
HW2, Math 228B

Date due 2/15/2011

March 2011
University of California, Davis

Nasser M. Abbasi

March 2011 Compiled on February 27, 2021 at 3:04am

mailto:nma@12000.org

Contents

1 Animation of FitzHugh-Nagumo equations 2

2 Problem1 3
2.1 Part (a) . 3
2.2 Part (b) . 5

3 Problem 2 7
3.1 Part(b) . 15
3.2 Refinement algorithm . 16
3.3 Part(c) . 17
3.4 Part(d) . 18

4 Problem 3 21
4.1 Part(a) . 21
4.2 Part(b) . 23
4.3 Part(c) . 24

5 Appendix 26
5.1 Problem 1 appendix . 26

6 Matlab Source code developed for this HW 28
6.1 nma_math228b_HW2_prob2.m . 28

1

2

1 Animation of FitzHugh-Nagumo equations

The following are animated GIFs showing the solution to problem 3, parts (b) and (c).
These will show only in the HTML version.

Assuming that 𝑓(𝑣) = (𝑎 − 𝑣)(𝑣 − 1)𝑣, the equations solved are the following

𝜕𝑣
𝜕𝑡

= 𝐷Δ𝑣 + 𝑓(𝑣) − 𝑤 + 𝐼

𝜕𝑤
𝜕𝑡

= 𝜖�𝑣 − 𝛾𝑤�

Click on image to see the animation run, it will open in new window.

3

2 Problem1

Math 228B

Homework 2

Due Tuesday, February 15th

1. In class, we showed that the two-dimensional Peaceman-Rachford ADI scheme is uncon-
ditionally stable and second-order accurate in time. This can be thought of as either an
approximate factorization or as a fractional step method. By adapting the fractional step
idea to three-dimensions we get the scheme

(

I −
b∆t

3
Lx

)

u∗ =

(

I +
b∆t

3
Ly +

b∆t

3
Lz

)

un

(

I −
b∆t

3
Ly

)

u∗∗ =

(

I +
b∆t

3
Lx +

b∆t

3
Lz

)

u∗

(

I −
b∆t

3
Lz

)

un+1 =

(

I +
b∆t

3
Lx +

b∆t

3
Ly

)

u∗∗.

(a) Use von Neumann analysis to show that this scheme is conditionally stable. This is
an example of how certain desirable properties of a numerical scheme can be lost when
using fractional stepping.

(b) What temporal accuracy do you expect from this scheme? Explain.

2. Consider

ut = 0.1∆u on Ω = (0, 1)× (0, 1)

∂u

∂~n
= 0 on ∂Ω

u(x, y, 0) = exp
(

−10((x− 0.4)2 + (y − 0.4)2)
)

(a) Write a program to solve this PDE using the Peaceman-Rachford
ADI scheme on a cell-centered grid. Use a direct solver for the
tridiagonal systems. In a cell-centered discretization the solution
is stored at the grid points (xi, yj) = (h(i − 0.5), h(j − 0.5)) for
i, j = 1 . . . N and h = 1/N . This discretization is natural for
handling Neumann boundary conditions, and it is often used to
discretize conservation laws. At the grid points adjacent to the
boundary, the one-dimensional discrete Laplacian for homoge-
neous Neumann boundary conditions is

uxx(x1) ≈
−u1 + u2

h2
.

���� ������ ���� ����

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

������������������

(b) Perform a refinement study to show that your numerical solution is second-order accurate
in space and time (refine time and space simultaneously using ∆t = h) at time t = 1.

(c) Show that the spatial integral of the solution to the PDE does not change in time. That
is

d

dt

∫

Ω

u dV = 0.

1

Figure 1: Problem description

2.1 Part (a)

The diffusion PDE is given by
𝑢𝑡 − 𝐷Δ𝑢 = 0

Where 𝐷 is the diffusion constant. The ADI scheme in 3D 1 is given by

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑥�𝑢∗ = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑦 +

𝐷Δ𝑡
3
𝐿𝑧�𝑢𝑛 (1)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑦�𝑢∗∗ = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑧�𝑢∗ (2)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑧�𝑢𝑛+1 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑦�𝑢∗∗ (3)

Where 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are each the 1D Laplacian given by 1
ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 0 1 −2 1
0 0 0 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assuming that the spatial frequencies in each of the three Cartesian directions (𝑥, 𝑦, 𝑧)
are given by 𝜉𝑥, 𝜉𝑦, 𝜉𝑧 where

𝜋
ℎ ≤ 𝜉𝑖 ≤

𝜋
ℎ and by setting 𝑟 = 𝐷Δ𝑡

3ℎ2 , 𝑢
∗ = 𝑔∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and

𝑢 = 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and substituting these into Eq. (1) and dividing throughout by 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧�

1Please see the appendix of this problem at the end of the HW report showing how these equations came
about.

4

gives the following

𝑔∗�1 − 𝑟�𝑒−𝑖𝜉1ℎ − 2 + 𝑒𝑖𝜉1ℎ�� = 1 + 𝑟�𝑒−𝑖𝜉2ℎ − 2 + 𝑒𝑖𝜉2ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�

𝑔∗ =
1 − 4𝑟 + 𝑟�𝑒−𝑖𝜉2ℎ + 𝑒𝑖𝜉2ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ + 𝑒𝑖𝜉3ℎ�

�1 + 2𝑟 − 𝑟�𝑒𝑖𝜉1ℎ + 𝑒−𝑖𝜉1ℎ��

=
1 − 4𝑟 + 2𝑟 cos(𝜉2ℎ) + 2𝑟 cos(𝜉3ℎ)

1 + 2𝑟 − 2𝑟 cos(𝜉1ℎ)

=
1 − 4𝑟�sin2�𝜉2ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉1ℎ2 �
(4)

The last step above was obtained by the use of the relation cos𝐴 = 1 − 2 sin2�𝐴2 �.

Applying the same method used above to Eq. (2), but now letting 𝑢∗ = 𝑔∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and
𝑢∗∗ = 𝑔∗∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and dividing throughout by 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� gives

𝑔∗∗�1 − 𝑟�𝑒−𝑖𝜉2ℎ − 2 + 𝑒𝑖𝜉2ℎ�� = 1 + 𝑟�𝑒−𝑖𝜉1ℎ − 2 + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�

𝑔∗∗ =
1 − 4𝑟 + 𝑟�𝑒−𝑖𝜉1ℎ + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉3ℎ + 𝑒𝑖𝜉3ℎ�

1 + 2𝑟 − 𝑟�𝑒𝑖𝜉2ℎ + 𝑒−𝑖𝜉2ℎ�
𝑔∗

=
1 − 4𝑟 + 2𝑟 cos(𝜉1ℎ) + 2𝑟 cos(𝜉3ℎ)

1 + 2𝑟 − 2𝑟 cos(𝜉2ℎ)
𝑔∗

=
1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉2ℎ2 �
𝑔∗ (5)

Again, applying the same method to Eq. (3), but now letting 𝑢∗∗ = 𝑔∗∗𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and
𝑢𝑛+1 = 𝑔𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� and dividing by 𝑒𝑖�𝜉1𝑥+𝜉2𝑦+𝜉3𝑧� gives

𝑔�1 − 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�� = 1 + 𝑟�𝑒−𝑖𝜉1ℎ − 2 + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉2ℎ − 2 + 𝑒𝑖𝜉2ℎ�

𝑔 =
1 − 4𝑟 + 𝑟�𝑒−𝑖𝜉1ℎ + 𝑒𝑖𝜉1ℎ� + 𝑟�𝑒−𝑖𝜉2ℎ + 𝑒𝑖𝜉2ℎ�

1 − 𝑟�𝑒−𝑖𝜉3ℎ − 2 + 𝑒𝑖𝜉3ℎ�
𝑔∗∗

=
1 − 4𝑟 + 2𝑟 cos(𝜉1ℎ) + 2𝑟 cos(𝜉2ℎ)

1 + 2𝑟 − 2𝑟 cos(𝜉3ℎ)
𝑔∗∗

=
1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉2ℎ2 ��

1 + 4𝑟 sin2�𝜉3ℎ2 �
𝑔∗∗ (6)

Substituting (4) into (5) and substituting the resulting expression into (6) gives the overall
magnification factor for the ADI scheme:

𝑔 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉2ℎ2 ��

1 + 4𝑟 sin2�𝜉3ℎ2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 4𝑟�sin2�𝜉1ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉2ℎ2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 4𝑟�sin2�𝜉2ℎ2 � + sin2�𝜉3ℎ2 ��

1 + 4𝑟 sin2�𝜉1ℎ2 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Letting 𝐴 ≡ sin2�𝜉1ℎ2 �, 𝐵 ≡ sin2�𝜉2ℎ2 �, 𝐶 ≡ sin2�𝜉1ℎ2 � = 𝐶 in Eq. (7) results in

𝑔(𝜉1, 𝜉2, 𝜉3) = �
1 − 4𝑟(𝐴 + 𝐵)
1 + 4𝑟𝐶 ��

1 − 4𝑟(𝐴 + 𝐶)
1 + 4𝑟𝐵 ��

1 − 4𝑟(𝐵 + 𝐶)
1 + 4𝑟𝐴 � (8)

The scheme is conditionally stable if �𝑔(𝜉1, 𝜉2, 𝜉3)� ≤ 1 for some value of 𝑟 and �𝑔(𝜉1, 𝜉2, 𝜉3)� >
1 for some other value of 𝑟 (this is the same as using different values of Δ𝑡 in place of 𝑟,
since 𝑟 = 𝐷Δ𝑡

3ℎ2 and ℎ and 𝐷 would be kept constant).

