —t’sint— —tsmt|+1|—-=t’cost+ —tcost+ —t°sint
4 6 4 6 4 4

The particular solution of the original ODE y” + y = t?sint is the imaginary part of the

above which is
1, 1 1,
Yp = ——t°cost+ —tcost+ -t sint
6 4 4

The homogeneous solution from (1) is y;, () = cie” + c,e™ which can be written using Euler



relation as yj, () = Cy cost + C, sint, therefore the general solution is

vy =y ) +y,®

:Clcost+C2sint—%t3cost+411tcost+411tzsint (2)
What is left is to find C;, C, from initial conditions. At t = 0 the above becomes
0=C
Hence (2) becomes
yt) = Czsint—%tg’ cost + }Ltcost+}1t2 sint (3)

Taking derivative gives
"(t)=C t %2 t+1t3't+1 tlt't+2t't+h2 t
= COST — —1” COS =17 Sln — COST — —ISIn —1rSin —1~ COS
Y 2 6 6 4 4 4 4

At t =0 the above becomes

1

0=C,+ -~

274
1
C,=-=
27y

Hence (3) becomes the final solution

1 1 1 1
y(t) = 1 sint—6t3cost+1tcost+ thsint (3A)



The following is a plot of the above solution. The solution blows up in time due to resonance.

y(t)
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Figure 3: Plot showing solution in time
1 1 1 1
y[t ] :=-—Sin[t] - —t3Cos[t] + —tCos[t] + —t>Sin[t];
4 6 4 4

p = Plot[y[t], {t, ©, 25}, GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle - Red, AxesLabel -» {"t", "y(t)"}, BaseStyle -» 12];

Figure 4: Code used for the above plot

The problem now asks to find the Laplace transform of the above. To obtain the Laplace
Transform of the above, the following relations will be used (In the following, the notation
© means the Laplace transform from left to right and the inverse Laplace transform from
right to left).

a

a% + 2
s

2+52

tf) & (- 1)-——F()

sin (at) &

cos (at) &



Hence

And

But

Therefore

And

But

1
+ 2 )

s
1+ 52

in (¢
sm()(:)l

cos (t)

tsin(t) © (-1) d%ff(sin 1)

d , _d (1
%g(sm () = T (1 " sz)
-2s
(1 +52)

2

-2s
(1 + 52)2
2s
(1+2)

tsin(t) © (-1)

=4

(6)

2

Z(Psin () = (-1)* %3(sm ()

d—g(sm(t))_ d[ 28 ]

(1 + 52)
2(1 2) +25(2) (1 +52) (29)
(1 + 52)2
21+ 52)2 +852 (1 +52)
(1 + 52)4

—2(1+52) + 852
(s
-2+ 65
B (1 + 52)3




Therefore

And

But

Therefore

And

10

5 =2+ 652
(1 + 52)3

_ 24652

C(1+s)

Z(Psin (1) = (-1)

(7)

L(tcos(t) = (-1) ;—Sg(cos 1)

£ = (:25)

(1 +s ) s (2s)
(1 + 52)2
1-s2

1+ 52)2

—

Ptcos () = (1) —— s >
(1 + sz)
-1
= (8)
(1+2)

) 42
L(# cos (1) = (-1)* 52 (cos (1)
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But

P i 1-¢
ﬁf/(cos(t))——[l > ]

25 (1+5%) — (1-2) @) (1+32) (29)

(1 + 52)4
=25 (1+5%) - (1-52) (2) (29)

(1 + 52)
-2s (1 +s ) ( )
(1+2)
—25 — 253 — 45 + 453
(1 + 52)3

—65 + 25>

(1+s2)

Therefore

g( oS (t)) ( )2 {65 +2s ]

(1 + 52)3
—65 + 25°

= 9)
(1 + 52)3

And finally

3(133 cos (t)) = (-1)° %g(cos (1)
But
3 _ 3
;?3(005 () = % [ (161:22)53 ]

(<6 +652) (1+ %) — (=65 +25%) 3 (1 + 52)” (25)

) (1+52)
(—6 +652) (1 + ) = (=65 +25°) 3 (25)

B (1 + 52)4

_ —6s* + 3652 -6

B (1 + 52)4
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Therefore

PR

(1 + 52)4
:6s4—36s2+6 (10)
(1 + 52)4
Using (4,5,6,7,8,9,10) in (3A) gives
g(y (t)) = —4113(8111 1) — ég(ﬁ oS t) + jzg(t cost) + 4115/(152 sin t)
_ 11 16s*-3652+6 L1 -1 1-2+65
st 6 (1pg) Aaee) Aaes)
:_1(“52)3_1654_3652%+1(sz_1)(1+32)2 1(-2+69)(1+5)
Ya+2) 0 (1+2) 4 (1+2)  f (149)
(1) (64 -362 4 6) + 1 (2 -1) (1) + (2 +65) (1+9)
(1 + 52)4
_ -2 (1 +5?) - = (65t - 3652 +6) + 1 (s -1) (1+ 2) + (2+62) (1+8)
(1 + 52)4
3 2
_ —(1+52) =2 (6543652 +6) + 1 (2 -1) (1+52) + 5 (-2+65) (1+5)
(1 + 52)4
Which can be simplified to
652 —2

Zy®) =

(1 + 52)4
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3 section 2.10, problem 14

Find the inverse Laplace transform of each of the following functions

1
s(s+ 4)2
Solution
Let
1
Flo)= s(s+ 4)2
Using partial fractions
1 A B C
R I LAY
Hence
1 A(+4°+Bs(s+4)+Cs
s(s+4)2_ s(s+4)2
A(s? +16+8s) + Bs® + 4Bs + Cs
- s(s+ 4)2
_ s?2(A+B)+s(8A+4B+C) +16A
- s(s+ 4)2
Comparing coefficients gives
16A =1
8A+4B+C=0
A+B=0
From first equation A = %6. From the third equation B = —11—6. From the second equation
8 (%6) +4 (—1—16) +C =0, hence C = —i, Therefore
1 11 1 1 1 1

(1)

s(s+472 165 16(s+4) 4(s+4)
Now we use the relation

7 (%) - Hy () @)

For @ we will use the relation that

Z(emf () =F(s—a)
Where here E(f (t)) = F(s). Therefore if we take F (s) = % then we see that =S”(e“”f (t)) = ﬁ.

