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1 Problem 8, section 1.2

Solve𝑑𝑦𝑑𝑡 + √1 + 𝑡
2𝑦 = 0, 𝑦 (0) = √5

Solution

This is separable first order ODE. Therefore

�
𝑑𝑦
𝑦
= −�√1 + 𝑡2𝑑𝑡 (1)

The LHS becomes

�
𝑑𝑦
𝑦
= ln �𝑦� (2)

For the RHS of (1), the integral ∫√1 + 𝑡2𝑑𝑡 can be evaluated as follows. Let 𝑡 = sinh (𝜃).
Hence 𝑑𝑡

𝑑𝜃 = cosh (𝜃). Therefore

�√1 + 𝑡2𝑑𝑡 = ��1 + sinh2 (𝜃) cosh (𝜃) 𝑑𝜃

= � cosh2 (𝜃) 𝑑𝜃

= �
1
2
(1 + cosh (2𝜃)) 𝑑𝜃

=
1
2
��𝑑𝜃 +� cosh (2𝜃) 𝑑𝜃�

=
1
2 �
𝜃 +

sinh (2𝜃)
2 �

=
1
2
𝜃 +

sinh (2𝜃)
4

Since sinh (2𝜃) = 2 sinh𝜃 cosh𝜃, the above becomes

�√1 + 𝑡2𝑑𝑡 =
1
2
𝜃 +

sinh𝜃 cosh𝜃
2

Since cosh2 (𝜃) − sinh2 (𝜃) = 1 then cosh2 𝜃 = 1 + sinh2 (𝜃) and the above becomes

�√1 + 𝑡2𝑑𝑡 =
1
2 �
𝜃 + sinh𝜃�1 + sinh2 (𝜃)�

But 𝑡 = sinh (𝜃) and 𝜃 = arcsinh (𝑡). Therefore the above becomes

�√1 + 𝑡2𝑑𝑡 =
1
2
�arcsinh (𝑡) + 𝑡√1 + 𝑡2� (3)

Using (2,3) in (1) gives

ln �𝑦� = −1
2
�arcsinh (𝑡) + 𝑡√1 + 𝑡2� + 𝐶 (4)

Where 𝐶 is arbitrary constant of integration. Writing arcsinh (𝑡) using known identity as
ln �𝑡 + √1 + 𝑡2�. And since √1 + 𝑡2 is always larger than 𝑡, then the absolute sign is not needed.
Eq. (4) becomes

ln �𝑦� = −1
2
�ln �𝑡 + √1 + 𝑡2� + 𝑡√1 + 𝑡2� + 𝐶

�𝑦� = 𝑒
− 1
2 �ln�𝑡+√1+𝑡

2�+𝑡√1+𝑡2�𝑒𝐶

𝑦 = 𝐶1𝑒
− 1
2 �ln�𝑡+√1+𝑡

2�+𝑡√1+𝑡2�

= 𝐶1𝑒
− 1
2 ln�𝑡+√1+𝑡2�𝑒𝑡√1+𝑡2

Therefore the general solution is

𝑦 (𝑡) = 𝐶1
𝑒𝑡√1+𝑡2

�𝑡 + √1 + 𝑡2�
1
2

Now initial conditions are used to determine 𝐶1. From 𝑦 (0) = √5 then the above gives

√5 = 𝐶1
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Therefore the particular solution is

𝑦 (𝑡) = √5
𝑒𝑡√1+𝑡2

�𝑡 + √1 + 𝑡2�
1
2
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2 Problem 17, section 1.2

Find a continuous solution of the IVP 𝑦 + 𝑦′ = 𝑔 (𝑡) , 𝑦 (0) = 0 where

𝑔 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩
2 0 ≤ 𝑡 ≤ 1
0 𝑡 > 1

Solution

This is linear first order ODE. The integrating factor is 𝜇 = 𝑒∫𝑑𝑡 = 𝑒𝑡. Hence the ODE
becomes

𝑑
𝑑𝑡
�𝑦𝜇� = 𝜇𝑔 (𝑡)

𝑑
𝑑𝑡
�𝑦𝑒𝑡� = 𝑒𝑡𝑔 (𝑡)

Integrating gives

𝑦𝑒𝑡 = �𝑒𝑡𝑔 (𝑡) 𝑑𝑡 + 𝐶 (1)

Breaking the problem into two phases, and solving the above for 0 ≤ 𝑡 ≤ 1 gives

𝑦𝑒𝑡 = �2𝑒𝑡𝑑𝑡 + 𝐶

= 2𝑒𝑡 + 𝐶
𝑦 (𝑡) = 2 + 𝐶𝑒−𝑡

Applying initial conditions gives 0 = 2 + 𝐶, or 𝐶 = −2 and the above becomes

𝑦 (𝑡) = 2 − 2𝑒−𝑡 0 ≤ 𝑡 ≤ 1 (2)

The above solution is valid for 0 ≤ 𝑡 ≤ 1.