Now the scheme can be shown to be conditionally stable by letting 𝐴 = 𝐵 = 𝐶 = 1 in Eq.
(8) and then by finding one value of 𝑟 which makes the magnification factor to become

5

less than one and then by looking for another value of 𝑟 which makes the magnification
factor to becomes larger than one.

Therefore, when 𝐴 = 𝐵 = 𝐶 = 1, Eq. (8) becomes

�𝑔(𝜉1, 𝜉2, 𝜉3)� = �
1 − 8𝑟
1 + 4𝑟��

1 − 8𝑟
1 + 4𝑟��

1 − 8𝑟
1 + 4𝑟�

(8A)

Now, putting 𝑟 = 2 in the above gives �𝑔(𝜉1, 𝜉2, 𝜉3)� = 2.744 > 1 implying that the scheme is
unstable.

Putting 𝑟 = 0.5 in Eq. (8A) gives �𝑔(𝜉1, 𝜉2, 𝜉3)� = 0.125 < 1 implying that the scheme is stable.

Hence the scheme is conditionally stable, because by fixing ℎ and 𝐷, it was possible to
find a time step Δ𝑡 which made some mode become unstable. If one mode is unstable, the
overall scheme is also unstable. This result shows that the above given ADI scheme for 3D
is conditionally stable.

2.2 Part (b)

Expectation: Temporal accuracy is expected to be 𝑂(Δ𝑡) since at each 1/3 time step there
is one implicit step compared to two explicit steps. Starting from the main equations shown
in part (a)

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 (backward Euler)

�������������(𝐼 − 𝑟𝐿𝑥)𝑢∗ =

explicit (2 forward Euler)

��������������������𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧� 𝑢𝑛 (1)

�𝐼 − 𝑟𝐿𝑦�𝑢∗∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)𝑢∗ (2)

(𝐼 − 𝑟𝐿𝑧)𝑢𝑛+1 = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�𝑢∗∗ (3)

There will be an 𝑂(Δ𝑡) error resulting from the application of Euler approximation to each
of the terms in each equation above. One of the implicit errors will cancel exactly with
one of the errors from the explicit part of the equation (due to sign difference), leaving an
extra 𝑂(Δ𝑡) error after each third step. Hence at the completion of one full time step, the
temporal error will be 3𝑂(Δ𝑡) or 𝑂(Δ𝑡).

Explanation: The derivation below follows the method explained in class for the 2D ADI
case, but being applied to the 3D case. Starting by pre-multiplying Eq. (1) by the operator
(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧) gives

(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)(𝐼 − 𝑟𝐿𝑥)𝑢∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

But since (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧) commutes2 with (𝐼 − 𝑟𝐿𝑥), then the two terms in the LHS of the
above equation can be interchanged giving

(𝐼 − 𝑟𝐿𝑥)
now replace this from (2)

���������������������(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)𝑢∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

Replacing the term marked above by its LHS value from Eq. (2) yields

(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�𝑢∗∗ = (𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

Pre-multiplying the above by the operator �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦� gives

�𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�𝑢∗∗ = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

But since �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦� commutes with (𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦� the above can be written as

(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�

replace this from (3)

������������������������𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�𝑢∗∗ = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

2To show these operators commute, similar argument can be made as was done for the 2D case in class,
which is by saying that each operator 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 on its own commutes with the other 2, hence the result will
follow.

6

Replacing the term marked above by its LHS value from Eq. (3) gives

(𝐼 − 𝑟𝐿𝑥)�𝐼 − 𝑟𝐿𝑦�(𝐼 − 𝑟𝐿𝑧)𝑢𝑛+1 = �𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑦�(𝐼 + 𝑟𝐿𝑥 + 𝑟𝐿𝑧)�𝐼 + 𝑟𝐿𝑦 + 𝑟𝐿𝑧�𝑢𝑛

Expanding all terms by multiplying all operators and simplifying the result and using
𝐿 = 𝐿𝑥 + 𝐿𝑦 + 𝐿𝑧 gives the following

�𝐼 − 𝑟𝐿 + 𝑟2�𝐿𝑥𝐿𝑧 + 𝐿𝑦𝐿𝑧� + 𝑟2𝐿𝑥𝐿𝑦 − 𝑟3𝐿𝑥𝐿𝑦𝐿𝑧�𝑢𝑛+1 = (4)

�𝐼 + 𝑟𝐿 + 𝑟𝐿 + 3𝑟2𝐿𝑥𝐿𝑦 + 3𝑟2𝐿𝑥𝐿𝑧 + 3𝑟2𝐿𝑥𝐿𝑦 + 3𝑟2𝐿𝑦𝐿𝑧�𝑢𝑛 + (𝐻.𝑂.𝑇.)

Where H.O.T. are terms from operators of order 2 and higher. These terms produce errors
of order 𝑂�Δ𝑡2�, 𝑂�Δ𝑡3� and higher. Moving all these terms to the RHS simplifies Eq. (4)
to the following

(𝐼 − 𝑟𝐿)𝑢𝑛+1 = (𝐼 + 𝑟𝐿 + 𝑟𝐿)𝑢𝑛 + 𝑂�Δ𝑡2� + 𝑂�Δ𝑡3� +⋯

𝑢𝑛+1 − 𝑢𝑛 = 𝑟𝐿𝑢𝑛+1 + 2𝑟𝐿𝑢𝑛 + 𝑂�Δ𝑡2� + 𝑂�Δ𝑡3� +⋯

Since 𝑟 = 𝐷Δ𝑡
3 the above becomes

𝑢𝑛+1 − 𝑢𝑛 =
𝐷Δ𝑡
3
𝐿𝑢𝑛+1 + 2

𝐷Δ𝑡
3
𝐿𝑢𝑛 + 𝑂�Δ𝑡2� + 𝑂�Δ𝑡3� +⋯

Dividing the above equation by Δ𝑡 gives

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
𝐷
3
𝐿𝑢𝑛+1 +

2𝐷
3
𝐿𝑢𝑛 + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

Now adding 𝐷
6 𝐿𝑢

𝑛+1 and subtracting 𝐷
6 𝐿𝑢

𝑛+1 and subtracting 𝐷
6 𝐿𝑢

𝑛 and adding 𝐷
6 𝐿𝑢

𝑛

from the RHS of the above equation gives

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
𝐷
3
𝐿𝑢𝑛+1 +

𝐷
6
𝐿𝑢𝑛+1 +

2𝐷
3
𝐿𝑢𝑛 −

𝐷
6
𝐿𝑢𝑛 +

𝐷
6
𝐿𝑢𝑛 −

𝐷
6
𝐿𝑢𝑛+1 + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

𝐶−𝑁

���������������������������������������𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
=
1
2
�𝐿𝑢𝑛+1 + 𝐿𝑢𝑛� +

1
6
�𝐿𝑢𝑛 − 𝐿𝑢𝑛+1� + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

The C-N scheme is known to be 𝑂�Δ𝑡2 + ℎ2�. Multiplying the term 1
6
�𝐿𝑢𝑛 − 𝐿𝑢𝑛+1� by Δ𝑡

Δ𝑡 in
the above yields

𝑢𝑡 =
1
2
Δ𝑢 +

from C-N part

���������������������𝑂�Δ𝑡2� + 𝑂�ℎ2� +
Δ𝑡
6
𝐿�
𝑢𝑛 − 𝑢𝑛+1

Δ𝑡 � + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

Taking the limits Δ𝑡 → 0 results in

𝑢𝑡 =
1
2
Δ𝑢 +

from C-N part

���������������������𝑂�Δ𝑡2� + 𝑂�ℎ2� +

𝑠𝑡𝑖𝑙𝑙 𝑂(Δ𝑡)

���������������������������������Δ𝑡
6

𝜕7

𝜕2𝑥𝜕2𝑦𝜕2𝑧𝜕𝑡
+ 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

=
1
2
Δ𝑢 +

from C-N part

���������������������𝑂�Δ𝑡2� + 𝑂�ℎ2� + 𝑂(Δ𝑡) + 𝑂�Δ𝑡2� +⋯

=
1
2
Δ𝑢 +�������������������𝑂�ℎ2� + 𝑂(Δ𝑡) +𝑂�Δ𝑡2� +⋯

Since in the above, the dominant temporal error term is𝑂(Δ𝑡) the scheme is a first order in time accurate.
It is also a second order in space accurate.

7

3 Problem 2

Math 228B

Homework 2

Due Tuesday, February 15th

1. In class, we showed that the two-dimensional Peaceman-Rachford ADI scheme is uncon-
ditionally stable and second-order accurate in time. This can be thought of as either an
approximate factorization or as a fractional step method. By adapting the fractional step
idea to three-dimensions we get the scheme

(

I −
b∆t

3
Lx

)

u∗ =

(

I +
b∆t

3
Ly +

b∆t

3
Lz

)

un

(

I −
b∆t

3
Ly

)

u∗∗ =

(

I +
b∆t

3
Lx +

b∆t

3
Lz

)

u∗

(

I −
b∆t

3
Lz

)

un+1 =

(

I +
b∆t

3
Lx +

b∆t

3
Ly

)

u∗∗.