['herefore
1
1 _ At
< (s = 4) =e (3)
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( 14)2 we will use the relation that
s+
Z(f(B) = (1) F ()

If we put n =1 and f(t) = ¢ * then

L(te ) = (-1) % (ﬁ)

1
=D ((s + 4)2)

B 1
- (s+ 4)2

For

Therefore we see that

-1 ((S " 4)2) — te—4t (4)

Substituting (2,3,4) back into (1) gives

1 1 1 1 1 1 1
-1 =1 —_ w1 - — -1
(s(s+4)2) 16 (S) 16 ((s+4)) 4 ((s+4)2)

1 1 1
= —H,() - — -4t _ _t —4t
TeHo () —qge — gt

Or, taking t > 0, then Hj (t) can be replaced by 1 and above can be simplifies to

1 1 1 1
-1 S
(S(S +4)2) 6 165 ~1°
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4 Section 2.10, problem 20

Solve the following initial-value problems by the method of Laplace transforms
Yy’ +y=tsint
y(0) =1
y'(0)=2
Solution
Taking the Laplace transform of the ODE gives
°?(y” + y) = L(tsint)
L2y + Ly =L(tsint) (1)
But from the above problem Section 2.9, problem 18 we have already found that
2s

(1 + sz)

L(tsint) = 5

And using
Ly’ =s*Y(5) = sy (0) -y (0)
where Y (s) = 3(}/ (t)), then (1) becomes

s2Y (s) —sy (0) =y’ (0) + Y (s) =

2
(1 + sz)
Substituting the initial conditions into the above gives
2
Y (s)—=s—-2+Y(s) = i 5
(1 + 52)
2s
Y(s)(52+1)—s—2: 5
(1 + 52)
Y(s)(sz+1): 5 +5+2
(1 + sz)
Y(s) =2 b5 4o 1 (1A)
S) =
(1 n 52)3 (52 + 1) (52 + 1)
Now we ready to apply inverse Laplace transform using the relations
Fcost = 2A
o s2 +1 (24)
Fsint = 2B
ST (2B)
The only term left is ——. But this is the same as 5 " and we already found that
(1+52) (1+52) (1+s)

2s

> © tsint from above solving section 2.9, problem 18, and —L_ & sint. Therefore we

(1+52) (1+s)
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can use convolution as follows

2s 1 ;
[(1+52)2]((l+s))@‘f(;f(T)g(t—T)dT

252 > & f(t) = tsint and (1175) & g(t) = sint. Hence the above

1+s )

Where we assume that

becomes
2s

(1 + 52)3

Let A=1,B =1t- 1 and using sin (A)sin(B) = % (cos (A - B) —cos (A + B)), then

o fo ' sin (0)sin (t - 1) dt )

sin(7)sin(t-1) = % (cos(t = (t—1)) —cos(t + (t — 1))

= % (cos (27 —t) — cos(t))

Substituting the above in (2) gives

S
(1+2)

S j: T (% (cos (2T — t) — cos (t))) dt

1 t 1t
@—f TCOS(ZT—t)dT——f Tcos (t)dt
2Jy 2Jy

1 t 1 t
@—f TCOS(ZT—t)dT——COS(t)f dt 3)
2J 2 0

sin(2t-t)

Using integration by parts on the first integral. Let u = 7,dv = cos 2t - t) ,du =1,v = B

> T

fotrcos(ZT—t)dT: %[TSiH(ZT—t)]g—j(;

t

= % [tsin(t)] - %j; sin (27 - t)dt

1 1
= Etsin @®) + 1 [cos (2T — t)](t)

~Lisin () + 31 [cos (t) — cos (—1)]

2
= Lsin () + - [cos () — cos (1]
= 5tsin 7 [cos cos
1
= Etsin ()
Substituting the above in (3) gives
1/(1 1
° ;= (—tsin (t)) — —t2cos (b)
(1+2) 212 4

1 1,
= Ztsm (t) - Zt cos (1) (20)
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We have found the inverse Laplace transform for all the terms. Substituting (2A,2B,2C) into
(1A) gives
2s 4 S 4 1

-1 _ o1
LY=L (1+52)3+$ (52+1)+23 (Sz+1)

1 1
y(t) = (Ztsin (t) - th cos (t)) +cost+2sint
1, 1 .
= _Zt cost + L—Ltsmt + cost+2sint

The following is a plot of the above solution. The solution blows up in time due to resonance.

y(t)
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Figure 5: Plot showing solution in time

1 1
y[t ] :=-—1t?Cos[t] + —tSin[t] +Cos[t] +2Sin[t]
4 4

p = Plot[y[t], {t, 9, 25}, GridLines -» Automatic, GridLinesStyle - LightGray,
PlotStyle -» Red, AxesLabel » {"t", "y(t)"}, BaseStyle » 12];

Figure 6: Code used for the above plot
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