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1 Section 1.8, problem 8

A tank contains 300 gallons of water and 100 gallons of pollutant. Fresh water is pumped
into the tank at rate 2 gal/min, and the well stirred mixture leaves at the same rate. How long
does it take for the concentration of pollutants in the tank to decrease to 1

10 of its original
value?

Solution

Let 𝑉 (𝑡) be the volume in gallons of the pollutant at time 𝑡. Hence

𝑑𝑉 (𝑡)
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 (1)

Where 𝑅𝑖𝑛 is the rate in gallons per min that the pollutant is entering the tank and 𝑅𝑜𝑢𝑡 is
the rate in gallons per min that the pollutant is leaving the tank. In this problem

𝑅𝑖𝑛 = 0 (1A)

Since no pollutant enters the tank. And 𝑅𝑜𝑢𝑡 = 2 gal/min. But each gallon that leaves contains
the ratio 𝑉(𝑡)

400 of pollutant at any moment of time. This is because the volume of the tank is
fixed at 400 gallons since same volume enters as it leaves. Hence

𝑅𝑜𝑢𝑡 = 2
𝑉 (𝑡)
400

gal/min (1B)

Using (1A,1B) in (1) gives

𝑑𝑉 (𝑡)
𝑑𝑡

= −
2
400

𝑉 (𝑡)

𝑑𝑉 (𝑡)
𝑑𝑡

+
1

200
𝑉 (𝑡) = 0

This is a linear ODE. The integration factor is 𝐼 = 𝑒∫
1
200𝑑𝑡 = 𝑒

𝑡
200 . Therefore the above can

be written as
𝑑
𝑑𝑡

(𝑉 (𝑡) 𝐼) = 0

𝑑
𝑑𝑡

�𝑉𝑒
𝑡

200 � = 0

Integrating gives the general solution as

𝑉𝑒
𝑡

200 = 𝐶 (1)

Using initial conditions, at 𝑡 = 0, 𝑉 = 100 gallons. Substituting these in the above to solve
for 𝐶 gives

100 = 𝐶

Hence the solution (1) becomes

𝑉 (𝑡) = 100𝑒
−𝑡
200 (2)

To find the time 𝑡 when 𝑉 (𝑡) = 10 gallons (this is 1
10 of the original volume of pollutant,
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which is 100 gallons), then the above becomes

10 = 100𝑒
−1
200 𝑡0

Solving for 𝑡0 gives
1
10

= 𝑒
−1
200 𝑡0

ln �
1
10�

=
−1
200

𝑡0

𝑡0 = −200 ln �
1
10�

Hence

𝑡0 = 460.517 minutes

This is the time it takes for the pollutant volume to decrease to 1
10 of its original value in

the tank.
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2 Section 1.8, problem 14

Find the orthogonal trajectory of the curve 𝑦 = 𝑐 sin 𝑥

Solution

Let

𝐹 �𝑥, 𝑦, 𝑐� = 𝑐 sin 𝑥 − 𝑦 (1)

Then 𝐹𝑥 = 𝑐 cos 𝑥 and 𝐹𝑦 = −1. Hence the slope of the orhogonal projection is given by

𝑑𝑦
𝑑𝑥

=
𝐹𝑦
𝐹𝑥

=
−1

𝑐 cos 𝑥

From (1), we need to solve for 𝑐 from 𝐹 �𝑥, 𝑦, 𝑐� = 0 which gives 𝑐 sin 𝑥 − 𝑦 = 0 or 𝑐 = 𝑦
sin 𝑥 .

Substituting this back into the above result gives

𝑑𝑦
𝑑𝑥

=
−1

� 𝑦
sin 𝑥

� cos 𝑥

=
− sin 𝑥
𝑦 cos 𝑥

= −
1
𝑦

tan 𝑥

The above gives the ODE to sovle for the orthogonal trajectory curves. This is separable.
Integrating gives

�𝑦𝑑𝑦 = −� tan 𝑥𝑑𝑥

But ∫ tan 𝑥𝑑𝑥 = − ln |cos (𝑥)|. Hence the above becomes

𝑦2

2
= ln (|cos (𝑥)|) + 𝐶1

𝑦2 = 2 ln (|cos 𝑥|) + 𝐶

Where 𝐶 = 2𝐶1. Solving for 𝑦 gives two solutions

𝑦 (𝑥) = ±�2 ln (|cos 𝑥|) + 𝐶

For illustration, the above was plotted for 𝐶 = 1, 2, 3, 4, 5 in the following (shown in red color)
against the function sin (𝑥) (in blue color). It shows the projection curves all cross sin (𝑥) at
900 everywhere as expected.
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Out[ ]=