(a) Use von Neumann analysis to show that this scheme is conditionally stable. This is
an example of how certain desirable properties of a numerical scheme can be lost when
using fractional stepping.

(b) What temporal accuracy do you expect from this scheme? Explain.

2. Consider

ut = 0.1∆u on Ω = (0, 1)× (0, 1)

∂u

∂~n
= 0 on ∂Ω

u(x, y, 0) = exp
(

−10((x− 0.4)2 + (y − 0.4)2)
)

(a) Write a program to solve this PDE using the Peaceman-Rachford
ADI scheme on a cell-centered grid. Use a direct solver for the
tridiagonal systems. In a cell-centered discretization the solution
is stored at the grid points (xi, yj) = (h(i − 0.5), h(j − 0.5)) for
i, j = 1 . . . N and h = 1/N . This discretization is natural for
handling Neumann boundary conditions, and it is often used to
discretize conservation laws. At the grid points adjacent to the
boundary, the one-dimensional discrete Laplacian for homoge-
neous Neumann boundary conditions is

uxx(x1) ≈
−u1 + u2

h2
.

���� ������ ���� ����

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

������������������

(b) Perform a refinement study to show that your numerical solution is second-order accurate
in space and time (refine time and space simultaneously using ∆t = h) at time t = 1.

(c) Show that the spatial integral of the solution to the PDE does not change in time. That
is

d

dt

∫

Ω

u dV = 0.

1

(d) Show that the solution to the discrete equations satisfies the discrete conservation prop-
erty

∑

i,j

uni,j =
∑

i,j

u0i,j

for all n. Demonstrate this property with your code.

3. The FitzHugh-Nagumo equations

∂v

∂t
= D∆v + (a− v)(v − 1)v − w + I

∂w

∂t
= ǫ(v − γw).

are used in electrophysiology to model the cross membrane electrical potential (voltage) in
cardiac tissue and in neurons. Assuming that the spatial coupling is local and passive results
the term which looks like the diffusion of voltage. The state variables are the voltage v and
the recovery variable w.

(a) Write a program to solve the FitzHugh-Nagumo equations on the unit square with
homogeneous Neumann boundary conditions for v (meaning electrically insulated). Use
a fractional step method to handle the diffusion and reactions separately. Use an ADI
method for the diffusion solve. Describe what ODE solver you used for the reactions
and what fractional stepping your chose.

(b) Use the following parameters a = 0.1, γ = 2, ǫ = 0.005, I = 0, D = 5 ·10−5, for h = 0.01
and initial conditions

v(x, y, 0) = exp
(

−100(x2 + y2)
)

w(x, y, 0) = 0.0.

Note that v = 0, w = 0 is a stable steady state of the system. Call this the rest state.
For these initial conditions the voltage has been raised above rest in the bottom corner
of the domain. Generate a numerical solution up to time t = 300. What time step did
you use and why? Visualize the voltage and describe the solution.

(c) Use the same parameters from part (b), but use the initial conditions

v(x, y, 0) = 1− 2x

w(x, y, 0) = 0.05y,

and run the simulation until time t = 600. Show the voltage at several points in time
(pseudocolor plot, or contour plot, or surface plot z = V (x, y, t)) and describe the
solution.

The dynamics of excitable media is a fascinating subject from both the mathematical
and physiological perspectives. The electrical patterns that you simulated in part (c)
are related to cardiac arrhythmias. For more information see the book Mathematical

Physiology by Keener and Sneyd.

Just for fun, (there is no need to turn this in or even do it) try to find an input current
I(x, y, t) in the form of a short pulse (e.g. I(x, y, t) = f(x, y) exp

(

−κ(t− t2p)
)

) so that
the normal electrical wave from part (b) degenerates into an arrhythmia like that from
part (c). Then try to find a pulse of current that will eliminate the arrhythmia. This
second task may be easier. What to the doctors on TV do?

2

Figure 2: Problem description

The following diagram shows the discretization using cell-centered scheme for the case of
𝑁 = 4. The center of the cells moves closer to the physical boundaries of the unit square
as 𝑁 becomes larger.

8

1

1

1/4

Physical

domain

h Numerical

solution

domain

solution domain extends from x  h

2
1  h

2

and from y  h

2
1  h

2

x  0.1250.875

y  0.1250.875

h/2

h

Example for N=4

Figure 3: Grid used

The physical domain is always the unit square 𝑥 = 0⋯1, 𝑦 = 0⋯1, but the discrete solution
domain is the one at corners of the red grid above. A small example is used below to help
determine the layout of the operator used in the direct solver. The 2D ADI scheme for the
diffusion problem is

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑥�u∗ = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑦�u𝑛 (1A)

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑦�u𝑛+1 = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑥�u∗

Where 𝐿𝑥 = 𝐿𝑦 =
1
ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 0 1 −2 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for the case of homogenous Neumann bound-

ary conditions. The solution given below uses an overall 𝐿 operator which is used by the
direct solver. Another approach would have been to use the above 𝐿𝑥, 𝐿𝑦 operator, and
iterate over each each row and column applying the direct solver each time.

The following derives the overall 𝐿 operator used. Eq. (1A) can be written as

𝑢∗𝑖𝑗 −
𝐷Δ𝑡
2

𝑢∗𝑖−1,𝑗 − 2𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

= 𝑢𝑛𝑖𝑗 +
𝐷Δ𝑡
2

𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1
ℎ2

𝑢𝑛+1𝑖𝑗 −
𝐷Δ𝑡
2

𝑢𝑛+1𝑖,𝑗−1 − 2𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2
= 𝑢𝑛∗𝑖𝑗 +

𝐷Δ𝑡
2

𝑢∗𝑖−1,𝑗 − 2𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

letting 𝑟 = 𝐷Δ𝑡
2ℎ2 and simplifying the above gives

𝑢∗𝑖𝑗(1 + 2𝑟) − 𝑟𝑢∗𝑖−1,𝑗 − 𝑟𝑢∗𝑖+1,𝑗 = 𝑢𝑛𝑖𝑗(1 − 2𝑟) + 𝑟𝑢𝑛𝑖,𝑗−1 + 𝑟𝑢𝑛𝑖,𝑗+1 (1)

𝑢𝑛+1𝑖𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗−1 − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 2𝑟) + 𝑟𝑢∗𝑖−1,𝑗 + 𝑟𝑢∗𝑖+1,𝑗 (2)

The above finite difference equations are applied at all the grid points, except for those for
the rows and columns at the boundaries. In order to determine the equations to use for
the boundary grid points, the approximation 𝐿𝑥 ≈

−𝑢1+𝑢2
ℎ2 is used. Similar one is used for

𝐿𝑦. The result of using the above approximation is the following finite difference equations

9

used for the boundary grid points

𝑢∗𝑖𝑗 −
𝐷Δ𝑡
2

−𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

= 𝑢𝑛𝑖𝑗 +
𝐷Δ𝑡
2

−𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1
ℎ2

𝑢𝑛+1𝑖𝑗 −
𝐷Δ𝑡
2

−𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2
= 𝑢𝑛∗𝑖𝑗 +

𝐷Δ𝑡
2

−𝑢∗𝑖𝑗 + 𝑢∗𝑖+1,𝑗
ℎ2

Simplifying the above gives

𝑢∗𝑖𝑗(1 + 𝑟) − 𝑟𝑢∗𝑖+1,𝑗 = 𝑢𝑛𝑖𝑗(1 − 𝑟) + 𝑟𝑢𝑛𝑖,𝑗+1 (1A)

𝑢𝑛+1𝑖𝑗 (1 + 𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 𝑟) + 𝑟𝑢∗𝑖+1,𝑗 (2A)

To help obtain 𝐿, a small example is used to help see the structure of the matrix. This
small example exhibits all the needed information to generate the pattern for 𝐿 from. Using
𝑛𝑥 = 𝑛𝑦 = 4, the grid becomes

U(1,1) U(2,1) U(3,1) U(4,1)

U(1,2) U(2,2) U(3,2) U(4,2)

U(1,3) U(2,3) U(3,3) U(4,3)

U(1,4) U(2,4) U(3,4) U(4,4)

I
index

J
index

h

0 1 2 3 4

1

2

3

4

Figure 4: Updated Grid

10

Eq. (1) and (1A) are now written for all the nodes resulting in the following 16 equations

𝑢∗11(1 + 𝑟) − 𝑟𝑢∗21 = 𝑢𝑛11(1 − 𝑟) + 𝑟𝑢𝑛12
𝑢∗21(1 + 2𝑟) − 𝑟𝑢∗1,1 − 𝑟𝑢∗3,1 = 𝑢𝑛21(1 − 𝑟) + 𝑟𝑢𝑛22
𝑢∗31(1 + 2𝑟) − 𝑟𝑢∗2,1 − 𝑟𝑢∗4,1 = 𝑢𝑛31(1 − 𝑟) + 𝑟𝑢𝑛32

𝑢∗41(1 + 𝑟) − 𝑟𝑢∗31 = 𝑢𝑛41(1 − 𝑟) + 𝑟𝑢𝑛42
𝑢∗12(1 + 𝑟) − 𝑟𝑢∗22 = 𝑢𝑛12(1 − 2𝑟) + 𝑟𝑢𝑛1,1 + 𝑟𝑢𝑛1,3

