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1 Animation of FitzHugh-Nagumo equations

The following are animated GIFs showing the solution to problem 3, parts (b) and (c).
These will show only in the HTML version.

Assuming that f(v) = (a — v)(v — 1)v, the equations solved are the following

Jv
E—DAv+f(v)—w+I
Jw

WZG(U—)/ZU)

Click on image to see the animation run, it will open in new window.




2 Probleml

Math 228B
Homework 2
Due Tuesday, February 15th

1. In class, we showed that the two-dimensional Peaceman-Rachford ADI scheme is uncon-
ditionally stable and second-order accurate in time. This can be thought of as either an
approximate factorization or as a fractional step method. By adapting the fractional step
idea to three-dimensions we get the scheme

(1280 ) (120,020, o

3 3 7Y 3
bAt bAt bAt
( 3 y) U ( + 3 + 3 > u
(I - b;‘th) u"t = (I + %“Lx + b;‘tLy) u**.

(a) Use von Neumann analysis to show that this scheme is conditionally stable. This is
an example of how certain desirable properties of a numerical scheme can be lost when
using fractional stepping.

(b) What temporal accuracy do you expect from this scheme? Explain.

Figure 1: Problem description

2.1 Part (a)

The diffusion PDE is given by
Uy — DAI/[ = 0

Where D is the diffusion constant. The ADI scheme in 3D E| is given by

DAt \ | DAt. DAt \
I- —Lx w=\I+ TLy + TLZ u (1)
DAt \ _ DAt DAt \ .
I- TLy u”t =\I+ TLX + TLZ u (2)
DAt DAt DAt
(I - TLZ)L[”-H =(I+ TLX + TLy u* (3)
2 1 0 0
1 -2 1 0

0o 1 21 0 0
Where L,,L,, L, are each the 1D Laplacian given by %

00 0 1 -2 1
0 0 0 0 1 -2

Assuming that the spatial frequencies in each of the three Cartesian directions (x,y,z)

«i(Err+Eay+Esz)

are given by &,, Eyr&s where % <é < % and by setting r = %, u = g'e and

u = olErreayisz) og substituting these into Eq. (1) and dividing throughout by pllErr+Say+éaz)

Please see the appendix of this problem at the end of the HW report showing how these equations came
about.



gives the following
g*(l - r(e"glh -2+ ei‘glh)) =1+ r(e‘iézh -2+ ei52h) + r(e‘i53h -2+ eiéSh)
1-4r+ r(e‘iézh + ei52h) + r(e‘i53h + ei53h)
(1 +2r— r(eiflh + e‘ifilh))

_ 1 —4r+2rcos(h) + 2r cos(E3h)
B 1+ 2r—2rcos(&1h)

1- 4r(sin2(%h) + sinz(%h))
= (4)

1 + 4rsin (5; )

*

g:

The last step above was obtained by the use of the relation cos A =1-2 sinz(g).

Applying the same method used above to Eq. (2), but now letting u* = g*ei(§1x+52y+53z) and

- 1(91x+52y+§3z) i(§1x+5zy+§32)

=g"e and dividing throughout by ¢ gives

g**(l - r(e‘i‘SZh -2+ ei‘fzh)) =1+ r(e‘i‘flh -2+ ei‘flh) + r(e‘i53h -2+ ei53h)
L 1-dr+ r(e‘i‘flh + ei‘flh) + r(e‘i53h + ei‘f?’h)
& 1+2r- r(ei‘fzh + e‘iffzh) §
_ 1—4r+2rcos(&h) + 2r cos(Ezh)
B 1+ 2r—2rcos(&h)
1- 4r(sm (él ) + sinz(@))
2 2 )) .
- g (5)
1+ 4rsin (%)

*

Again, applying the same method to Eq. (3), but now letting u™ = g**el(‘glﬁgzw‘“z) and

i(&1x+&py+32) Erx+Eay+Esz)

u™l = ge and dividing by ¢l gives

g(l - r(e‘i53h -2+ €i53h)) =1+ r(e‘i‘flh -2+ e"‘flh) + r(e‘igZh -2+ ei‘th)
1-4r+ r(e‘iélh + ei‘flh) + r(e‘igZh + ei‘th)
1- r(e‘i53h -2+ ei‘f?vh)

_ 1—4r+2rcos(&h) + 2r cos(&h) ,
B 1+ 2r—2rcos(&3h)

. 2 &k . 2 &h
B 1- 4r(sm (T) + sin (7))g**

1+4r sinz(%)

3%

4

g:

(6)

Substituting (4) into (5) and substituting the resulting expression into (6) gives the overall
magnification factor for the ADI scheme:

Y e A ) i i ) O i o A )

1+4rsin2(52ih) 1+ 4rsin (é; ) 1+ 4rsin (E; )
(7)
Letting A = sin (5; ) B= sinz(ézih),c = sz( ) C in Eq. (7) results in
_(1-4r(A+B)\(1-4r(A+C)\(1-4r(B+C)
8ercacs) = ( 1+4rC )( 1+ 4rB 1+4rA )

The scheme is conditionally stable if |g(€1, &o, 53)| <1 for some value of r and |g(£1, &, 53)| >
1 for some other value of r (this is the same as using different values of At in place of r,

since r = D? and & and D would be kept constant).

