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1 Problem 1

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are

pt + Kux = 0

ρut + px = 0,

where u is the velocity and p is the pressure, ρ is the density, and K is the bulk modulus of
compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid xj = (j − 1/2)h for j = 1 . . . N . Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

pn
0 = pn

1

un
0 = −un

1 ,

and set the ghost cells on the right by

pn
N+1 =

1

2

(

pn
N + un

N

√

Kρ

)

un
N+1 =

1

2

(

pn
N√
Kρ

+ un
N

)

.

Run simulations with different initial conditions. Explain what happens at the left and
right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

2. A scheme is monotone preserving if the solution, un
j , is monotone in j for all n whenever the

initial condition, u0
j , is monotone in j. Show that if a scheme is TVD, then it is monotone

preserving. Assume that the domain is the whole real line, that the solution satisfies the
asymptotic boundary conditions lim

j→±∞

un
j = U±∞, and that the initial condition has bounded

variation.

3. Write a program to solve the linear advection equation,

ut + aux = 0,

on the unit interval using a finite volume method of the form

un+1
j = un

j − ∆t

h

(

Fj+1/2 − Fj−1/2

)

.

1

Figure 1: Problem description

1.1 part(a)

The definitions and physical units of the variables used in the PDE’s are given below. In
the following table, 𝐿 stands for length, 𝑇 for time, 𝑀 for mass and 𝑁 for force.

term meaning dimensions SI units

𝑝 acoustic air pressure in medium 𝑁
𝐿2 or

𝑀𝐿
𝑇2

1
𝐿2 or

𝑀
𝐿𝑇2 𝑁/𝑀𝑒𝑡𝑒𝑟2

𝑢 acoustic perturbation velocity 𝐿/𝑇 𝑀𝑒𝑡𝑒𝑟/𝑆𝑒𝑐𝑜𝑛𝑑
𝑐 speed of sound in medium 𝐿/𝑇 𝑀𝑒𝑡𝑒𝑟/𝑆𝑒𝑐𝑜𝑛𝑑
𝐾 bulk modulus or modulus of bulk

elasticity for gas1
𝑀
𝑇2𝐿 𝑘𝑔 per 𝑚𝑒𝑡𝑒𝑟 per 𝑠𝑒𝑐𝑜𝑛𝑑2

𝜌 air density 𝑀/𝐿3 𝑘𝑔/𝑚𝑒𝑡𝑒𝑟3

To show that the system is hyperbolic, the PDE’s are written in matrix form

𝑝𝑡 + 𝐾𝑢𝑥 = 0
𝜌𝑢𝑡 + 𝑝𝑥 = 0
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Therefore

⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠
𝑡

+

𝐴

���������⎛
⎜⎜⎜⎜⎝
0 𝐾
1/𝜌 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠
𝑥

=
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

q𝑡 + 𝐴q𝑥 = 0

If the eigenvalues of 𝐴 are real and distinct, implying the existence of linearly independent
eigenvectors for 𝐴, then the system is called strictly hyperbolic2. The eigenvalues of 𝐴 are
found by solving the following equation

𝐷𝑒𝑡(𝐴 − 𝜆I) = 0

(−𝜆)(−𝜆) − (𝑘)�1/𝜌� = 0

𝜆2 =
𝑘
𝜌

𝜆1,2 = ±
�

𝑘
𝜌

The quantity 𝑘
𝜌 is positive and real because 𝜌 is density (which is a real positive number)

and 𝑘 is bulk modulus of compressibility which is also real positive number.

Therefore both eigenvalues of𝐴 are real and distinct. Hence the system is strictly hyperbolic.
The system is diagonalizable as well, since the transpose of 𝐴 is a diagonal matrix, but
this property was not needed to show the system is hyperbolic. The speed of sound in the

medium is given by
�

𝑘
𝜌 . Hence a sound wave will travel in one direction at speed

�
𝑘
𝜌 and

another sound wave will travel in the same speed but in the opposite direction.