𝑢∗22(1 + 2𝑟) − 𝑟𝑢∗1,2 − 𝑟𝑢∗3,2 = 𝑢𝑛22(1 − 2𝑟) + 𝑟𝑢𝑛2,1 + 𝑟𝑢𝑛2,3
𝑢∗32(1 + 2𝑟) − 𝑟𝑢∗2,2 − 𝑟𝑢∗4,2 = 𝑢𝑛32(1 − 2𝑟) + 𝑟𝑢𝑛3,1 + 𝑟𝑢𝑛3,3

𝑢∗42(1 + 𝑟) − 𝑟𝑢∗32 = 𝑢𝑛42(1 − 2𝑟) + 𝑟𝑢𝑛4,1 + 𝑟𝑢𝑛4,3
𝑢∗13(1 + 𝑟) − 𝑟𝑢∗23 = 𝑢𝑛13(1 − 2𝑟) + 𝑟𝑢𝑛1,2 + 𝑟𝑢𝑛1,4

𝑢∗23(1 + 2𝑟) − 𝑟𝑢∗1,3 − 𝑟𝑢∗3,3 = 𝑢𝑛23(1 − 2𝑟) + 𝑟𝑢𝑛2,2 + 𝑟𝑢𝑛2,4
𝑢∗33(1 + 2𝑟) − 𝑟𝑢∗2,3 − 𝑟𝑢∗4,3 = 𝑢𝑛33(1 − 2𝑟) + 𝑟𝑢𝑛3,2 + 𝑟𝑢𝑛3,4

𝑢∗43(1 + 𝑟) − 𝑟𝑢∗33 = 𝑢𝑛43(1 − 2𝑟) + 𝑟𝑢𝑛4,2 + 𝑟𝑢𝑛4,4
𝑢∗14(1 + 𝑟) − 𝑟𝑢∗24 = 𝑢𝑛14(1 − 𝑟) + 𝑟𝑢𝑛13

𝑢∗24(1 + 2𝑟) − 𝑟𝑢∗1,4 − 𝑟𝑢∗3,4 = 𝑢𝑛24(1 − 𝑟) + 𝑟𝑢𝑛23
𝑢∗34(1 + 2𝑟) − 𝑟𝑢∗2,4 − 𝑟𝑢∗4,4 = 𝑢𝑛34(1 − 𝑟) + 𝑟𝑢𝑛33

𝑢∗44(1 + 𝑟) − 𝑟𝑢∗34 = 𝑢𝑛44(1 − 𝑟) + 𝑟𝑢𝑛43

In matrix form, the above gives 𝐴𝑢∗ = 𝑏 which is then used to solve for 𝑢∗. The matrix 𝐴
is now written out. To save space and to allow the matrix to fit on the page, the following
terms are used

𝑟 =
𝐷Δ𝑡
2ℎ2

𝛼 ≡ 1 + 𝑟
𝛽 ≡ 1 + 2𝑟
𝛾 ≡ 1 − 𝑟
𝜃 ≡ 1 − 2𝑟

11

A

���⎡
⎢⎢⎣

𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼

⎤
⎥⎥⎦

x
�⎡⎢⎢⎣

𝑢∗11
𝑢∗21
𝑢∗31
𝑢∗41
𝑢∗12
𝑢∗22
𝑢∗32
𝑢∗4,2
𝑢∗13
𝑢∗2,3
𝑢∗3,3
𝑢∗4,3
𝑢∗14
𝑢∗2,4
𝑢∗3,4
𝑢∗4,4

⎤
⎥⎥⎦

=

b

���⎡
⎢⎢⎣

𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0 0
0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0
0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0
0 0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0
𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0 0
0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0
0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0
0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0
0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0
0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0
0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0
0 0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟
0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0 0
0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0
0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0
0 0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝑢𝑛11
𝑢𝑛21
𝑢𝑛31
𝑢𝑛41
𝑢𝑛12
𝑢𝑛22
𝑢𝑛32
𝑢𝑛4,2
𝑢𝑛13
𝑢𝑛2,3
𝑢𝑛3,3
𝑢𝑛4,3
𝑢𝑛14
𝑢𝑛2,4
𝑢𝑛3,4
𝑢𝑛4,4

⎤
⎥⎥⎦

(7)

A sparse direct solver can now be used to solve for 𝑢∗.

Starting the second ADI step to find 𝑢𝑛+1, the process is similar to the one shown above,
but the equations are written column-wise instead of row-wise as was the case earlier. For
non-boundary grid points the following equation is used

𝑢𝑛+1𝑖𝑗 (1 + 2𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗−1 − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 2𝑟) + 𝑟𝑢∗𝑖−1,𝑗 + 𝑟𝑢∗𝑖+1,𝑗

And for the boundary grid points the following equation is used

𝑢𝑛+1𝑖𝑗 (1 + 𝑟) − 𝑟𝑢𝑛+1𝑖,𝑗+1 = 𝑢∗𝑖𝑗(1 − 𝑟) + 𝑟𝑢∗𝑖+1,𝑗

12

Applying the above to each grid point results in the the following 16 equations

𝑢𝑛+111 (1 + 𝑟) − 𝑟𝑢𝑛+112 = 𝑢∗11(1 − 𝑟) + 𝑟𝑢∗21
𝑢𝑛+121 (1 + 𝑟) − 𝑟𝑢𝑛+122 = 𝑢∗21(1 − 2𝑟) + 𝑟𝑢𝑛1,1 + 𝑟𝑢𝑛3,1
𝑢𝑛+131 (1 + 𝑟) − 𝑟𝑢𝑛+132 = 𝑢∗31(1 − 2𝑟) + 𝑟𝑢𝑛2,1 + 𝑟𝑢𝑛4,1
𝑢𝑛+141 (1 + 𝑟) − 𝑟𝑢𝑛+142 = 𝑢∗41(1 − 𝑟) + 𝑟𝑢∗31

𝑢𝑛+112 (1 + 2𝑟) − 𝑟𝑢𝑛+11,1 − 𝑟𝑢𝑛+11,3 = 𝑢∗12(1 − 𝑟) + 𝑟𝑢∗22
𝑢𝑛+122 (1 + 2𝑟) − 𝑟𝑢𝑛+12,1 − 𝑟𝑢𝑛+12,3 = 𝑢∗22(1 − 2𝑟) + 𝑟𝑢𝑛1,2 + 𝑟𝑢𝑛3,2
𝑢∗32(1 + 2𝑟) − 𝑟𝑢∗3,1 − 𝑟𝑢∗3,3 = 𝑢𝑛32(1 − 2𝑟) + 𝑟𝑢𝑛2,2 + 𝑟𝑢𝑛4,2
𝑢∗42(1 + 2𝑟) − 𝑟𝑢∗4,1 − 𝑟𝑢∗4,3 = 𝑢𝑛42(1 − 𝑟) + 𝑟𝑢𝑛32
𝑢∗13(1 + 2𝑟) − 𝑟𝑢∗1,2 − 𝑟𝑢∗1,4 = 𝑢𝑛13(1 − 𝑟) + 𝑟𝑢𝑛23
𝑢∗23(1 + 2𝑟) − 𝑟𝑢∗2,2 − 𝑟𝑢∗2,4 = 𝑢𝑛23(1 − 2𝑟) + 𝑟𝑢𝑛1,3 + 𝑟𝑢𝑛3,3
𝑢∗33(1 + 2𝑟) − 𝑟𝑢∗3,2 − 𝑟𝑢∗3,4 = 𝑢𝑛33(1 − 2𝑟) + 𝑟𝑢𝑛2,3 + 𝑟𝑢𝑛4,3
𝑢∗43(1 + 2𝑟) − 𝑟𝑢∗4,2 − 𝑟𝑢∗4,4 = 𝑢𝑛43(1 − 𝑟) + 𝑟𝑢𝑛33

𝑢∗14(1 + 𝑟) − 𝑟𝑢∗13 = 𝑢𝑛14(1 − 𝑟) + 𝑟𝑢𝑛24
𝑢∗24(1 + 𝑟) − 𝑟𝑢∗23 = 𝑢𝑛24(1 − 2𝑟) + 𝑟𝑢𝑛1,4 + 𝑟𝑢𝑛3,4
𝑢∗34(1 + 𝑟) − 𝑟𝑢∗33 = 𝑢𝑛34(1 − 2𝑟) + 𝑟𝑢𝑛2,4 + 𝑟𝑢𝑛4,4
𝑢∗44(1 + 𝑟) − 𝑟𝑢∗43 = 𝑢𝑛44(1 − 𝑟) + 𝑟𝑢𝑛34

The above equations are now written as 𝐴𝑢 = 𝑏 but the unknowns are listed column-wise

13

in order to keep the tridiagonal form. The resulting matrix 𝐴 is the following

A

���⎡
⎢⎢⎣

𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 𝛼 −𝑟 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛽 −𝑟
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −𝑟 𝛼