To solve for 𝑡 > 1, initial conditions are first found for 𝑡 = 1. At 𝑡 = 1 the above gives

𝑦 (1) = 2 −
2
𝑒

Hence for 𝑡 > 1, initial conditions are 𝑦 (1) = 2 − 2
𝑒 . Now the second phase is solved. From

(1)

𝑦𝑒𝑡 = �𝑒𝑡𝑔 (𝑡) 𝑑𝑡 + 𝐶

But now 𝑔 (𝑡) = 0. The above simplifies to

𝑦𝑒𝑡 = 𝐶 (3)

𝑦 = 𝐶𝑒−𝑡

But at 𝑡 = 1, 𝑦 = 2 − 2
𝑒 . Therefore

2 −
2
𝑒
= 𝐶𝑒−1

𝐶 = 2𝑒 − 2
= 2 (𝑒 − 1)

Substituting the above 𝐶 into (3) gives

𝑦 = 2 (𝑒 − 1) 𝑒−𝑡 𝑡 > 1 (4)

Using (2,4) the final solution is therefore

𝑦 (𝑡) =

⎧⎪⎪⎨
⎪⎪⎩

2 − 2𝑒−𝑡 0 ≤ 𝑡 ≤ 1
2 (𝑒 − 1) 𝑒−𝑡 𝑡 > 1
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Figure 1: Plot of the solution 𝑦(𝑡)
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3 Problem 10, section 1.4

Solve cos 𝑦𝑑𝑦𝑑𝑡 =
−𝑡 sin 𝑦
1+𝑡2 , 𝑦 (1) =

𝜋
2

Solution

This is separable first order ODE

�
cos 𝑦
sin 𝑦 𝑑𝑦 = −�

𝑡
1 + 𝑡2

𝑑𝑡

But ∫ cos 𝑦
sin 𝑦 𝑑𝑦 = ∫

𝑑
𝑑𝑦 sin 𝑦

sin 𝑦 𝑑𝑦 = ln �sin �𝑦�� and ∫ 𝑡
1+𝑡2𝑑𝑡 =

1
2 ln �1 + 𝑡2� = 1

2 ln �1 + 𝑡2� since 1 + 𝑡2 is
positive. Hence the above becomes

ln �sin �𝑦�� = −1
2

ln �1 + 𝑡2� + 𝐶

Where 𝐶 is the integration constant. Hence

�sin �𝑦�� = 𝑒−
1
2 ln�1+𝑡2�+𝐶

= 𝑒−
1
2 ln�1+𝑡2�𝑒𝐶

Therefore

sin �𝑦� = 𝐶1𝑒
− 1
2 ln�1+𝑡2�

= 𝐶1
1

√1 + 𝑡2
(1)

From initial conditions 𝑦 (1) = 𝜋
2 the above becomes

sin �𝜋
2
� = 𝐶1

1

√2
𝐶1 = √2

Hence (1) becomes

sin �𝑦� = √2
1

√1 + 𝑡2

𝑦 (𝑡) = arcsin
⎛
⎜⎜⎜⎜⎝

√2

√1 + 𝑡2

⎞
⎟⎟⎟⎟⎠
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4 Problem 18, section 1.4

Solve 𝑑𝑦
𝑑𝑡 =

𝑡+𝑦
𝑡−𝑦

Solution

Let 𝑢 = 𝑦
𝑡 or 𝑦 = 𝑢𝑡. Hence 𝑑𝑦

𝑑𝑡 = 𝑢 + 𝑡
𝑑𝑢
𝑑𝑡 . Therefore the ODE becomes

𝑢 + 𝑡
𝑑𝑢
𝑑𝑡
=
𝑡 + 𝑢𝑡
𝑡 − 𝑢𝑡

𝑢 + 𝑡
𝑑𝑢
𝑑𝑡
=
𝑡 (1 + 𝑢)
𝑡 (1 − 𝑢)

𝑡
𝑑𝑢
𝑑𝑡
=
(1 + 𝑢)
(1 − 𝑢)

− 𝑢

= −
𝑢2 + 1
𝑢 − 1

=
1 + 𝑢2

1 − 𝑢
This is now separable ODE. Therefore

1 − 𝑢
1 + 𝑢2

𝑑𝑢
𝑑𝑡
=
1
𝑡

�
1 − 𝑢
1 + 𝑢2

𝑑𝑢 = �
1
𝑡
𝑑𝑡 (1)