Now the scheme can be shown to be conditionally stable by letting A =B =C =1 in Eq.
(8) and then by finding one value of » which makes the magnification factor to become



less than one and then by looking for another value of » which makes the magnification
factor to becomes larger than one.

Therefore, when A = B =C =1, Eq. (8) becomes

1-8r\(1-8r\({1-8r
861,82, £9)] = (1 n 4r)(1 n 4r)(1 n 4r) (BA)

Now, putting r = 2 in the above gives |g(£1,52, 53)| = 2.744 > 1 implying that the scheme is
unstable.

Putting r = 0.5 in Eq. (8A) gives |g(£1, &, &3)| = 0125 < 1 implying that the scheme is stable.

Hence the scheme is conditionally stable, because by fixing / and D, it was possible to
find a time step At which made some mode become unstable. If one mode is unstable, the
overall scheme is also unstable. This result shows that the above given ADI scheme for 3D
is conditionally stable.

2.2 Part (b)

Expectation: Temporal accuracy is expected to be O(At) since at each 1/3 time step there
is one implicit step compared to two explicit steps. Starting from the main equations shown
in part (a)

implicit (backward Euler) explicit (2 forward Euler)
—_—

—N———
(I —rLyu* = (I +7L, + rLZ) u" 1)
(I - rLy)u** = +rL,+rL)u (2)
(I - rL)u™! = (I +rL, + rLy)u** (3)

There will be an O(At) error resulting from the application of Euler approximation to each
of the terms in each equation above. One of the implicit errors will cancel exactly with
one of the errors from the explicit part of the equation (due to sign difference), leaving an
extra O(At) error after each third step. Hence at the completion of one full time step, the
temporal error will be 30(At) or O(At).

Explanation: The derivation below follows the method explained in class for the 2D ADI
case, but being applied to the 3D case. Starting by pre-multiplying Eq. (1) by the operator
(I +rL, +rL,) gives

(I + rLy + rL)(I = rLyu* = (I + rLy + rL,)(I + rLy + rL, Ju"

But since (I + rL, + L) commuteﬂ with (I —rL,), then the two terms in the LHS of the
above equation can be interchanged giving

now replace this from (2)

(I-rLy) (I+rLy+rLyut = (I +rLy+rL)(I+ 1L, + rL,)u"

Replacing the term marked above by its LHS value from Eq. (2) yields
(L= rLy)(I = rLyJu™ = (I + rLg + rL,)(I + L, + rL, Ju"
Pre-multiplying the above by the operator (I +rL, + rLy) gives
(I+ rLy + 1L, )(I = rL)(I = rLy Ju™ = (I + rLy + rLy J(I + rLy + rL)(I + rLy + rL, Ju"

But since (I +rL, + rLy) commutes with (I - er)(I - rLy) the above can be written as

replace this from (3)

(L= rLy)(I =Ly )(I + rLy + rLyJu= = (I + rLy + rLy, )(I + rLy + rLy)(I + rLy + 1L, )Ju”

2To show these operators commute, similar argument can be made as was done for the 2D case in class,
which is by saying that each operator L, L,, L. on its own commutes with the other 2, hence the result will
follow.



Replacing the term marked above by its LHS value from Eq. (3) gives
(= rLy)(I = rLy (I = rL)u™Y = (I + rLy + 1Ly )(I + rLy + rL)(I + 1Ly + rL, Ju"

Expanding all terms by multiplying all operators and simplifying the result and using
L=L,+L,+L, gives the following

(1= 7L+ r2(LyL, + L,L,) + r*LyL, = PL,L, L, Ju"™* = (4)
(I+ 7L+ 7L +3r2L,Ly +3r2L,L, + 3r2L,L, + 3L, L, )u" + (H.O.T.)
Where H.O.T. are terms from operators of order 2 and higher. These terms produce errors
of order O(Atz), O(At3) and higher. Moving all these terms to the RHS simplifies Eq. (4)
to the following
(I - rLyuw™t = (I + 7L + rL)u" + O(A2) + O(A£) + ---
u™ — = L™ 4 2rLu™ + O(Atz) + O(At3) + oo

. DAt
Since r = = the above becomes

it~ = DA DAYy O(A2) + O(AR) + -
3 3

Dividing the above equation by At gives

n+l _ . n D 2D
% = gLu’”l + ?Lu” + O(At) + O(Atz) + .-

n+1

Now | adding %Lu”+1 and subtracting %Lu and | subtracting %Lu” and adding %Lu”

from the RHS of the above equation gives

u*l—_yn D D 2D D D D
_ 1 1 1 2
T = ELMI/H— + gLTx[TH— + ?Lu” - gLu” + gLT/ln — gLMrH— + O(At) + O(At ) + -
C-N
un+1 —yh