⎤
⎥⎥⎦

x
�⎡⎢⎢⎣

𝑢𝑛+111

𝑢𝑛+112

𝑢𝑛+113

𝑢𝑛+114

𝑢𝑛+121

𝑢𝑛+122

𝑢𝑛+123

𝑢𝑛+12,4

𝑢𝑛+131

𝑢𝑛+132

𝑢𝑛+13,3

𝑢𝑛+13,4

𝑢𝑛+141

𝑢𝑛+14,2

𝑢𝑛+14,3

𝑢𝑛+14,4

⎤
⎥⎥⎦

=

b

���⎡
⎢⎢⎣

𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0 0
0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0 0
0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0 0
0 0 0 𝛾 0 0 0 𝑟 0 0 0 0 0 0 0 0
𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0 0
0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0 0
0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0 0
0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0 0
0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0 0
0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0 0
0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟 0
0 0 0 0 0 0 0 𝑟 0 0 0 𝜃 0 0 0 𝑟
0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0 0
0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0 0
0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾 0
0 0 0 0 0 0 0 0 0 0 0 𝑟 0 0 0 𝛾

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝑢∗11
𝑢∗12
𝑢∗13
𝑢∗14
𝑢∗21
𝑢∗22
𝑢∗23
𝑢∗2,4
𝑢∗31
𝑢∗32
𝑢∗3,3
𝑢∗3,4
𝑢∗41
𝑢∗4,2
𝑢∗4,3
𝑢∗4,4

⎤
⎥⎥⎦

(7)

Now 𝑢𝑛+1 is solved for using a direct sparse solver. The above 2 steps are repeated for each
one time step. One can see that the 𝐴 matrix is the same for both solving 𝐴𝑢∗ = 𝑏 and
𝐴𝑢𝑛+1 = 𝑏. Therefore, in the implementation only one 𝐴 and one 𝐵 matrix was allocated
initially and used for solving for 𝑢∗ and 𝑢𝑛+1. Both matrices (𝐴 and 𝐵) are created as sparse
matrices to save storage. The 𝐴 matrix represent the implicit part of the scheme, while the
𝐵 matrix for the explicit part.

Since the edges of the domain are insulated, no concentration will diffuse to the outside.
Therefore the result of diffusion will be that the concentration will diffuse internally and
will spread out. Therefore, at steady state as 𝑡 → ∞ the solution is known and given by

𝑢�𝑥, 𝑦,∞� =

1− ℎ
2

�
ℎ/2

1− ℎ
2

�
ℎ/2

𝑢�𝑥, 𝑦, 0�𝑑𝑥𝑑𝑦

The following plot shows the solution at 𝑡 = 1 second with the steady state solution displayed
as the blue horizontal flat surface superimposed on the same plot. The steady state solution
is what would result if run time was made to be very long.

14

Steady

state

solution

Initial

conditions

time=0.0
time=0.03125 time=0.0625

time=0.09375 time=0.125 time=0.15625

time=0.1675

0
time=0.9375

time=1

second

Solution to problem 2, with D=0.1, time step=0.03125, space step = 0.03125, N=32

Figure 5: steady state solution

To verify that the numerical solution converges to the steady state solution, the plot below
was generate which represents the solution of the above problem taken at 𝑡 = 4 seconds.
The gap in the diagram below is the difference between the steady state solution and the
solution at 𝑡 = 4 seconds. This gap became smaller the longer the time to run is made
(keeping everything else fixed).

15

Numerical solution at t=4

Steady state solution

Figure 6: steady state solution

3.1 Part(b)

Refinement study was carried out to show that the 2D ADI scheme is a second order
accurate in time and in space. The method used successive errors between numerical
solutions. The algorithm of the refinement study is given below at the end of this part of
the problem.

Recalling that In HW1, the spatial grid was divided by half each time. However, in this
problem, since cell centered grid is used, ℎ and Δ𝑡 were divided by 3 each time. This was
done so that the new grid will contain some grid locations that are still aligned in the same
physical location as the previous step. The error between both solutions is obtained by
taking the difference of only these points that are aligned. These points will be the grid
point of the coarse grid. The following diagram illustrate this for the case of 𝑛 = 3 and
𝑛 = 9

.

.

.

.

.

.

.

.

.

.

Initial grid, n=3
Second grid (in red), n=9

Showing relation between successive grids

Error is measured by comparing solution at only the points that are aligned

across both grid

Figure 7: case of 𝑛 = 3 and 𝑛 = 9

The result of the refinement study shows second order accuracy as the error ratio came out to be 9.

Below is the result obtained. In addition to the ratio table, it can be seen that the slope of
the line in the log plot is 2, implying the scheme is second order accurate.

16

 # N delt h |u| mean(u) |e| ratio |u steady|

 2 9 0.11111 0.111111 0.293146 0.290318 1.19490e-002 1.000000 0.289080

 3 27 0.03704 0.037037 0.293146 0.289369 1.23779e-003 9.653448 0.289080

 4 81 0.01235 0.012346 0.293146 0.289262 1.36668e-004 9.056912 0.289080

 5 243 0.00412 0.004115 0.293146 0.289251 1.51752e-005 9.006018 0.289080

 6 729 0.00137 0.001372 0.293146 0.289249 1.68601e-006 9.000673 0.289080

EDU>>

Refinement study result, HW 2, problem 2, showing second order accuracy

Figure 8: refinement study plot

3.2 Refinement algorithm

The following is the general outline of the algorithm used in the refinement study. The
important part was to make sure when finding the error between the current and last
solution, is to use the same physical locations that are aligned between both grids, and to
use the coarse grid spacing when determining the grid norm of the error grid.

last_error = 0
h = 1/3
last_h = h
delt = h
last_u = Solve_2D_ADI(h,delt)

LOOP
h = h/3
delt = h

current_u = Solve_2D_ADI(h,delt)

-- now extract from current_u only locations that aligned with last_u grid
current_u_mapped = extracted_u(last_u)

error = last_h * norm(last_u - current_u_mapped,2)

17

ratio = last_error/error

last_h = h
last_error = error

loop_counter++

IF loop_counter > some_maximum THEN -- normally 5,6 iterations is enough
EXIT LOOP

END IF
END LOOP

3.3 Part(c)

The spatial integral represents the total concentration in the domain. Since the boundary
are insulated, matter will only diffuse internally and no loss will occur to the outside. Hence,
from the conservation of mass principle, initial concentration will remain the same, but
will spread out to the mean in space. Therefore, it is known physically total concentration
will not change with time

𝑑
𝑑𝑡�

Ω

𝑢�𝑥, 𝑦, 𝑡�𝑑𝐴 = 0

The problem is asking to show this mathematically.

Since 𝑢𝑡 = 𝐷Δ𝑢, then

𝐼 =
𝑑
𝑑𝑡�

Ω

𝑢�𝑥, 𝑦, 𝑡�𝑑𝐴

= 𝐷�
Ω

Δ𝑢 𝑑𝐴

But Δ𝑢 = 𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑢
𝜕𝑦2 , hence

�
1
𝐷�
𝐼 =

1

�
𝑦=0

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

𝑑𝑥𝑑𝑦

To show that 𝐼 = 0, the above is written as

�
1
𝐷�
𝐼 =

1

�
𝑦=0

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥𝑑𝑦 +
1

�
𝑦=0

1

�
𝑥=0

𝜕2𝑢
𝜕𝑦2

𝑑𝑥𝑑𝑦

=
1

�
𝑦=0

⎛
⎜⎜⎜⎜⎜⎝

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠𝑑𝑦 +

1

�
𝑥=0

⎛
⎜⎜⎜⎜⎜⎜⎝

1

�
𝑦=0

𝜕2𝑢
𝜕𝑦2

𝑑𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠𝑑𝑥 (1)

By applying the fundamental theory of calculus (or using integration by parts) results in

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥 =
𝜕𝑢
𝜕𝑥�

𝑥=1
−
𝜕𝑢
𝜕𝑥�

𝑥=0

However 𝜕𝑢
𝜕𝑥 �𝑥=1

is the normal derivative at the right boundary, and 𝜕𝑢
𝜕𝑥 �𝑥=0

is the normal

derivative at the left boundaries. These are both zero due to the homogenous Neumann
boundary conditions given in the problem statement. therefore

1

�
𝑥=0

𝜕2𝑢
𝜕𝑥2

𝑑𝑥 = 0 (2)

Similar argument shows that

1

�
𝑦=0

𝜕2𝑢
𝜕𝑦2

𝑑𝑦 = 0 (3)

18

Substituting Eqs. (2) and (3) into (1) gives

�
1
𝐷�
𝐼 = 0

Therefore
𝑑
𝑑𝑡�

Ω

𝑢�𝑥, 𝑦, 𝑡�𝑑𝐴 = 0

3.4 Part(d)

The finite difference equations for the 2D ADI scheme is given by

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑥�u∗ = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑦�u𝑛 (1)

�𝐼 −
𝐷Δ𝑡
2
𝐿𝑦�u𝑛+1 = �𝐼 +

𝐷Δ𝑡
2
𝐿𝑥�u∗ (2)

Summing the equations over all entries in the 2D solution domain gives

�
𝑖
�
𝑗
�𝐼 −

𝐷Δ𝑡
2
𝐿𝑥�𝑢∗ =�

𝑗
�
𝑖
�𝐼 +

𝐷Δ𝑡
2
𝐿𝑦�𝑢𝑛 (1A)

�
𝑗
�
𝑖
�𝐼 −

𝐷Δ𝑡
2
𝐿𝑦�𝑢𝑛+1 =�

𝑖
�
𝑗
�𝐼 +

𝐷Δ𝑡
2
𝐿𝑥�𝑢∗ (2A)