1.2 Part (b)

The following diagram illustrates the grid numbering used in the numerical solution

Cell 1 Cell 2

…...
Cell N

Ghost 

cell 0

Ghost cell 

N+1

1

P(1)

U(1)

P(2)

U(2)
P(N)

U(N)

P(N+1)

U(N+1)

P(0)

U(0)

The numbering system used for HW4, problem 1, part(b) to solve Lax-Wendroff on cell centered grid

Figure 2: Grid used

The Lax-Wendroff scheme for the linear system q𝑡 + 𝐴q𝑥 = 0 is given by

q𝑛𝑗 + 1 = q𝑛𝑗 −
Δ𝑡
2ℎ
𝐴�q𝑛𝑗+1 − q𝑛𝑗−1� +

Δ𝑡2

2ℎ2
𝐴2�q𝑛𝑗−1 − 2q𝑛𝑗 + q𝑛𝑗+1�

Where 𝐴 =
⎛
⎜⎜⎜⎜⎝
0 𝐾
1/𝜌 0

⎞
⎟⎟⎟⎟⎠ is a constant matrix.

2Another method to show that the system is hyperbolic, is to show that 𝐴 is real and symmetric, because
this implies that 𝐴 is diagonalizable. In this case, the system is called symmetric hyperbolic.
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In this problem, the solution at time 𝑛 is

q𝑛𝑗 =
⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠

𝑛

𝑗

= q𝑛𝑗 =
⎛
⎜⎜⎜⎜⎝
𝑝𝑛𝑗
𝑢𝑛𝑗

⎞
⎟⎟⎟⎟⎠

The following are the boundary conditions used

q𝑛0 =
⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠

𝑛

0

=
⎛
⎜⎜⎜⎜⎝
𝑝𝑛1
𝑢𝑛1

⎞
⎟⎟⎟⎟⎠

q𝑛𝑁+1 =
⎛
⎜⎜⎜⎜⎝
𝑝
𝑢

⎞
⎟⎟⎟⎟⎠

𝑛

𝑁+1

=
1
2

⎛
⎜⎜⎜⎜⎜⎝
𝑝𝑛𝑁 + 𝑢𝑛𝑁�𝑘𝜌

𝑝𝑛𝑁

�𝑘𝜌
+ 𝑢𝑛𝑁

⎞
⎟⎟⎟⎟⎟⎠

To find the time step Δ𝑡, Courant number 𝑟 = 0.8 was used3, and Δ𝑡 found by using the
CFL condition

𝑟 = �
Δ𝑡
ℎ
𝜆�

Solving for Δ𝑡 gives

Δ𝑡 =
𝑟ℎ
|𝜆|

The solution was implemented in Matlab and the result is given below. For each run,
a number of plots are shown to illustrate the solution at different time instances. The
following table describes the simulations done. Three different initial conditions are used
with two different runs for each initial condition. The first run used the boundary conditions
given in this problem, and the second run used different boundary conditions which caused
the sound wave to reflect when it reached both the left and the right boundaries, and not
just the left boundary. Therefore a total of 6 simulations were made, the first three used
the following boundary conditions

𝑝𝑛0 = 𝑝𝑛1
𝑢𝑛0 = −𝑢𝑛1

𝑝𝑛𝑁+1 =
1
2
�𝑝𝑛𝑁 + 𝑢𝑛𝑁�𝑘𝜌 �

𝑢𝑛𝑁+1 =
1
2

⎛
⎜⎜⎜⎝
𝑝𝑛𝑁
�𝑘𝜌

+ 𝑢𝑛𝑁

⎞
⎟⎟⎟⎠

And the second three simulations used the following boundary conditions

𝑝𝑛0 = 𝑝𝑛1
𝑢𝑛0 = −𝑢𝑛1

𝑝𝑛𝑁+1 = 𝑝𝑛𝑁
𝑢𝑛𝑁+1 = −𝑢𝑛𝑁

The images below show the three initial conditions for the pressure 𝑝(𝑥, 0). The initial
velocity 𝑢(𝑥, 0) was set to zero for all simulations. The following section shows the simulation
plots for each one of the 6 simulations. All snapshots were taken at the same time for each
run in order to compare the results. All runs were made with the following parameters:

ℎ = 0.005 𝑚𝑒𝑡𝑒𝑟
Δ𝑡 = 0.1278 𝑚𝑠

𝐶𝑜𝑢𝑟𝑎𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 = 0.8
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 = 0.005 sec

Animations of these runs are available above (in HTML version only).