¥ %(Lum + L) + %(Lu" — Lum) + O(AH) + O(AL) + -

The C-N scheme is known to be O(At2 + hz). Multiplying the term %(Lu” - Lu”*l) by % in
the above yields

from C-N part

At

Uy = %Au + O(AtZ) + O(hz) + ZL(un v

n+1 )
T) + O(At) + O(AR2) + ---

Taking the limits At — 0 results in

still O(A)

from C-N part

U = %Au +0(AR) + O(h2) +

At

At 2) 4 ...
6 Pyaat O(A) + O(A#2) +

from C-N part

= %Au + O(Atz) + O(hz) + O(At) + O(Atz) +
—_—
= %Au + O(hz) + O(At) +O(At2) + e

Since in the above, the dominant temporal error term is O(At) the scheme is a first order in time accurate.
It is also a second order in space accurate.




3 Problem 2

2. Consider

up =0.1Au on Q= (0,1) x (0,1)
%:Oonaﬁ

u(z,y,0) = exp (—10((z — 0.4)2 + (y — 0.4)2))

(a) Write a program to solve this PDE using the Peaceman-Rachford
ADI scheme on a cell-centered grid. Use a direct solver for the
tridiagonal systems. In a cell-centered discretization the solution
is stored at the grid points (z;,y;) = (h(i — 0.5), h(j — 0.5)) for N N
i,j =1...N and h = 1/N. This discretization is natural for
handling Neumann boundary conditions, and it is often used to
discretize conservation laws. At the grid points adjacent to the
boundary, the one-dimensional discrete Laplacian for homoge-
neous Neumann boundary conditions is

—u1 + u2

Uxx(l'l) ~ e

(b) Perform a refinement study to show that your numerical solution is second-order accurate
in space and time (refine time and space simultaneously using At = h) at time ¢ = 1.

(¢) Show that the spatial integral of the solution to the PDE does not change in time. That
is

d
— dv = 0.
;v 0

(d) Show that the solution to the discrete equations satisfies the discrete conservation prop-

erty
n __ 0
Z Uij = Z Ui
i,J i,J

for all n. Demonstrate this property with your code.

Figure 2: Problem description

The following diagram shows the discretization using cell-centered scheme for the case of
N = 4. The center of the cells moves closer to the physical boundaries of the unit square
as N becomes larger.



Example for N=4
- 1 >
7y T T T A
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[ | |
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Figure 3: Grid used

The physical domain is always the unit square x =0---1, y = 0--- 1, but the discrete solution
domain is the one at corners of the red grid above. A small example is used below to help
determine the layout of the operator used in the direct solver. The 2D ADI scheme for the
diffusion problem is

DAt DAt
20 o o 20 o s
DAt DAt
-2 o 1 2

10 1 -2 1 0 O

Where L, =L, = ;3

for the case of homogenous Neumann bound-

0o 0 0 1 -2 1
(0 0 0 0 1 -1
ary conditions. The solution given below uses an overall L operator which is used by the
direct solver. Another approach would have been to use the above L,, L, operator, and
iterate over each each row and column applying the direct solver each time.

The following derives the overall L operator used. Eq. (1A) can be written as

* * * n n n
. DAtuiy;—2ujtujg; o DAFU g~ 2uf g,

i 2 A 2
n+1 n+1 n+1 * * *
DAt U3 = 2™ +uiiy . DAtui ;= 2up+ g,
il =¥+
) 2 h2 1 2 hz

letting r = % and simplifying the above gives

ujj(l +2r) — Ui g ;= T j = u?j(l -2r) + TMZ]-_l + ru;-fjﬂ (1)
u?j“(l +2r) — ruﬁ]*_ 1- V”thrll = (1 =2r) +ruly 4 rufy, (2)

The above finite difference equations are applied at all the grid points, except for those for
the rows and columns at the boundaries. In order to determine the equations to use for
the boundary grid points, the approximation L, ~ _M;W is used. Similar one is used for

Ly. The result of using the above approximation is the following finite difference equations




used for the boundary grid points

* * n n
DAt =W + Uiy DAt~ + Ui j4q

n

A I A R
g1 DAL U DAL+,
M T 2t T
Simplifying the above gives
ufj(l +7)— ru;l,j = ug-(l -7+ rul*f],rl (1A)
u?].“(l +7)— ru;f]f:rll = (L =7) + 1ty (2A)

To help obtain L, a small example is used to help see the structure of the matrix. This
small example exhibits all the needed information to generate the pattern for L from. Using
n, = n, = 4, the grid becomes

h
4
U(L,4) uea4) | uE4 | usae
o o o o
3
U(L,3) ue3) | uE3) | uEes)
o o o o
;2
index U(1,2) U(2,2) u@s,2) u(4,2)
A o o o o
1
U VrE N RVERD ug@.1)
0 1 | 2 3 4
_—>

index

Figure 4: Updated Grid



Eq. (1) and (1A) are now written for all the nodes resulting in the following 16 equations

uy (1 +7r)—rup
uy (1 +2r) —rujq —ruz,
uz (1 +2r) —rupq —ruy
Uy (1 +7)—ruy
Ui, (1 +7r) —rus
Uz (1 +2r) —ruj, —ru3,
uzp(1+2r) —ruz, —ruy,
(1 +71)—ruj,
uis(1 + 1) = rup,
ups(1+2r) —ruj 5 — ruz 5
uzs(1+2r) —ruj 5 — ruy 4
Uy (1 +7) —ruz,
Ui (1 +7)—rupy,
ung(1+27) —ruj 4 —ru3 4
uzg(1+2r) —ruy 4 — ruy 4

