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1 Section 1.8, problem 8

A tank contains 300 gallons of water and 100 gallons of pollutant. Fresh water is pumped
into the tank at rate 2 gal/min, and the well stirred mixture leaves at the same rate. How long

does it take for the concentration of pollutants in the tank to decrease to % of its original
value?

Solution

Let V (f) be the volume in gallons of the pollutant at time ¢. Hence
v (t)
dt
Where R;, is the rate in gallons per min that the pollutant is entering the tank and R,,; is
the rate in gallons per min that the pollutant is leaving the tank. In this problem
R;,, =0 (1A)

Since no pollutant enters the tank. And R,,; = 2 gal/min. But each gallon that leaves contains

= Rin — Rout (1)

the ratio -2 of pollutant at any moment of time. This is because the volume of the tank is
fixed at 400 gallons since same volume enters as it leaves. Hence

|40, :
Ryt = 2@ gal/min (1B)
Using (1A,1B) in (1) gives
av( 2
& - a0" Y
av) 1 B
. Ta00” =0

1 t
This is a linear ODE. The integration factor is I = ¢/ % = ¢a0. Therefore the above can
be written as

%(V(t)l) =0
£ (v) o

Integrating gives the general solution as
t

Ve20o = C (1)

Using initial conditions, at t = 0, V = 100 gallons. Substituting these in the above to solve
for C gives

100 =C
Hence the solution (1) becomes
—t
V (t) = 100e200 (2)

To find the time t when V(t) = 10 gallons (this is % of the original volume of pollutant,



which is 100 gallons), then the above becomes
-1

10 = 10020
Solving for t, gives
1 -1

— = pz000

10
In (l) = _—1t0
10 200
1
t, = —200 ln(—)

10
Hence

ty = 460.517 minutes

This is the time it takes for the pollutant volume to decrease to - of its original value in
the tank.



2 Section 1.8, problem 14

Find the orthogonal trajectory of the curve y = csinx
Solution
Let
F(x,y,c):csinx—y (1)

Then F, = ccosx and F, = 1. Hence the slope of the orhogonal projection is given by

dy Fy

dx  F,
-1
~ ccosx

Y

sinx’

From (1), we need to solve for ¢ from F(x,y, c) = 0 which gives csinx -y =0 orc =
Substituting this back into the above result gives

dy -1

dx (Y

X (sinx)cosx
3 —sinx
B Y Ccosx
= ——tanx

The above gives the ODE to sovle for the orthogonal trajectory curves. This is separable.

Integrating gives
fydy: —ftanxdx

But ftan xdx = —In|cos (x)|. Hence the above becomes
v _
2
y?> =21In(Jcosx|) + C

In (cos (x)]) + C4

Where C = 2C;. Solving for y gives two solutions
y(x) = i\/2 In (Jcosx|) + C

For illustration, the above was plotted for C =1, 2,3,4,5 in the following (shown in red color)
against the function sin (x) (in blue color). It shows the projection curves all cross sin (x) at
90° everywhere as expected.




_3L

Figure 1: Orthogonal projections for different C values

- Show@Table [Plot [ {Sin[x], Sqrt[2 Log[Abs[Cos[x]]] + c], -Sqrt[2 Log[Abs[Cos[x]]] + ]},
{x, -Pi/2, Pi/2},
PlotRange -» {All, {-3, 3}},
ImageSize - 300, AspectRatio -» Automatic,
PlotStyle » {Blue, Red, Red}, AxesLabel » {"x", None}, BaseStyle -» 14], {c, 1, 5}]

Figure 2: code used for the above

The following plot is over a larger x range, from 27 to 27






3 section 1.10, problem 4

Show that the solution y () of the given initial value problem exists on the specified interval.
1
’ =12 2 =0; <t< =
y=y+cos(P)  yO=0 0st<s
Solution
Writing the ODE as
v =f(ty)

= y? + cos (tz)

Let R be rectangle 0 <t < %,yo -b<y<yy+b. But yy =0 as given. Therefore

1
R = - -b,b
[O,z]x[ ,b]
Now

M=@gV@ﬁ
_ 2 2
= (ItI;)l;l(Q |y + cos (t )|
=0 +1

) b
= a, —
a =min|a,

Hence

But a = %,M = b2 + 1, therefore the above becomes
(1 b
i Ul

.. b . .
The largest value « can obtain is when g (b) = 727 is maximum.