In the above 𝑖 represents the row number and 𝑗 represents the column number of the
solution grid 𝑢. The above two equations can be rewritten as

�
𝑖
�
𝑗
𝑢∗𝑖𝑗 −

𝐷Δ𝑡
2
�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 =�

𝑗
�
𝑖
𝑢𝑛𝑖𝑗 +

𝐷Δ𝑡
2
�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛𝑖𝑗 (1B)

�
𝑗
�
𝑖
𝑢𝑛+1𝑖𝑗 −

𝐷Δ𝑡
2
�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛+1𝑖𝑗 =�

𝑖
�
𝑗
𝑢∗𝑖𝑗 +

𝐷Δ𝑡
2
�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 (2B)

Looking at the term �
𝑖
∑

𝑗 𝐿𝑥𝑢
∗
𝑖𝑗 from Eq. (1B) and rewriting this as follows

�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 =�

𝑖

⎛
⎜⎜⎜⎜⎝�

𝑗
𝐿𝑥𝑢∗𝑖𝑗

⎞
⎟⎟⎟⎟⎠

= �
𝑖

𝐿𝑥 operator applied to 𝑖𝑡ℎrow

�����������⎛
⎜⎜⎜⎜⎝�

𝑗
𝐿𝑥𝑢∗𝑖𝑗

⎞
⎟⎟⎟⎟⎠

In other words,∑𝑗 𝐿𝑥𝑢
∗
𝑖𝑗 is the result of applying 𝐿𝑥 to each entry in the 𝑖𝑡ℎ row, then summing

the result.

Therefore, 𝐿𝑥 is applied to entry 𝑢∗(𝑖, 1) then to entry 𝑢∗(𝑖, 2) and so on, until the last entry
in the row which is 𝑢∗(𝑖, 𝑛).

How to find the result of applying 𝐿𝑥 on each row? Given that 𝐿𝑥 for 1D with homogenous
Neumann boundary conditions is

𝐿𝑥 =
1
ℎ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 1 0 0
⋯ ⋯ ⋯ ⋱ ⋯ ⋯
0 0 0 1 −2 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

19

Then applying the operator to each entry in the 𝑖𝑡ℎ row gives the following

⎛
⎜⎜⎜⎜⎝�

𝑗
𝐿𝑥𝑢∗𝑖𝑗

⎞
⎟⎟⎟⎟⎠ =

𝑗 = 1 𝑗 = 2 𝑗 = 3 4 5 6 7 ⋯ 𝑛 − 2 𝑛 − 1 𝑗 = 𝑛
−𝑢𝑖1 +𝑢𝑖2
+𝑢𝑖1 −2𝑢𝑖2 +𝑢𝑖3

+𝑢𝑖2 −2𝑢𝑖3 +𝑢𝑖4
+𝑢𝑖3 −2𝑢𝑖4 +𝑢𝑖5

+𝑢𝑖4 −2𝑢𝑖5 +𝑢𝑖6
+𝑢𝑖5 −2𝑢𝑖6 +𝑢𝑖7

⋱
+𝑢𝑖,𝑛−3 −2𝑢𝑖,𝑛−2 +𝑢𝑖,𝑛−1

+𝑢𝑖,𝑛−2 −2𝑢𝑖,𝑛−1 +𝑢𝑖,𝑛
+𝑢𝑖,𝑛−1 −𝑢𝑖,𝑛

In the above, 𝐿𝑥 was applied directly on the 𝑖𝑡ℎ row. The first line above shows the column
index 𝑗 which goes from 1⋯𝑛. The following diagram is made to help illustrate the above
process, showing how 𝐿𝑥 and 𝐿𝑦 are applied to the solution in the 𝑢 matrix.

x

y

...

J (column index)

I (row index)

Apply Lx on a row

x

y

...

J (column index)

I (row index)

Apply Ly on a column

Graphical illustration applying 1D laplacian for ADI scheme

Figure 9: Illustrating the above process

One can see now that thesum is zero due to terms cancellation. The sum is zero in this
case due to the homogenous Neumann boundary conditions which caused the first and
last entries to cancel out.

Using the same procedure, then applying 𝐿𝑦 to each column of 𝑢𝑛 will also result in zero
sum, since the north and south boundaries also have homogenous Neumann boundary
conditions. Since boundary conditions do not change going from 𝑢∗ to 𝑢𝑛+1, the same result
is obtained when applying 𝐿𝑦 operator to each column of 𝑢𝑛+1. From the above discussion,
it is found that

�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 = 0

�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛𝑖𝑗 = 0

�
𝑗
�
𝑖
𝐿𝑦𝑢𝑛+1𝑖𝑗 = 0

�
𝑖
�
𝑗
𝐿𝑥𝑢∗𝑖𝑗 = 0

Substituting the above 4 equations back into Eqs. (1B),(2B) gives

�
𝑖
�
𝑗
𝑢∗𝑖𝑗 =�

𝑗
�
𝑖
𝑢𝑛𝑖𝑗 (1C)

�
𝑗
�
𝑖
𝑢𝑛+1𝑖𝑗 =�

𝑖
�
𝑗
𝑢∗𝑖𝑗 (2C)

20

Substituting Eq. (1C) into (2C) gives

�
𝑖
𝑗𝑢𝑖𝑗𝑛 + 1 = �

𝑖
𝑗𝑢𝑖𝑗𝑛

Since the above is valid for any 𝑛 (boundary conditions do not change with time) then
setting 𝑛 = 0 in the above results in

�
𝑖𝑗
𝑢1𝑖𝑗 =�

𝑖𝑗
𝑢0𝑖𝑗

Similarly, setting 𝑛 = 1 results in
�
𝑖𝑗
𝑢2𝑖𝑗 =�

𝑖𝑗
𝑢1𝑖𝑗

and so on all the way any 𝑛 value. Hence in general the following result is obtained

�
𝑖𝑗
𝑢𝑛𝑖𝑗 =�

𝑖𝑗
𝑢𝑛−1𝑖𝑗

By repeated back substitution on the RHS, the following is obtained

�
𝑖𝑗
𝑢𝑛𝑖𝑗 =�

𝑖𝑗
𝑢0𝑖𝑗

Therefore, the discrete conservation property is satisfied.

Verification in code To verify part(d) in the code, a table was generated during one
run, where ∑𝑖𝑗 𝑢

𝑛
𝑖𝑗 was calculated at the end of each time step using the Matlab command

sum(sum(u)), and this value was printed at each time step. The result shows that this value

is constant implying the discrete conservation property is satisfied. Here is the result
below

current_time sum(U(current_time)
0.00000 1897.85094
0.01235 1897.85094
0.02469 1897.85094
0.03704 1897.85094
0.04938 1897.85094
0.06173 1897.85094
0.07407 1897.85094
0.08642 1897.85094
0.09877 1897.85094
0.11111 1897.85094

....
0.92593 1897.85094
0.93827 1897.85094
0.95062 1897.85094
0.96296 1897.85094
0.97531 1897.85094
0.98765 1897.85094

21

4 Problem 3
(d) Show that the solution to the discrete equations satisfies the discrete conservation prop-

erty
∑

i,j

uni,j =
∑

i,j

u0i,j

for all n. Demonstrate this property with your code.

3. The FitzHugh-Nagumo equations

∂v

∂t
= D∆v + (a− v)(v − 1)v − w + I

∂w

∂t
= ǫ(v − γw).

are used in electrophysiology to model the cross membrane electrical potential (voltage) in
cardiac tissue and in neurons. Assuming that the spatial coupling is local and passive results
the term which looks like the diffusion of voltage. The state variables are the voltage v and
the recovery variable w.

(a) Write a program to solve the FitzHugh-Nagumo equations on the unit square with
homogeneous Neumann boundary conditions for v (meaning electrically insulated). Use
a fractional step method to handle the diffusion and reactions separately. Use an ADI
method for the diffusion solve. Describe what ODE solver you used for the reactions
and what fractional stepping your chose.

(b) Use the following parameters a = 0.1, γ = 2, ǫ = 0.005, I = 0, D = 5 ·10−5, for h = 0.01
and initial conditions

v(x, y, 0) = exp
(

−100(x2 + y2)
)

w(x, y, 0) = 0.0.

Note that v = 0, w = 0 is a stable steady state of the system. Call this the rest state.
For these initial conditions the voltage has been raised above rest in the bottom corner
of the domain. Generate a numerical solution up to time t = 300. What time step did
you use and why? Visualize the voltage and describe the solution.

(c) Use the same parameters from part (b), but use the initial conditions

v(x, y, 0) = 1− 2x

w(x, y, 0) = 0.05y,

and run the simulation until time t = 600. Show the voltage at several points in time
(pseudocolor plot, or contour plot, or surface plot z = V (x, y, t)) and describe the
solution.

The dynamics of excitable media is a fascinating subject from both the mathematical
and physiological perspectives. The electrical patterns that you simulated in part (c)
are related to cardiac arrhythmias. For more information see the book Mathematical

Physiology by Keener and Sneyd.