Uy (L +7)—ruzy

ufy (L =r) +ruf,

us (1 —r) +ruy,

=uy (1 —7r)+ru,

uy (1 =r) +ruy,

n
upp(1=2r) +ruj +ruj

= up,(1-2r) + rugll + ru§,3

=um(l-2r) + ”“g,l + rug3

n n n

ufs(1-2r) + ru’f,2 + ru’f/4

= up(1-2r) + 7’“3,2 + rugl4

— n n

uys(1-2r) + ruZ/z + ruZA

ufy(L =r) +rufy

= w1 1) + ruy

= uz,(1 —7) + ruj;

uys(1 —7) + ruy,

In matrix form, the above gives Au* = b which is then used to solve for #*. The matrix A
is now written out. To save space and to allow the matrix to fit on the page, the following
terms are used

DAt
T
a=1+r
p=1+2r
y=1l-r

6=1-2r
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A X
a -r 00 0 0 0 00 0 0 0 0 0 0 0luy
—+ B -r 00 0 0 0 0 0 0 0 0 0 0 O0uy
0O -+ f -r 0 0 0 0 0 0 0 0 0 0 0 Ofu
0 0 -ra 00 000 O0O0 0 0 0 0 Ofu,
0 0 0 0a -+ 000 O0O0 0 0 0 0 O0fu,
0 00 0 -r B -0 000 0 0 0 0 O0fu,
0 00 00 - B -0 00 0 0 0 0 O0fu,
0 0 000 0O - a 000 0 0 0 0 0lu,
00 0 0 0 O0 0 0 a -0 0 0 0 0 O0fuw]
0 0 000 0 0O 0 - g -0 0 0 0 0w,
00 00 0O O O OO0 - g -0 0 0 0w,
00 000 0O 0O 0 0 0 - a 0 0 0 0Jus;
00 000 0O 0 O0O0 0 O0 0 a -r 0 O0fu,
00 000 0O 0 0 0 0 0 0 —r B —r 0w,
00 00O O O OO0 O0 0 0 0 -r g -r|lu,
(00000 00 0 0 0 0 0 0 0 0 —r auy
b
[y 000 00000000 O0O0 Ofuy
00007 000O0GO0OGO0O0 0 0fuf
00y 0007 00O00O0O0GO0O0 0 0fuf
000y 000+ 000O0GO0O0 0 O0fuf
r 0006 0007 000000 Ofuf
0r 00060007 00000 0fu,
00r 0006000 000 0 O0ful,
000700060007 r 000 Ofuf 7
00007 000G6GO0O0O0O r 00 O0fuy
00000 TFO0O0O0®6O0 00 r 0 0|u,
0000O0O0TF0O0O0GEOO0O0 0 r 0fuiy
0000000 T 000600 0 rllu,
000000O0O0TXFO0O0OTYYO 0 O0fuy
0000O0O0O0O0O T 000 y 0 0fui,
0000000000 T 000 y Ofut,
00000000000 T 00 0 yul

A sparse direct solver can now be used to solve for u".

Starting the second ADI step to find u"*1, the process is similar to the one shown above,
but the equations are written column-wise instead of row-wise as was the case earlier. For
non-boundary grid points the following equation is used

n+1 n+1 n+l _ * *

And for the boundary grid points the following equation is used

1 1 * *
u?j+ 1+7r)- ruZ;:rl = ui]-(l -7)+ Tl j



Applying the above to each grid point results in the the following 16 equations

WA + ) - ruig!
b (1 + ) — ruly!
b (1 + ) - ruly!
qul(l +7) - ruZ{l
Wit (1 +2r) — ruf it — !
wt(1 +2r) - rugjl - ruggl

uzp(1+2r) —ruz; —ruj,
uyp(L+2r) —ruyy — iy 5
us(1+2r) —ruj, —rujy
ups(1+2r) —ruz 5 —1us 4
uzs(1+2r) —ruz, —ruz,
us(1+2r) —ruy, —ruy 4
ui (1 +71) —ruj,
Uy, (1 +71) = rup,
Uz (1 +7) —ruz,
Uy (1 +7) = ruy,

The above equations are now written as Au = b but the unknowns are listed column-wise

=uj (1 =7r)+ruy
=uy (L =2r) +rujy +ruz,
= uz (1 —2r) +rup | +ruy,
=uy(1—7r)+ruy
= upp(l —7) +rup
= upy(1 = 2r) + ruj, + ruz,
= ugy(1 = 2r) + rup, + ruy,
= (1 —71) +ruf,
ufs(1 = 1)+ rup,
ups(1 = 2r) +ruj 5 + rug,
uzz(1 = 2r) + ruy 5 + ruj
uys(1 = 1)+ ruz,
=uj,(1-7r)+ruy,
upg(1 = 2r) +ruj 4 +1uz,
uzg(1 = 2r) +ruy 4 + rug,