(b2 +1) - b(2b)
(22 +1)

_ b% +1 - 212

(1)

o 1-p

(1)

g (b)=




Hence ¢’ (b) = 0 gives 1 —b* = 0 or b = 1. Taking b =1 gives g,.x (b) = o

(11
=min|-, =
“ 2’2

1

This shows that the solution y (f) exists on
to <t< tO + o

Butty=0,a= %, therefore

0<t<

NI =

Hence a unique solution exist inside rectangle

1
R=10,z|x[-1,1
[ 5| x L1

%. Therefore



4 Section 1.10, problem 17

Prove that y (t) = -1 is the only solution of the initial value problem

y=t(l+y) y@O=-1
Solution

The solution is found first to show it is y (t) = -1, then using the uniqueness theory, one can
show it is unique. The above ODE is separable. Hence

fldTyy:ftdt
2

ln(|1+y|):%+c

t2
|1 + y| = 2"
t2
1+y=_Cqe? (1)
Applying initial conditions gives
1 - 1 = C1
C] = 0
Hence the solution (1) becomes
1+y=0
y()=-1

To show the above is the only solution we need to show the uniqueness theorem applies to
this ODE over all of R. Let

v =f(ty)
= t(l +y)

The above shows that f (t, y) is continuous in f over —oco < t < oo and continuous in y over
—00 <y < 0. Now

of
Ea—
Iy
Hence 2y 18 also continuous in y over —co <y < co. Therefore a solution exist and is unique

in any region that includes the initial conditions. Hence the solution y () = -1 found above
is the only solution.
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5 Section 1.13, problem 2

Using Euler’s method with step size /1 = 0.1, determine an approximate value of the solution
at t =1 for

y =2ty y(0)=2

Which has analytical solution y (t) = 2¢"", Compute approximate value at ¢ = 1 using just
h = 0.1, and compare with y(1).

Solution

Euler method is given by
y1 = yo +hf (fo o)
Vo=y1+hf (tlryl)

Yerr = Ve + If (t i)
Where vy = 2 in this problem, and t; = ty+h, t, = t;+h and so on. Where 1 = 0.1. The following
table shows the numerical value of y(f) found at each t starting from 0,0.1,0.2,---,1.0 and
comparing it to the exact y (t) and the error at each step using a small Mathematica program
which implements the above method.

t appoximate y(t) [exact y(t) |[error

0. |2 2. 0.

0.1]|2. 2.0201 0.0201003
0.2(2.04 2.08162 0.0416215
0.3[2.1216 2.18835 0.0667486
0.412.2489 2.34702 0.0981257
0.5(2.42881 2.56805 0.139243
0.6 (2.67169 2.86666 0.19497
0.7 12.99229 3.26463 0.272341
0.8(3.41121 3.79296 0.38175
0.913.95701 4.49582 0.53881
1. [4.66927 5.43656 0.767297

Figure 4: Table to compare Euler method with exact
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flt ,y 1 :=2%xt*y;
exacty[t ] :=2%xExp[t~2];
h=1/10; t6=0; yo=2; N0=1/h;
y = Table[0@, {NO +1}];
T = NeTable[tO+ ixh, {i, O, NO}];
y[[1]] =ye;
data = Table[If[i =1,
{T[[1]], yo, exacty[T[[1]]], exacty[T[[1]]] - y@},
{Tr[i1],
yI[i]] =y[[i-21]] +h»F[T[[i-1]], y[[i-1]]], exacty[T[[i]]],
exacty [T[[1]]]1 -y[[i]1}],
{i, 1, n+1}];
Grid[Prepend[data, {"t", "appoximate y(t)", "exact y(t)", "error"}],
Frame -» All, Alignment - Left]

Figure 5: Code for Euler method to generate the above table

Euler

0.2 0.4 0.6 0.8 1.0

Figure 6: Plot of exact vs. Euler

pl = ListLinePlot [
Callout[Transposee {data[ [All, 1]], data[[All, 2]]}, "Euler", {O.8, 2}],
Mesh -» All, PlotStyle -» Dashed, MeshStyle - Red] ;
p2 = Plot[Callout[2 +x Exp[t~2], "Exact", {0.8, 5}], {t, 0, 1}];
Show [ {p1, p2}, GridLines -» Automatic, GridLinesStyle -> LightGray,
PlotRange » All, AxesLabel » {"t", "y (t)"}, BaseStyle -» 14]

Figure 7: Code to make plot
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