-1.5 -1.0 -0.5 0.5 1.0 1.5
x

-3

-2

-1

1

2

3

Figure 1: Orthogonal projections for di�erent 𝐶 values

In[ ]:= Show@Table[Plot[{Sin[x], Sqrt[2 Log[Abs[Cos[x]]] + c], -Sqrt[2 Log[Abs[Cos[x]]] + c]},

{x, - Pi/ 2, Pi/ 2},

PlotRange → {All, {-3, 3}},

ImageSize → 300, AspectRatio → Automatic,

PlotStyle → {Blue, Red, Red}, AxesLabel → {"x", None}, BaseStyle → 14], {c, 1, 5}]

Figure 2: code used for the above

The following plot is over a larger 𝑥 range, from −2𝜋 to 2𝜋
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Out[ ]=

-6 -4 -2 2 4 6
x

-3

-2

-1

1

2

3

Figure 3: Orthogonal projections for di�erent 𝐶 values
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3 section 1.10, problem 4

Show that the solution 𝑦 (𝑡) of the given initial value problem exists on the specified interval.

𝑦′ = 𝑦2 + cos �𝑡2� 𝑦 (0) = 0; 0 ≤ 𝑡 ≤
1
2

Solution

Writing the ODE as

𝑦′ = 𝑓 �𝑡, 𝑦�

= 𝑦2 + cos �𝑡2�

Let 𝑅 be rectangle 0 ≤ 𝑡 ≤ 1
2 , 𝑦0 − 𝑏 ≤ 𝑦 ≤ 𝑦0 + 𝑏. But 𝑦0 = 0 as given. Therefore

𝑅 = �0,
1
2�

× [−𝑏, 𝑏]

Now

𝑀 = max
�𝑡,𝑦�∈𝑅

�𝑓 �𝑡, 𝑦��

= max
�𝑡,𝑦�∈𝑅

�𝑦2 + cos �𝑡2��

= 𝑏2 + 1

Hence

𝛼 = min �𝑎,
𝑏
𝑀�

But 𝑎 = 1
2 ,𝑀 = 𝑏2 + 1, therefore the above becomes

𝛼 = min �
1
2
,

𝑏
𝑏2 + 1�

The largest value 𝛼 can obtain is when 𝑔 (𝑏) = 𝑏
𝑏2+1 is maximum.

𝑔′ (𝑏) =
�𝑏2 + 1� − 𝑏 (2𝑏)

�𝑏2 + 1�
2

=
𝑏2 + 1 − 2𝑏2

�𝑏2 + 1�
2

=
1 − 𝑏2

�𝑏2 + 1�
2
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Hence 𝑔′ (𝑏) = 0 gives 1 − 𝑏2 = 0 or 𝑏 = ±1. Taking 𝑏 = 1 gives 𝑔max (𝑏) =
1

12+1 =
1
2 . Therefore

𝛼 = min �
1
2
,
1
2�

=
1
2

This shows that the solution 𝑦 (𝑡) exists on

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝛼

But 𝑡0 = 0, 𝛼 = 1
2 , therefore

0 ≤ 𝑡 ≤
1
2

Hence a unique solution exist inside rectangle

𝑅 = �0,
1
2�

× [−1, 1]



9

4 Section 1.10, problem 17

Prove that 𝑦 (𝑡) = −1 is the only solution of the initial value problem

𝑦′ = 𝑡 �1 + 𝑦� 𝑦 (0) = −1

Solution

The solution is found first to show it is 𝑦 (𝑡) = −1, then using the uniqueness theory, one can
show it is unique. The above ODE is separable. Hence

�
𝑑𝑦

1 + 𝑦
= �𝑡𝑑𝑡

ln ��1 + 𝑦�� =
𝑡2

2
+ 𝐶

�1 + 𝑦� = 𝑒
𝑡2
2 +𝐶

1 + 𝑦 = 𝐶1𝑒
𝑡2
2 (1)