(L —71) +ruzy,
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in order to keep the tridiagonal form. The resulting matrix A is the following

A ,—3(“
a == 0 0 0 00 00 0 0 0 0 0 0 0fug?
—+ B -r 0 0 0 0 0 0 0 0 0 0 0 0 0wy
0O -+ B -r 0 0 0 0 0 0 0 0 0 0 0 O[u
0 0 -ra 0 0 0 0 0 0 O0 0 0 0 0 Ofuf!
0 0 0 0a -0 0 000 0 0 0 0 Ofu
0 00 0 -r B -0 0 0 0 0 0 0 0 Ofu
0 00 00 -+ B -0 0 0 0 0 0 0 Ofu?
0 0 00 0 O -~ a 0 O0O0 0 0 0 0 Ofui
0 00 00 0 0O a--020 0 0 0 Ofug"
0 0 000 0 0 0 - B -0 0 0 0 Ofug
00 0 0 0 0 0 0 0 - B —r 0 0 0 OJust
0 0 00 00O O OO0 O0 - a 0 0 0 Ofu
0 0000 0 0 O0 0 0 0 0 a - 0 O[uye
00 0 0 0 0 0 0 0 0 0 0 —r B - 0fu
00 00 0O 0O 0O 0 O0 0 0 0 0 -r p —r|u
0 0 000 0 0 0 0 0 0 0 0 0 —r auf
b
[y 000 700000000 GO0 0 Ofu]
0y 0007 0000O0O0O0O0 0 0|u
00y 0007 0000 O0O0O0 0 0ful
000y 000 000000 0 0fu
00060007 000000 Offuy
07000060007 0000 0 0fuy
00 r 0006000+ 000 0 0fuy
000000600077 00 0 0fu, -
00007 000O6O0O0O0 T r 00 0fu
0000070006000 r 0 0fu
0000O0O0TTO0O0O0®E6O00 0 r 0fuy
0000O0O0OTO0O0O0E6 000 r|u
000000O0O0TXO0O0O YO0 0 0fuy
000000O00O0O0TT 0O0O0 y 0 0|u
0000O0O0O0O0O0O0 T 000 y 0|uj,
00000000000 00 0 y|u

Now u"*! is solved for using a direct sparse solver. The above 2 steps are repeated for each

one time step. One can see that the A matrix is the same for both solving Au* = b and
Au™?! = b. Therefore, in the implementation only one A and one B matrix was allocated
initially and used for solving for u* and u"*!. Both matrices (A and B) are created as sparse
matrices to save storage. The A matrix represent the implicit part of the scheme, while the
B matrix for the explicit part.

Since the edges of the domain are insulated, no concentration will diffuse to the outside.
Therefore the result of diffusion will be that the concentration will diffuse internally and
will spread out. Therefore, at steady state as t — oo the solution is known and given by

h, h

u(x,y,oo): ffu(x,y,O)dxdy

hj2 h/2

The following plot shows the solution at f = 1 second with the steady state solution displayed
as the blue horizontal flat surface superimposed on the same plot. The steady state solution
is what would result if run time was made to be very long.
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Figure 5: steady state solution
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To verify that the numerical solution converges to the steady state solution, the plot below
was generate which represents the solution of the above problem taken at f = 4 seconds.
The gap in the diagram below is the difference between the steady state solution and the
solution at t = 4 seconds. This gap became smaller the longer the time to run is made

(keeping everything else fixed).



15
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solution at time = 4.000000

o _..<-Numerical solution att=4

02

Steady state solution 0

Figure 6: steady state solution

3.1 Part(b)

Refinement study was carried out to show that the 2D ADI scheme is a second order
accurate in time and in space. The method used successive errors between numerical
solutions. The algorithm of the refinement study is given below at the end of this part of
the problem.

Recalling that In HW1, the spatial grid was divided by half each time. However, in this
problem, since cell centered grid is used, # and At were divided by 3 each time. This was
done so that the new grid will contain some grid locations that are still aligned in the same
physical location as the previous step. The error between both solutions is obtained by
taking the difference of only these points that are aligned. These points will be the grid
point of the coarse grid. The following diagram illustrate this for the case of n = 3 and
n=9

Showing relation between successive grids
Error is measured by comparing solution at only the points that are aligned
across both grid
o] ] o @ @ (€]
O o o [} €] €]
(o] (o] o @ (€] (€]
Initial grid, n=3 Second grid (in red), n=9

Figure 7: case of n =3 and n =9

The result of the refinement study shows second order accuracy as the error ratio came out to be 9.