But

�
1 − 𝑢
1 + 𝑢2

𝑑𝑢 = �
1

1 + 𝑢2
𝑑𝑢 −�

𝑢
1 + 𝑢2

𝑑𝑢

= arctan (𝑢) − 1
2

ln �1 + 𝑢2�

but 1 + 𝑢2 is positive. Hence

�
1 − 𝑢
1 + 𝑢2

𝑑𝑢 = arctan (𝑢) − 1
2

ln �1 + 𝑢2�

And ∫ 1
𝑡 𝑑𝑡 = ln |𝑡|. Hence (1) becomes

arctan (𝑢) − 1
2

ln �1 + 𝑢2� = ln |𝑡| + 𝐶

But 𝑦
𝑡 , and the above becomes

arctan �𝑦
𝑡
� −

1
2

ln �1 + �
𝑦
𝑡
�
2
� = ln |𝑡| + 𝐶

The above solution is implicit in 𝑦 (𝑡).
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5 Problem 4, section 1.5

Suppose that a population doubles its original size in 100 years, and triples it in 200 years.
Show that this population cannot satisfy the Malthusian law of population growth.

Solution

In Malthusian law of population growth, the rate at which population changes is fixed in
the model. It is given by 𝑎 below

𝑑𝑝
𝑑𝑡
= 𝑎𝑝 (𝑡)

Where 𝑎 is constant. But the problem says the population is doubled in first 100 years. So
if 𝑝0 was initial population, then after 100 years the population now has become 2𝑝0. There
one will expect that after another 100 years the population will double again to become
4𝑝0.

But the problem says that the population triples in 200 years, becoming 3𝑝0 and not 4𝑝0.
This shows that the rate of growth is not constant. Hence this do not satisfy Malthusian
law of population growth.
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6 Problem 6(a), section 1.5

A population grows according to the logistic law, with a limiting population of 5 × 108 indi-
viduals. When the population is low it doubles every 40 minutes. What will the population
be after two hours if initially it was (a) 108 ?

Solution

In the logistic law, the population model is given by
𝑑𝑝
𝑑𝑡
= 𝑎𝑝 − 𝑏𝑝2

Where 𝑝 (𝑡) is population at time 𝑡 and 𝑎 is the growth rate (constant) and 𝑏 is the competi-
tion rate (also constant). In this model

lim
𝑡→∞

𝑝 (𝑡) =
𝑎
𝑏

Therefore
𝑎
𝑏
= 5 × 108 (1)

The problem says that 𝑎 = 100% (per 40 minute) or 𝑎 = 1 (per 40 minute). Therefore 𝑎 = 1
40

per minute. And 𝑝0 = 108. Using the solution of this model, given in the textbook at page
30 as

𝑝 (𝑡) =
𝑎𝑝0

𝑏𝑝0 + �𝑎 − 𝑏𝑝0� 𝑒−𝑎(𝑡−𝑡0)
(3)

And using 𝑡0 = 0, then the population size at 𝑡 is now be calculated. From (1), 𝑏 =
1
40

5×108 =
1
2 × 10

−10 = 5 × 10−11. Eq. (3) now becomes

𝑝 (𝑡) =
1
40
�108�

�5 × 10−11� �108� + � 1
40 − �5 × 10

−11� �108�� 𝑒−
1
40 𝑡

=
1
40
�108�

�5 × 1
1000

� + � 1
40 − 5 ×

1
1000

� 𝑒−
1
40 𝑡

For 𝑡 = 120 (minutes) the above becomes

𝑝 (120) =
1
40
�108�

�5 × 1
1000

� + � 1
40 − 5 ×

1
1000

� 𝑒−
1
40120

=
1
40
�108�

�5 × 1
1000

� + � 1
40 − 5 ×

1
1000

� 𝑒−3

= 4.1696 × 108

Hence

𝑝 (120) = 4.1696 × 108

The inflection point is

𝑎
2𝑏

=
1
40

(2) �5 × 10−11�

= 2.5 × 108

The following plot was generated to compare the population 𝑝 (𝑡) between case (a) and
case (b). It shows that when starting with initial population of 𝑝0 = 108 which is case (a)
and when starting with 𝑝0 = 109 which is case (b), both populations will eventually reach
the limiting population of 5×108. The 𝑆 curve shows up only when starting with population
below the limiting population.
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Figure 2: Population 𝑝(𝑡) change depends on 𝑝0
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