Applying initial conditions gives

1 − 1 = 𝐶1

𝐶1 = 0

Hence the solution (1) becomes

1 + 𝑦 = 0
𝑦 (𝑡) = −1

To show the above is the only solution we need to show the uniqueness theorem applies to
this ODE over all of ℜ. Let

𝑦′ = 𝑓 �𝑡, 𝑦�

= 𝑡 �1 + 𝑦�

The above shows that 𝑓 �𝑡, 𝑦� is continuous in 𝑡 over −∞ < 𝑡 < ∞ and continuous in 𝑦 over
−∞ < 𝑦 < ∞. Now

𝜕𝑓
𝜕𝑦

= 𝑡

Hence 𝜕𝑓
𝜕𝑦 is also continuous in 𝑦 over −∞ < 𝑦 < ∞. Therefore a solution exist and is unique

in any region that includes the initial conditions. Hence the solution 𝑦 (𝑡) = −1 found above
is the only solution.
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5 Section 1.13, problem 2

Using Euler’s method with step size ℎ = 0.1, determine an approximate value of the solution
at 𝑡 = 1 for

𝑦′ = 2𝑡𝑦 𝑦 (0) = 2

Which has analytical solution 𝑦 (𝑡) = 2𝑒𝑡2. Compute approximate value at 𝑡 = 1 using just
ℎ = 0.1, and compare with 𝑦(1).

Solution

Euler method is given by

𝑦1 = 𝑦0 + ℎ𝑓 �𝑡0, 𝑦0�

𝑦2 = 𝑦1 + ℎ𝑓 �𝑡1, 𝑦1�

⋮

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 �𝑡𝑘, 𝑦𝑘�

Where 𝑦0 = 2 in this problem, and 𝑡1 = 𝑡0+ℎ, 𝑡2 = 𝑡1+ℎ and so on. Where ℎ = 0.1. The following
table shows the numerical value of 𝑦 (𝑡) found at each 𝑡 starting from 0, 0.1, 0.2,⋯ , 1.0 and
comparing it to the exact 𝑦 (𝑡) and the error at each step using a small Mathematica program
which implements the above method.

Out[ ]=

t appoximate y(t) exact y(t) error
0. 2 2. 0.
0.1 2. 2.0201 0.0201003
0.2 2.04 2.08162 0.0416215
0.3 2.1216 2.18835 0.0667486
0.4 2.2489 2.34702 0.0981257
0.5 2.42881 2.56805 0.139243
0.6 2.67169 2.86666 0.19497
0.7 2.99229 3.26463 0.272341
0.8 3.41121 3.79296 0.38175
0.9 3.95701 4.49582 0.53881
1. 4.66927 5.43656 0.767297

Figure 4: Table to compare Euler method with exact
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f[t_, y_] := 2* t* y;

exacty[t_] := 2* Exp[t^2];

h = 1/ 10; t0 = 0; y0 = 2; N0 = 1/ h;

y = Table[0, {N0 + 1}];

T = N@Table[t0 + i* h, {i, 0, N0}];

y[[1]] = y0;

data = Table[If[i ⩵ 1,

{T[[1]], y0, exacty[T[[1]]], exacty[T[[1]]] - y0},

{T[[i]],

y[[i]] = y[[i - 1]] + h* f[T[[i - 1]], y[[i - 1]]], exacty[T[[i]]],

exacty[T[[i]]] - y[[i]]}],

{i, 1, n + 1}];

Grid[Prepend[data, {"t", "appoximate y(t)", "exact y(t)", "error"}],

Frame → All, Alignment → Left]

Figure 5: Code for Euler method to generate the above table

Out[ ]=

Euler

Exact

0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

5

y(t)

Figure 6: Plot of exact vs. Euler

p1 = ListLinePlot[

Callout[Transpose@{data[[All, 1]], data[[All, 2]]}, "Euler", {0.8, 2}],

Mesh → All, PlotStyle → Dashed, MeshStyle → Red];

p2 = Plot[Callout[2* Exp[t^2], "Exact", {0.8, 5}], {t, 0, 1}];

Show[{p1, p2}, GridLines → Automatic, GridLinesStyle -> LightGray,

PlotRange → All, AxesLabel → {"t", "y(t)"}, BaseStyle → 14]

Figure 7: Code to make plot
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