Below is the result obtained. In addition to the ratio table, it can be seen that the slope of
the line in the log plot is 2, implying the scheme is second order accurate.
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Refinement study result, HW 2, problem 2, showing second order accuracy

# N delt h Ju| mean(u) le] ratio |u steady|
2 9 0.11111 0.111111 0.293146 0.290318 1.19490e-002 1.000000 0.289080
3 27 0.03704 0.037037 0.293146 0.289369 1.23779e-003 9.653448 0.289080
4 81 0.01235 0.012346 0.293146 0.289262 1.36668e-004 9.056912 0.289080
5 243 0.00412 0.004115 0.293146 0.289251 1.51752e-005 9.006018 0.289080
6 729 0.00137 0.001372 0.293146 0.289249 1.68601e-006 9.000673 0.289080
EDU>>
<} <Student Version> Figure 8 - O] x|
Hle Edit View Insert Tools Desktop Window Help ¥

NEde || RROB9EL-E0HaD
refinement study result,
log vs successive errors difference

3 — TS
FEH EFREE S
5

...............

log(error norm)

Figure 8: refinement study plot

3.2 Refinement algorithm

The following is the general outline of the algorithm used in the refinement study. The
important part was to make sure when finding the error between the current and last
solution, is to use the same physical locations that are aligned between both grids, and to
use the coarse grid spacing when determining the grid norm of the error grid.

last error =0
h =1/3
last_h =h
delt =h
last u = Solve 2D ADI(h,delt)
LOOP
h = h/3
delt = h

current u = Solve 2D ADI(h,delt)

-- now extract from current u only locations that aligned with last_u grid
current_u_mapped = extracted_u(last_u)

error = last_h * norm(last_u - current_u_mapped,2)
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ratio = last_error/error

last_h = h
last_error = error

loop_counter++

IF loop_counter > some_maximum THEN -- normally 5,6 iterations is enough
EXIT LOOP
END IF
END LOOP
3.3 Part(c)

The spatial integral represents the total concentration in the domain. Since the boundary
are insulated, matter will only diffuse internally and no loss will occur to the outside. Hence,
from the conservation of mass principle, initial concentration will remain the same, but
will spread out to the mean in space. Therefore, it is known physically total concentration

will not change with time
d
E!u(x,y, t)dA =0

The problem is asking to show this mathematically.

I= %fu(x,y, t)dA
Q

:DfAudA

Since u; = DAu, then

92u 92u
But Au=—=+ el hence

(L)- f P

To show that I = 0, the above is written as

( )I—ff dxdy+ff dxdy

égw

y=0x=0 y=0x=0
1 1
%u
:f[.f&—xzdx)dy+f fazdydx (1)
y:O =0 x=0 \y=0

By applying the fundamental theory of calculus (or using integration by parts) results in

However %J is the normal derivative at the right boundary, and a—ZJ is the normal
x=0

=1
derivative at the left boundaries. These are both zero due to the homogenous Neumann
boundary conditions given in the problem statement. therefore

1
82u
| Fe= )
x=0
Similar argument shows that
1
%u
J 5 =0 3)
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Substituting Eqgs. (2) and (3) into (1) gives

Therefore p
Efu(x,y, t)dA =0
Q
3.4 Part(d)
The finite difference equations for the 2D ADI scheme is given by
DAt '\, DAt \
I—TLxu=I+TLyu (1)
DAt DAt
(1 - TLy)u”“ = (1 + TLx)u* (2)

Summing the equations over all entries in the 2D solution domain gives

(- = S e )

DAt DAt )

MRS SHTEENDIEE

In the above i represents the row number and j represents the column number of the
solution grid u. The above two equations can be rewritten as

ZZMZJ EZLX Uij 22u1]+ EZLuZJ (1B)
22 1 DAtEZLu”“ zzuﬂ%zzm” (2B)

(2A)

DAt DAt

Looking at the term Z Z L, u from Eq. (1B) and rewriting this as follows

Z ]2 Lytf; = Z[; Lxu;j]

L, operator applied to i'row
—N—
= [Z Lx”z‘j]
i j

In other words, Z Luj; is the result of applying L, to each entry in the i row, then summing
the result.

Therefore, L, is applied to entry u*(i,1) then to entry u*(i,2) and so on, until the last entry
in the row which is u*(i, n).

How to find the result of applying L, on each row? Given that L, for 1D with homogenous
Neumann boundary conditions is

-1 1 0
1 2 1 0
110 1 -2 1
L=
0 0 2 1
00 0 0 1 -1
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Then applying the operator to each entry in the i row gives the following

j=1 j=2 j=3 4 5 6 7 oo n-2 n-1 j=n
—Ujp  FUpp
+uy  2up  Fup
+up 22Uz Uy
‘U,z 2uy s
(ZJqu§]: +uy  2ui Fugg
]

s 2 iy

TUin-3 _2”1‘,71—2 TUin-1
g 2Ujpg iy
+ui,n—1 _ui,n
In the above, L, was applied directly on the i row. The first line above shows the column

index j which goes from 1--- n. The following diagram is made to help illustrate the above
process, showing how L, and L, are applied to the solution in the u matrix.

— J(column index) — J(g;leh\nindex)

¢ Taes

|
| (row index) I (row index |
|

I
!
!