3For stability, the Courant number must be less than 1.
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sin(10𝜋𝑥) from 𝑥 = 0.4 to 𝑥 =
0.6

sin(20𝜋𝑥) from 𝑥 = 0.4 to 𝑥 =
0.6

triangle function

Simulation using first initial data and reflect from left end only

This simulation used 𝑝(𝑥, 0) = sin(10𝜋𝑥) from 𝑥 = 0.4 to 𝑥 = 0.6. The pressure wave starts
in the middle, and immediately starts to split into two smaller waves, each one became
half the amplitude of the original wave. Each smaller wave traveled in opposite directions.
The wave that reached the left boundary was reflected back while the wave that reached
the right boundary was absorbed into the boundary. After the left wave reflected back and
eventually reached the right boundary, it was also absorbed. This resulted in the original
wave disappearing. As the left wave reflected from the left end, it also flipped upside down,
such that the leading half of the wave remained with positive amplitude and the trailing
half remained with the negative amplitude.

T=0
0.089 ms

0.166 ms
0.294 ms

0.524 ms
1.227 ms

1.751 ms 1.956 ms

3.259 ms

4.691 ms

4.946 ms

5.189 ms

(wave deflect)

Figure 3: test typ0 BC 1

Simulation using second initial data and reflect from left end only

These images show the simulation result using 𝑝(𝑥, 0) = sin(20𝜋𝑥) from 𝑥 = 0.4 to 𝑥 = 0.6.
Each frame is taken at the same time as the first simulation. The same result can be seen
as described in the first simulation.
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T=0
0.089 ms

0.166 ms
0.294 ms

0.524 ms
1.227 ms

1.751 ms 1.956 ms

3.259 ms

4.691 ms

4.946 ms

5.189 ms

(wave deflect)

Figure 4: test typ2 BC 1

Simulation using third initial data and reflect from left end only

This simulation uses the triangle pulse as the initial data. Each frame is taken at the same
time as the first simulation. The same result can be seen as was described in the first
simulation.
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Figure 5: test type 4 BC 1

Simulation using first initial data and reflecting from both ends

The following 3 simulations are a repeat of the first 3, but using boundary conditions
that caused the pressure wave to reflect from both the left and the right boundaries. This
resulted in the wave reflecting back and forth all the time. When both waves met again at
the middle, the original wave form was reconstructed for a very short time but in an upside
down form compared to its original form, and then the whole cycle was repeated. When
the waves met again for the second time in the middle, the original wave was reconstructed
again, but this time with the same shape it was at the initial time. This process continued
again. Since there was no diffusion term present in the PDE, this cycle repeated for the
duration of the simulation and no energy was lost. The times of each frame is the same as
was used in all the previous simulations.
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Figure 6: test type 0 BC 2

Simulation using second initial data and reflect from both ends

This simulation used 𝑝(𝑥, 0) = sin(20𝜋𝑥) from 𝑥 = 0.4 to 𝑥 = 0.6, but using boundary condi-
tions that caused the pressure wave to reflect from both the left and the right boundaries.
The same observation can be made as with the previous simulation.
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Figure 7: test type 2 BC 2

Simulation using third initial data and reflect from both ends

This simulation used a triangle pressure wave as its initial data but using boundary condi-
tions that caused the pressure wave to reflect from both the left and the right boundaries.
The same observation can be made as with the previous simulation.
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Figure 8: test type 4 BC 2