Just for fun, (there is no need to turn this in or even do it) try to find an input current
I(x, y, t) in the form of a short pulse (e.g. I(x, y, t) = f(x, y) exp

(

−κ(t− t2p)
)

) so that
the normal electrical wave from part (b) degenerates into an arrhythmia like that from
part (c). Then try to find a pulse of current that will eliminate the arrhythmia. This
second task may be easier. What to the doctors on TV do?

2Figure 10: Problem statement

4.1 Part(a)

The equations to solve are the following

𝜕𝑣
𝜕𝑡

= 𝐷Δ𝑣 + (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼

𝜕𝑤
𝜕𝑡

= 𝜖�𝑣 − 𝛾𝑤�

The first PDE 𝜕𝑣
𝜕𝑡 = 𝐷Δ𝑣 + (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼 was solved by the splitting method by

solving the diffusion equation𝜕𝑣
𝜕𝑡 = 𝐷Δ𝑣 using ADI method separately and then by solving

the reaction (non-linear) equation 𝜕𝑣
𝜕𝑡 = (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼 along with 𝜕𝑤

𝜕𝑡 = 𝜖�𝑣 − 𝛾𝑤�
separately. The following is a coupled first order non-linear differential equations system
(the reaction ODE is nonlinear in votage 𝑣)

22

𝑑𝑣
𝑑𝑡
= (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼

𝑑𝑤
𝑑𝑡

= 𝜖�𝑣 − 𝛾𝑤�

The above system was solved using Runge-Kutta order 4. The following diagram illustrates
the time line for one full splitting step.

tn1
tn

Diffusion (ADI) Diffusion (ADI)

t

Reaction (RK-4)

t t t

Reaction (RK-4)

tn1

Splitting method time-line for solving the diffusion-reaction PDE on 2D

Figure 11: time line for one full splitting step

ADI was described in problem 2, and the same function was reused for this problem for
the diffusion solver. For solving the reaction system of equations, RK4 was implemented
as follows. define

𝑓(𝑣, 𝑤) = (𝑎 − 𝑣)(𝑣 − 1)𝑣 − 𝑤 + 𝐼

and also define
𝑔(𝑣, 𝑤) = 𝜖�𝑣 − 𝛾𝑤�

Therefore, the RK4 solver for the above system becomes

𝑣𝑛+1 = 𝑣𝑛 +
1
6
(𝑚1 + 2𝑚2 + 2𝑚3 + 𝑚4)

𝑤𝑛+1 = 𝑤𝑛 +
1
6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)

Where

𝑚1 = Δ𝑡𝑓(𝑣, 𝑤)

𝑚2 = Δ𝑡𝑓�𝑣 +
1
2
𝑚1, 𝑤 +

1
2
𝑘1�

𝑚3 = Δ𝑡𝑓�𝑣 +
1
2
𝑚2, 𝑤 +

1
2
𝑘2�

𝑚4 = Δ𝑡𝑓(𝑣 + 𝑚3, 𝑤 + 𝑘3)

And

𝑘1 = Δ𝑡𝑔(𝑣, 𝑤)

𝑘2 = Δ𝑡𝑔�𝑣 +
1
2
𝑚1, 𝑤 +

1
2
𝑘1�

𝑘3 = Δ𝑡𝑔�𝑣 +
1
2
𝑚2, 𝑤 +

1
2
𝑘2�

𝑘4 = Δ𝑡𝑔(𝑣 + 𝑚3, 𝑤 + 𝑘3)

23

Another point regarding the splitting method. It was required to decide which splitting method to use.
Should a simple splitting, Strang splitting or the 2-step splitting method which was de-
scribed in class be used? To make sure the second order accuracy of ADI 2D in time is
preserved, simple splitting was not used (unless the operators commute, this would have
caused the scheme to become first order accurate in time). Instead, the two step splitting
method was used, as it was found to be simpler than Strang method to implement.

4.2 Part(b)

The program written in part(a) was run using the parameters given. The time step used
was set to be the same as the space step. This time step is recommended for the ADI
The diffusion solver as it is a second order accurate in time and space. This is the fast
system (the stiff part of the system), hence making the time step larger than the space
step would not give accurate results, even though it will remain a stable scheme. Keeping
the time step the same as the space step seemed to be a good choice, as it kept the
time resolution and the space resolution the same. The same time step was then used for
the reaction solver, as was required by the splitting method to keep each step the same
length.

The following shows the visualization of the voltage solution for up to 300 seconds as
required using the surf() command.

24

Time=0 sec Time=16 sec
Time=32 sec

Time=48 sec Time=68 sec Time=92 sec

Time=150 sec
Time=180 sec

Time=200 sec

Time=220 sec
Time=242 sec

Time=300 sec

Result for Part(b), HW2. FitzHugh-Nagumo equations simulation

Figure 12: visualization of the voltage solution for up to 300 seconds

The solution 𝑣(𝑡) started from a peak value at one corner of the square. Shortly after, at
about 50 seconds, a wave started to form, the wave front became large and it spread out
and advanced with time. When the pulse reached the boundary on the other corner, it
started to diffuse and by 𝑡 = 300 seconds, the pulse has completely disappeared.

4.3 Part(c)

The following is the result of the simulation for this part.

25

t=0 seconds
t=10 seconds

t=30 seconds

t=50 seconds t=86 seconds t=106 seconds

t=138 seconds
t=170 seconds

t=206 seconds

t=250 seconds t=284 seconds t=300 seconds

Result of part c problem 3. First 300 seconds

Figure 13: simulation of part c

26

t=330 seconds
t=376 seconds

t=420 seconds

t=462 seconds t=506 seconds
t=550 seconds

t=574 seconds t=584 seconds t=600 seconds

Result of part c problem 3. from t=300 to t=600 seconds

Figure 14: Up to 300 seconds

In this simulation, the pulse that appeared after about 50 second, quickly became a spiral,
and did not appear to diffuse as was the case in part (d). At the end of the simulation, the
pulse was continuing to spiral in the same rotation direction it started with. The above
phenomena seem to be termed an arrhythmia pulse.

One common theme between part(c) and part (b), is the formation of a wave like motion
that traveles across the domain. The difference was in the shape of the pulse, the direction
it moves to and the amount of diffusion that occured.

5 Appendix

5.1 Problem 1 appendix

Derivation of ADI equations for 2D and 3D for the diffusion problem Given 𝑢𝑡 = Δ𝑢
(𝐷 is assumed 1), then in 2D forward Euler (explicit) gives

𝑢𝑛+1𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘

= �
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗

While C-N method gives

𝑢𝑛+1𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘

=
1
2

⎡
⎢⎢⎢⎢⎢⎣�
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

𝑛+1

𝑖𝑗
+ �

𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗

⎤
⎥⎥⎥⎥⎥⎦

27

However, in ADI, the time step itself is divided by half, and in the first half step, one of
the spatial second derivatives is implicit while and the other spatial second derivative is
explicit. In the second half step, these are reversed.

𝑢
𝑛+ 1

2
𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘/2

=

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
2

𝑖𝑗
+

explicit

�������
�
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗

𝑢𝑛+1𝑖𝑗 − 𝑢
𝑛+ 1

2
𝑖𝑗

𝑘/2
=

explicit

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
2

𝑖𝑗
+

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������
�
𝜕2𝑢
𝜕𝑦2 �

𝑛+1

𝑖𝑗

Writing 𝜕2𝑢
𝜕𝑥2 = 𝐿𝑥 =

𝑢𝑖−1,𝑗−2𝑢𝑖𝑗+𝑢𝑖+1,𝑗
ℎ2 and 𝜕2𝑢

𝜕𝑦2 = 𝐿𝑦 =
𝑢𝑖,𝑗−1−2𝑢𝑖𝑗+𝑢𝑖,𝑗+1

ℎ2 , the above 2 equations become

𝑢
𝑛+ 1

2
𝑖𝑗 − 𝑢𝑛𝑖𝑗
𝑘/2

=
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2
+
𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1

ℎ2

𝑢𝑛+1𝑖𝑗 − 𝑢
𝑛+ 1

2
𝑖𝑗

𝑘/2
=
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2
+
𝑢𝑛+1𝑖,𝑗−1 − 2𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2

Moving all implicit terms to the LHS and rearranging results in

𝑢
𝑛+ 1

2
𝑖𝑗 −

𝑘
2
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2
= 𝑢𝑛𝑖𝑗 +

𝑘
2
𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖𝑗 + 𝑢𝑛𝑖,𝑗+1

ℎ2

𝑢𝑛+1𝑖𝑗 −
𝑘
2
𝑢𝑛+1𝑖,𝑗−1 − 2𝑢𝑛+1𝑖𝑗 + 𝑢𝑛+1𝑖,𝑗+1

ℎ2
= 𝑢

𝑛+ 1
2

𝑖𝑗 +
𝑘
2
𝑢
𝑛+ 1

2
𝑖−1,𝑗 − 2𝑢

𝑛+ 1
2

𝑖𝑗 + 𝑢
𝑛+ 1

2
𝑖+1,𝑗

ℎ2

Hence, in operator form the above becomes

�𝐼 −
𝑘
2
𝐿𝑥�𝑢

𝑛+ 1
2

𝑖𝑗 = �𝐼 +
𝑘
2
𝐿𝑦�𝑢𝑛𝑖𝑗

�𝐼 −
𝑘
2
𝐿𝑦�𝑢𝑛+1𝑖𝑗 = �𝐼 +

𝑘
2
𝐿𝑥�𝑢

𝑛+ 1
2

𝑖𝑗

In the class notes, 𝑢∗𝑖𝑗 was used to represent 𝑢
𝑛+ 1

2
𝑖𝑗 but they are the same. The above is the

ADI scheme for 2D. The 3D equations are now derived. Since three different directions
exist now, the time step is divided into 3. This results in