Apply Ly on a row\\ \l_ O-00O- —— _@_I \’

y y
T

! L2

X -
X Apply Ly on a column

~==-0 00

|
|
|
|

Graphical illustration applying 1D laplacian for ADI scheme

Figure 9: Illustrating the above process

One can see now that thesum is zero due to terms cancellation. The sum is zero in this
case due to the homogenous Neumann boundary conditions which caused the first and
last entries to cancel out.

Using the same procedure, then applying L, to each column of " will also result in zero
sum, since the north and south boundaries also have homogenous Neumann boundary
conditions. Since boundary conditions do not change going from u* to u"*!, the same result
is obtained when applying L, operator to each column of u"*!. From the above discussion,
it is found that

i

Z 2 Lyu} =0
Z]Z lLyu?]-” =0
] EI DLt =0
i
Substituting the above 4 equations back into Egs. (1B),(2B) gives
IDEPWIY ac)
; Ei]]u;;.“ = §]] ;u;j (2C)

2 ) Lai =0
]



20

Substituting Eq. (1C) into (2C) gives
D" 1= juyg"
i i

Since the above is valid for any n (boundary conditions do not change with time) then
setting n = 0 in the above results in

1_ 0
) Uy = ) Ui
ij ij
Similarly, setting 7 =1 results in
2 _ 1
2 U = 2 Ujj
ij ij
and so on all the way any 7 value. Hence in general the following result is obtained
— -1
S-S
ij ij
By repeated back substitution on the RHS, the following is obtained
- 0
Z ujj = Z Ui
ij ij
Therefore, the discrete conservation property is satisfied.
Verification in code To verify part(d) in the code, a table was generated during one

run, where Zij uj; was calculated at the end of each time step using the Matlab command
sum(sum(u)), and this value was printed at each time step. The result shows that this value

is | constant | implying the discrete conservation property is satisfied. Here is the result

below

current_time  sum(U(current_time)

0.00000 1897.85094
0.01235 1897.85094
0.02469 1897.85094
0.03704 1897.85094
0.04938 1897.85094
0.06173 1897.85094
0.07407 1897.85094
0.08642 1897.85094
0.09877 1897.85094
0.11111 1897.85094
0.92593 1897.85094
0.93827 1897.85094
0.95062 1897.85094
0.96296 1897.85094
0.97531 1897.85094
0.98765 1897.85094
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4 Problem 3

(a)

for all n. Demonstrate this property with your code.

3. The FitzHugh-Nagumo equations

%:DAv—l—(a—v)(v—l)v—fw%—I
ow
E—e(v—’yw).

are used in electrophysiology to model the cross membrane electrical potential (voltage) in
cardiac tissue and in neurons. Assuming that the spatial coupling is local and passive results
the term which looks like the diffusion of voltage. The state variables are the voltage v and
the recovery variable w.

Write a program to solve the FitzHugh-Nagumo equations on the unit square with
homogeneous Neumann boundary conditions for v (meaning electrically insulated). Use
a fractional step method to handle the diffusion and reactions separately. Use an ADI
method for the diffusion solve. Describe what ODE solver you used for the reactions
and what fractional stepping your chose.

Use the following parameters a = 0.1, v = 2, ¢ = 0.005, I =0, D = 5-107°, for h = 0.01
and initial conditions

v(x,y,0) = exp (—100(:132 + y2))
w(zx,y,0) =0.0.

Note that v = 0, w = 0 is a stable steady state of the system. Call this the rest state.
For these initial conditions the voltage has been raised above rest in the bottom corner
of the domain. Generate a numerical solution up to time ¢t = 300. What time step did
you use and why? Visualize the voltage and describe the solution.

Use the same parameters from part (b), but use the initial conditions
v(z,y,0) =1—-2x
w(z,y,0) = 0.05y,

and run the simulation until time ¢ = 600. Show the voltage at several points in time
(pseudocolor plot, or contour plot, or surface plot z = V(x,y,t)) and describe the
solution.

The dynamics of excitable media is a fascinating subject from both the mathematical
and physiological perspectives. The electrical patterns that you simulated in part (c)
are related to cardiac arrhythmias. For more information see the book Mathematical
Physiology by Keener and Sneyd.

Just for fun, (there is no need to turn this in or even do it) try to find an input current
I(z,y,t) in the form of a short pulse (e.g. I(z,y,t) = f(z,y)exp (—r(t — tf)))) so that
the normal electrical wave from part (b) degenerates into an arrhythmia like that from
part (c¢). Then try to find a pulse of current that will eliminate the arrhythmia. This
second task may be easier. What to the doctors on TV do?

Figure 10: Problem statement

4.1 Part(a)

The equations to solve are the following

% =DAv+(@a-v)(v-1v-w+I
dw
= :e(v—yw)

The first PDE % = DAv + (a-v)(v-1)v —w + I was solved by the splitting method by

solving the diffusion equation% = DAv using ADI method separately and then by solving

the reaction (non-linear) equation i—i = (a-v)(v-1)v — w + I along with (Z—z: = e(v - yw)
separately. The following is a coupled first order non-linear differential equations system
(the reaction ODE is nonlinear in votage v)
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d
d—?:(a—v)(v—l)v—w+l
dw

Eze(v—yw)

The above system was solved using Runge-Kutta order 4. The following diagram illustrates

the time line for one full splitting step.