1.3 Part(c)

The boundary conditions given in the problem are

𝑝𝑛0 = 𝑝𝑛1
𝑢𝑛0 = −𝑢𝑛1

𝑝𝑛𝑁+1 =
1
2
�𝑝𝑛𝑁 + 𝑢𝑛𝑁�𝑘𝜌 �

𝑢𝑛𝑁+1 =
1
2

⎛
⎜⎜⎜⎝
𝑝𝑛𝑁
�𝑘𝜌

+ 𝑢𝑛𝑁

⎞
⎟⎟⎟⎠

At the left most cell (cell 0), the acoustic perturbation velocity 𝑢 is negative its value on
the inside cell, therefore the average value of 𝑢 right at the left edge (start of the physical
domain) will be zero, as shown by the following diagram
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Average u = 0 at cell edge

Cell 1 Cell 2

Left 
ghost 
cell

Linear interpolation of u 
between last actual cell 

and ghost cell

Figure 9: problem 1 left cell

Physically, this represent a barrier or a wall where perturbation velocity is zero at the wall
resulting in deflection. Having zero velocity at the edge means that the momentum of
the wave is zero at the left boundary. Since momentum is conserved, then it must have
a direction which is opposite to what it was in the previous time step. This is similar to
a ball hitting a perfectly elastic wall. For the pressure boundary conditions, having the
acoustic pressure in the left most cell and the ghost cell being the same means that the
pressure drop or gradient is zero between these two cells. Therefore, no sound will be
transmitted through the boundary since sound is transmitted only due to presence of a
pressure gradient between adjacent spatial points in the medium.

On the right side, when taking the average between the right-most cell and the ghost cell
at the right results in

𝑢𝑟𝑖𝑔ℎ𝑡_𝑒𝑑𝑔𝑒 =
3
4
𝑢𝑛𝑁 +

1
4
𝑝𝑛𝑁
�𝑘𝜌

𝑝𝑟𝑖𝑔ℎ𝑡_𝑒𝑑𝑔𝑒 =
3
4
𝑝𝑛𝑁 +

1
4
𝑢𝑛𝑁�𝑘𝜌

Therefore, the perturbation velocity 𝑢 at the right edge is no longer zero, but it has the
same sign as the velocity at the right most cell. Physically this means the acoustic wave will
continue to have momentum in the same direction and will not reflect. For the pressure,
there exists now a pressure gradient, therefore sound will travel across the right boundary.
Physically, this boundary can be thought of as a sound absorbing wall. (For example, a
wall treated with special paint or covering).

2 Problem 2

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are

pt + Kux = 0

ρut + px = 0,

where u is the velocity and p is the pressure, ρ is the density, and K is the bulk modulus of
compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid xj = (j − 1/2)h for j = 1 . . . N . Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

pn
0 = pn

1

un
0 = −un

1 ,

and set the ghost cells on the right by

pn
N+1 =

1

2

(

pn
N + un

N

√

Kρ

)

un
N+1 =

1

2

(

pn
N√
Kρ

+ un
N

)

.

Run simulations with different initial conditions. Explain what happens at the left and
right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

2. A scheme is monotone preserving if the solution, un
j , is monotone in j for all n whenever the

initial condition, u0
j , is monotone in j. Show that if a scheme is TVD, then it is monotone

preserving. Assume that the domain is the whole real line, that the solution satisfies the
asymptotic boundary conditions lim

j→±∞

un
j = U±∞, and that the initial condition has bounded

variation.

3. Write a program to solve the linear advection equation,

ut + aux = 0,

on the unit interval using a finite volume method of the form

un+1
j = un

j − ∆t

h

(

Fj+1/2 − Fj−1/2

)

.

1

Figure 10: Problem statement

Given a sequence 𝑢0𝑗 which is monotone in 𝑗, we need to show that when a TVD scheme is
applied to this sequence, the resulting sequence 𝑢𝑛𝑗 is also monotone at any 𝑛. This is the
same as saying that a TVD is monotone preserving.
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We are given that the sequence 𝑢𝑛𝑗 has the fixed boundary conditions at 𝑗 = ±∞ for any 𝑛.

A monotone sequence can be either monotone increasing or monotone decreasing but
not both. A monotone increasing sequence 𝑢 is one where 𝑢𝑗 ≤ 𝑢𝑗+𝑘 for any 𝑗 and for any
𝑘 > 𝑗. A monotone decreasing sequence is one where 𝑢𝑗 ≥ 𝑢𝑗+𝑘 for any 𝑗 and for any 𝑘 > 𝑗.
In the following discussion, a monotone sequence is taken to mean either an increasing or
a decreasing sequence.