𝑢
𝑛+ 1

3
𝑖𝑗 − 𝑢𝑛𝑖𝑗
Δ𝑡/3

=

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
3

𝑖𝑗
+

explicit

�������
�
𝜕2𝑢
𝜕𝑦2 �

𝑛

𝑖𝑗
+

explicit

�������
�
𝜕2𝑢
𝜕𝑧2 �

𝑛

𝑖𝑗

𝑢
𝑛+ 2

3
𝑖𝑗 − 𝑢

𝑛+ 1
3

𝑖𝑗

Δ𝑡/3
=

explicit

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 1
3

𝑖𝑗
+

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������

�
𝜕2𝑢
𝜕𝑦2 �

𝑛+ 2
3

𝑖𝑗
+

explicit

�����������

�
𝜕2𝑢
𝜕𝑧2 �

𝑛+ 1
3

𝑖𝑗

𝑢𝑛+1𝑖𝑗 − 𝑢
𝑛+ 2

3
𝑖𝑗

Δ𝑡/3
=

explicit

�����������

�
𝜕2𝑢
𝜕𝑥2 �

𝑛+ 2
3

𝑖𝑗
+

explicit

�����������

�
𝜕2𝑢
𝜕𝑦2 �

𝑛+ 2
3

𝑖𝑗
+

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡

�����������
�
𝜕2𝑢
𝜕𝑧2 �

𝑛+1

𝑖𝑗

Similar to what done in the 2D case, the above are rearranged resulting in

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑥�u

𝑛+ 1
3 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑦 +

𝐷Δ𝑡
3
𝐿𝑧�u𝑛 (1)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑦�u

𝑛+ 2
3 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑧�u

𝑛+ 1
3 (2)

�𝐼 −
𝐷Δ𝑡
3
𝐿𝑧�u𝑛+1 = �𝐼 +

𝐷Δ𝑡
3
𝐿𝑥 +

𝐷Δ𝑡
3
𝐿𝑦�u

𝑛+ 2
3 (3)

28

6 Matlab Source code developed for this HW

6.1 nma_math228b_HW2_prob2.m� �
function nma_math228b_HW2_prob2
% This function implements refinement study for HW2
% problem 2, Math 228B, Winter 2011, UC Davis
%
%
% By Nasser M. Abbasi

% set up initialization for the error table, such as headings
% and formating

close all;

% for formating of error table
titles = {'#','N','delt','h','|u|','mean(u)','|e|','ratio'};
fms = {'d','d','.5f','.5f','.5f','.5f','.4e','.5f'};
wid = 13;
fileID = 1;

% use 8 runs, and allocate the table to store the error and ratios
N=5;
table=zeros(N,8); % #, t, h, |u|,|u-u_last|, ratio, N, mean(u), |exact|

% Initialize space and time steps.
grid_size = 9;
h1 = figure();
D = 0.1; %diffusion constant
time_to_run = 1; % 1 second

for n = 1:N

% Simulatiously divide space step and time step.

grid_size = grid_size * 3;
h = 1/grid_size;
k = h;

[u,u_steady_state] = solve_2D_diffusion(grid_size,h,k,D,time_to_run);

% the numerical solution now is stored in u. Make
% a new entry in the error table for this iteration.
table(n,1) = n;
table(n,7) = grid_size;
table(n,8) = mean(mean(u));

table(n,2) = k;
table(n,3) = h;

table(n,4) = h*norm(u(:),2); % use grid 2-norm

if n>1
table(n,5) = abs(table(n-1,4)-table(n,4)); %e
%table(n,5) = h*norm(u-u_steady_state,2); %e

if n==2
table(n,6)=1;

else
table(n,6) = table(n-1,5)/table(n,5); %e ratio

end

29

[hd,bdy]=nma_format_matrix(titles,�...
[table(2:n,1) table(2:n,7) table(2:n,2) table(2:n,3) table(2:n,4) table(2:n,8) table(2:n,5) table(2:n,6)],...
wid,fms,fileID,true);

clf(h1);
set(0,'CurrentFigure',h1);
ax = axes();
set(h1, 'CurrentAxes',ax);
cla('reset');

text(.1,.60,bdy,'FontSize',10);
set(ax,'YTick',[]);
set(ax,'XTick',[]);
text(.1,.9,hd,'FontSize',10);
title('result of refinement study');
drawnow();

end
end

% The refinment study is completed. Generate plots and error table

h2 = figure();
ax2 = axes();
set(0,'CurrentFigure',h2);
set(h2, 'CurrentAxes',ax2);
cla('reset');
set(0,'defaultaxesfontsize',8) ;

loglog(table(2:end,3),table(2:end,5),'-d');
xlabel('log(h)','FontSize',8);
title({'refinement study result, ';'log vs successive errors difference'},...

'FontSize',8);
ylabel('log(error norm)','FontSize',8);
grid on;
end

%-----------------------
function [u,u_steady_state]=solve_2D_diffusion(...

grid_size,...
h,... % space step size
k,... % time step size
D,... % diffusion constant
max_t... % maximum time to run solver for
)

n = grid_size-2; %internal nodes
ic = @(X,Y) exp(-10*((X-0.4).^2 + (Y-0.4).^2)); % initial data
[X,Y] = meshgrid(h/2:h:1-h/2,1-h/2:-h:h/2); % coordinates
u_mean = quad2d(ic,h/2,1-(h/2),h/2,1-(h/2));
%u_mean = quad2d(ic,0,1,0,1);

%ic= @(X,Y) -exp(-(X-0.25).^2 - (Y-0.6).^2);

% create sparse matrices for A and B (implicit and explicit) see HW report
A = lap2D_diffusion_ADI_A(n,D,k,h);
A_RHS = lap2D_diffusion_ADI_A_RHS(n,D,k,h);

u = ic(X,Y); % initial U
u_steady_state = zeros(size(u));
u_steady_state(:,:)=u_mean;
u_max = max(max(u));
u_min = min(min(u));

30

h1 = figure();
current_t = 0;
done = false;

while not(done)

% solve for U*
tmp = reshape(flipud(u(2:end-1,2:end-1))',n^2,1);
sol = A\(A_RHS*tmp);
u(2:end-1,2:end-1) = flipud(reshape(sol,n,n)');

%update the boundaries
u = update_BC(u);

% solve for U_n+1
tmp = reshape(flipud(u(2:end-1,2:end-1)),n^2,1);
sol = A\(A_RHS*tmp);
u(2:end-1,2:end-1) = flipud(reshape(sol,n,n));

u = update_BC(u);

set(0,'CurrentFigure',h1);
surf(X,Y,u);
colormap cool;
title(sprintf('solution at time = %1.3f, D=%.3f, N=%d\nsteady state=%1.4f, h=%1.5f',...

current_t,D,grid_size,u_mean,h));

hold on;
mesh(X,Y,u_steady_state);
zlim([u_min u_max]);
drawnow();
hold off;

%update current time and check if reached end of time
current_t = current_t + k;
if current_t > max_t

done = true;
end

end
close(h1);
end

%------------------------
function A=lap2D_diffusion_ADI_A(...

n, ... %size of matrix (1D size)
D, ... %diffusion constant
k, ... %time step
h) %space_step

r = D*k/(2*h^2);
e = ones(n,1);
B = [-r*e (1+2*r)*e -r*e];
Lx = spdiags(B,[-1 0 1],n,n);
Ix = speye(n);
A = kron(Ix,Lx);

% adjust A, see HW report

pos = 1:n:n^2;

for i = 1:length(pos)

31

A(pos(i),pos(i))=1+r;
end

pos = n:n:n^2;

for i=1:length(pos)
A(pos(i),pos(i))=1+r;

end

end
%--
function A=lap2D_diffusion_ADI_A_RHS(...

n, ... %size of matrix (1D)
D, ... %diffusion constant
k, ... %time step
h) %space_step

r = D*k/(2*h^2);

e = ones(n^2,1);
B = [r*e (1-r)*e r*e];
A = spdiags(B,[-n 0 n],n^2,n^2);

%adjust matrix, see HW report
pos = n+1:n^2-n;
for i=1:length(pos)

A(pos(i),pos(i))=1-2*r;
end

end

%---------------------
function u = update_BC(u)

u(1,2:end-1) = u(2,2:end-1);
u(end,2:end-1) = u(end-1,2:end-1);
u(2:end-1,1) = u(2:end-1,2);
u(2:end-1,end) = u(2:end-1,end-1);

u(1,1) = u(1,2);
u(end,1) = u(end-1,1);
u(end,end) = u(end,end-1);
u(1,end) = u(1,end-1);

end� �

	Animation of FitzHugh-Nagumo equations
	Problem1
	Part (a)
	Part (b)

	Problem 2
	Part(b)
	Refinement algorithm
	Part(c)
	Part(d)

	Problem 3
	Part(a)
	Part(b)
	Part(c)

	Appendix
	Problem 1 appendix

	Matlab Source code developed for this HW
	nma_math228b_HW2_prob2.m