The following diagram illustrates this point. In this diagram the scheme is viewed as a
system or an operator which transforms a sequence to a new sequence. We need to show
that this transformation is monotone preserving when the operator is the TVD scheme.

......
Monotone preserving 

scheme ...

Monotone increasing

u j
0 u j

n

Monotone increasing

(for any n)

... ...

Monotone decreasing

u j
0 u j

n

Monotone decreasing

(for any n)

Monotone preserving 
scheme

Figure 11: TVD 1 scheme

Since 𝑢0𝑗 (the initial sequence) can be assumed to be monotone, then the total variation of
𝑢0𝑗 is known, which is

𝑇𝑉�𝑢0𝑗 � = |𝑈+∞ − 𝑈−∞|

The total variation is defined as the sum of the total amount the sequence change (in
absolute values). In other words, the TV of the initial sequence is

𝑇𝑉�𝑢0� = �
𝑗
�𝑢0𝑗 − 𝑢0𝑗−1�

= |𝑈+∞ − 𝑈−∞|

𝑇𝑉�𝑢0𝑗 � = |𝑈+∞ − 𝑈−∞| is valid since 𝑢0 is monotone. We could not have said this if 𝑢0
was not monotone. The following diagram helps illustrate why this is the case, showing a
monotone sequence, and showing that adding all the differences between successive values
in the sequence is the same as the difference between the left-most value and the right-most
values (in absolute values).
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...

...

JJ-1 J+1

U

U

TVu0  
j

uj
0  uj1

0  |U  U |

TVu0

Figure 12: TVD 2 scheme

The above is similar to walking up a staircase. If we are told that each step could only
go up (or remain flat), then the total height of the overall staircase is the total variation,
which is the sum of the height difference between each 2 successive steps.

We know that a TVD scheme, by definition, is one in which satisfies the following relation
for any 𝑛

𝑇𝑉(𝑢𝑛) ≤ 𝑇𝑉�𝑢0� (1)

We now need to show, that when 𝑢0 is monotone, then 𝑢𝑛 will also be monotone when
applied to a TVD scheme.

The proof will be by contradiction. The idea is to assume that the scheme is TVD, hence
Eq. (1) is true, and then to assume that the scheme, when applied to an initial monotone
sequence 𝑢0 has resulted in a sequence 𝑢𝑛 which is no longer monotone. Then we show
that this result is a contradiction to the assumption, meaning that 𝑢𝑛 must be monotone.

The following proof below is for a monotone increasing sequence 𝑢0, but the same idea of
the proof can be used for a monotone decreasing sequence.

Proof

Let the scheme be TVD, therefore 𝑇𝑉�𝑢0� ≤ 𝑇𝑉(𝑢𝑛), and let a monotone increasing se-

quence be 𝑢0𝑗 with a total variation 𝑇𝑉�𝑢0� = Δ, where Δ is some constant that does not
change with 𝑛. In this problem this constant is given as |𝑈+∞ − 𝑈−∞|.

Let result of applying the TVD scheme to 𝑢0𝑗 be the sequence 𝑢𝑛𝑗 . Now, assume that 𝑢𝑛𝑗 is
no longer a monotone increasing sequence. Since 𝑢𝑛𝑗 is not monotone sequence, it must
contain at least one local minimum and/or one local maximum. To illustrate this in a
diagram, assume 𝑢𝑛𝑗 had one local minimum. The same idea would apply if we assumed a
local maximum.

...

...

JJ-1 J+1

U

ULocal 

minumum

These 2 distances are 

being added to the total 

variation of the initial 

sequence

TVu0

Figure 13: TVD 3 scheme



14

Since 𝑢𝑛 has a local minimum, then the total variation of 𝑢𝑛𝑗 is now larger than the total
variation of what it would had been if it did not have this local minimum. In the above
diagram, 𝑢𝑛𝑗 is shown as being monotone increasing, except for the one local minimum
which appeared as a result of applying the TVD scheme.

Due to the presence of this local minimum, the total variation has become larger than
|𝑈+∞ − 𝑈−∞|. The extra amount added to 𝑇𝑉�𝑢0� is seen as 2�𝑢𝑛𝑗 − 𝑢𝑛𝑗−1�, as this is the distance
needed to be traversed in going down the local minimum and climbing back up the same
level before meeting this local minimum.

Therefore, having a local minimum (or a local maximum) in a sequence increases its
total variation. Therefore 𝑇𝑉(𝑢𝑛) > 𝑇𝑉�𝑢0�. However, we started by assuming that the

scheme is TVD, which means that 𝑇𝑉(𝑢𝑛) ≤ 𝑇𝑉�𝑢0�, so this result is a contradiction to our
assumption.

Therefore 𝑢𝑛𝑗 can not be a non monotone sequence, hence it must be a monotone sequence.
This completes the proof.

3 Problem 3

Math 228B
Homework 4
Due Thursday, 3/17/11.

1. In one spatial dimension the linearized equations of acoustics (sound waves) are

pt + Kux = 0

ρut + px = 0,

where u is the velocity and p is the pressure, ρ is the density, and K is the bulk modulus of
compressibility.

(a) Show that this system is hyperbolic and find the wave speeds.

(b) Write a program to solve this system using Lax-Wendroff in original variables on (0, 1)
using a cell centered grid xj = (j − 1/2)h for j = 1 . . . N . Write the code to use ghost
cells, so that different boundary conditions can be changed by simply changing the values
in the ghost cells.

Set the ghost cells at the left by

pn
0 = pn

1

un
0 = −un

1 ,

and set the ghost cells on the right by

pn
N+1 =

1

2

(

pn
N + un

N

√

Kρ

)

un
N+1 =

1

2

(

pn
N√
Kρ

+ un
N

)

.

Run simulations with different initial conditions. Explain what happens at the left and
right boundaries.

(c) Give a physical interpretation and a mathematical explanation of these boundary con-
ditions.

2. A scheme is monotone preserving if the solution, un
j , is monotone in j for all n whenever the

initial condition, u0
j , is monotone in j. Show that if a scheme is TVD, then it is monotone

preserving. Assume that the domain is the whole real line, that the solution satisfies the
asymptotic boundary conditions lim

j→±∞

un
j = U±∞, and that the initial condition has bounded

variation.

3. Write a program to solve the linear advection equation,

ut + aux = 0,

on the unit interval using a finite volume method of the form

un+1
j = un

j − ∆t

h

(

Fj+1/2 − Fj−1/2

)

.

1
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Use the numerical flux function

Fj−1/2 = F up

j−1/2
+

|a|
2

(

1 −
∣

∣

∣

∣

a∆t

h

∣

∣

∣

∣

)

δj−1/2,

where F up

j−1/2
is the upwinding flux,

F up

j−1/2
=

{

a uj−1 if a > 0

a uj if a < 0,

and δj−1/2 is the limited difference. Let ∆uj−1/2 = uj −uj−1 denote the jump in u across the
edge at xj−1/2. The limited difference is

δj−1/2 = φ
(

θj−1/2

)

∆uj−1/2,

where

θj−1/2 =
∆uJup−1/2

∆uj−1/2

,

and

Jup =

{

j − 1 if a > 0

j + 1 if a < 0
.

Note that you will need two ghost cells on each end of the domain. Write your program so
that you may choose from the different limiter functions listed below.

Upwinding φ(θ) = 0

Lax-Wendroff φ(θ) = 1

Beam-Warming φ(θ) = θ

minmod φ(θ) = minmod(1, θ)

superbee φ(θ) = max(0, min(1, 2θ), min(2, θ))

MC φ(θ) = max(0, min((1 + θ)/2, 2, 2θ))

van Leer φ(θ) =
θ + |θ|
1 + |θ|

The first three are linear methods that we have already studied, and the last four are high-
resolution methods.

Solve the advection equation with a = 1 with periodic boundary conditions for the different
initial conditions listed below until time t = 5 at Courant number 0.9.

(a) Wave packet: u(x, 0) = cos(16πx) exp(−50(x − 0.5)2).

(b) Smooth, low frequency: u(x, 0) = sin(2πx) sin(4πx).

(c) Step function: u(x, 0)

{

1 if |x − 1/2| < 1/4

0 otherwise
.

Compare the results with the exact solution, and comment on the solutions generated by
the different methods. How do the different high-resolution methods perform in the different
tests? What high-resolution method would you choose to use in practice?

2Figure 14: Problem statement

The PDE
𝑢𝑡 + 𝑎𝑢𝑥 = 0

was solved using finite volumemethod using the 7 flux limiter functions listed in the problem
statement above. The following tables summarize the observations made after running
the simulations using each of these limiter functions. Each method was given a letter
grade based on how close it was to the exact solution and how well the numerical solution
appeared. Numerical solutions that showed ripples around the region of discontinuous data
(corners) or showed more spatial lag relative to the exact solution, or had large amount
of diffusion were graded lower than those which did not show any of these result.
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3.1 part (a) wave packet as initial conditions

Figure 15: Initial conditions

method comment grade

Upwinding Very large diffusion seen at wave crest and trough, but no shift (lag). F

Lax-Wendroff
Some diffusion at wave crest and trough, in addition to significant shift

to the left direction relative to exact solution.
B-

Beam-Warming Similar to Lax-Wendroff, but shift was to the right relative to exact solution. B

minmod Diffusion was present at wave crest and trough, but no shifting. C

superbee No shifting and very small amount of diffusion at crest and trough. B+

MC Similar to superbee, but a little more diffusion at crest and trough. B

Van Leer Similar to MC limited, but much more diffusion at crest and trough. B-

Among the high resolution limiter functions, superbee had the best numerical result.

3.2 part(b) smooth low frequency

Figure 16: Initial conditions for part b
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method comment grade

Upwinding No shifting, but large amount of diffusion at crest and trough of the wave. C

Lax-Wendroff No shifting and no diffusion. A

Beam-Warming Very similar to Lax-Wendroff. A

minmod No shifting, but small amount of diffusion was present near crest and trough. B

superbee
No shift and no diffusion, but at crest and trough, solution appeared to be

less smooth than with Lax-Wendroff.
A-

MC
Similar to Lax-Wendroff, a little better than Superbee around

crest and trough.
A

Van Leer No diffusion and no shifting A

Among the high resolution methods, MC and Van Lee had the best results. Among the
non high resolutions method, Lax-Wendroff and Beam-Warming were the best.

3.3 Part (c) step function

Figure 17: Initial conditions for part C

method comment grade

Upwinding
No ripples, solution followed the general form of the step function

but there was large amount of diffusion near the corners.
C

Lax-Wendroff
Large ripples around the corners on the left of the step function.

Less diffusion than upwinding.
C

Beam-Warming The ripples are larger and have a larger extent than Lax-Wendroff. C-

minmod No ripples and little diffusion. An improved version of upwinding. C+

superbee
The best scheme for the step function. No ripples, very closely

followed the exact solution. Very small diffusion was seen.
A-

MC Similar to superbee, but more diffusion. B

Van Leer Similar to MC limited. B+

Among the high resolution methods, superbee was the best. Among the non high resolu-
tions method, Lax-Wendroff and Beam-Warming are best.
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3.4 Conclusion

Among the high resolutions methods, I would choose superbee. It handled discontinues
data the best and did well for smooth data, even though MC and Van Leer did a little
better on the low frequency data, superbee had less diffusion in the wave packet data. So,
overall, and in particular since it handled discontinues data better than any other flux
limiter function, it is the method I would choose in practice.

Among the non high resolution methods, Lax-Wendroff and Beam-Warming were very
similar. Upwinding did not do well. All the non high resolution methods did relatively
worst in the step function test compared to the high resolution methods, as they were
not able to handle solution near the discontinues regions as well as the high resolution
methods did.

Numerical solutions using all the above methods have been animated and available to run
at my course web page. All the animations run for 5 seconds each.
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