1

Reaction (RK-4) Diffusion (ADI) Diffusion (ADI) Reaction (RK-4)

t th tn+1
I
|
%;)
|

S SR

[

|

[

[
»"
>0

|

At At

S S

n_

|

[

[

|
0

[

|

At At

Splitting method time-line for solving the diffusion-reaction PDE on 2D

Figure 11: time line for one full splitting step

ADI was described in problem 2, and the same function was reused for this problem for
the diffusion solver. For solving the reaction system of equations, RK4 was implemented

as follows. define
fo,w)y=@-v)(v-1Nv-w+I

and also define
(v, w) = e(v - yw)

Therefore, the RK4 solver for the above system becomes

1
vl =0t + 6(’”1 + 21y + 2ms + 1my)

1
w”” =w" + g(kl + 2k2 + 2k3 + k4)

Where
my = Atf(v, w)
1 1
My = Atf(v + Eml,w + Ekl)
1 1
ms = Atf(v + Emz,w + Ekz)
my = Atf(v +ms, w + k3)
And

ki = Atg(v, w)

1 1
kz = Atg('U + Eml,w + Ekl)

2
ky = Atg(v + m3, w + k3)

1 1
k3 = Atg(v + =My, W+ Ekz)
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Another point regarding the splitting method. It was required to decide which splitting method to use.

Should a simple splitting, Strang splitting or the 2-step splitting method which was de-
scribed in class be used? To make sure the second order accuracy of ADI 2D in time is
preserved, simple splitting was not used (unless the operators commute, this would have
caused the scheme to become first order accurate in time). Instead, the two step splitting
method was used, as it was found to be simpler than Strang method to implement.

4.2 Part(b)

The program written in part(a) was run using the parameters given. The time step used
was set to be the same as the space step. This time step is recommended for the ADI
The diffusion solver as it is a second order accurate in time and space. This is the fast
system (the stiff part of the system), hence making the time step larger than the space
step would not give accurate results, even though it will remain a stable scheme. Keeping
the time step the same as the space step seemed to be a good choice, as it kept the
time resolution and the space resolution the same. The same time step was then used for

the reaction solver, as was required by the splitting method to keep each step the same
length.

The following shows the visualization of the voltage solution for up to 300 seconds as
required using the surf() command.
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Figure 12: visualization of the voltage solution for up to 300 seconds

The solution v(t) started from a peak value at one corner of the square. Shortly after, at
about 50 seconds, a wave started to form, the wave front became large and it spread out
and advanced with time. When the pulse reached the boundary on the other corner, it
started to diffuse and by t = 300 seconds, the pulse has completely disappeared.

4.3 Part(c)

The following is the result of the simulation for this part.
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Figure 14: Up to 300 seconds

In this simulation, the pulse that appeared after about 50 second, quickly became a spiral,
and did not appear to diffuse as was the case in part (d). At the end of the simulation, the

pulse was continuing to spiral in the same rotation direction it started with. The above
phenomena seem to be termed an arrhythmia pulse.

One common theme between part(c) and part (b), is the formation of a wave like motion

that traveles across the domain. The difference was in the shape of the pulse, the direction
it moves to and the amount of diffusion that occured.

5 Appendix

5.1 Problem 1 appendix

Derivation of ADI equations for 2D and 3D for the diffusion problem Given u; = Au
(D is assumed 1), then in 2D forward Euler (explicit) gives

wltt =t 92y 92\
- = — 4+ —
k (&x2 dy? )ij
While C-N method gives
u?j” —uj  1|(9%u .\ 92\ N %u N ou\"
ko 2[\ox®  oy? l Ix?  Jy?
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However, in ADI, the time step itself is divided by half, and in the first half step, one of
the spatial second derivatives is implicit while and the other spatial second derivative is
explicit. In the second half step, these are reversed.

implicit

A explicit
—_———

n 1
2 +5
wy "t -y (&zu)” :, (&Zu)”

k/2 dx? av?
/ i ¥
explicit implici
plicit
n+s IR e—
n+1 2 n+- n+1
- — — + | —
k/2 ox2 ). 2 ).
if ij
e. 9%u Uj1,;=2Uj+Ujs1 ] d%u U i1 =2+ 1 .
Writing —— =L, = ——5;—— and i L, = =——7——, the above 2 equations become
s s nts o nes
2 n 2 2 2 n n n
Wi = — Uy Upq;— 2uy; Uy N Ujiq = 20+ U
k/2 h? h?
1’l+1 71+1 71+1 }’H—1
n+l 2 2 2 2 n+l n+l n+1
Wi =Wy © Ui~ 2uy C A ug W = 2u g
k/2 h? h?
Moving all implicit terms to the LHS and rearranging results in
nts nts s
1 2 _ 2 2 no_n,n n
ner kUil T 2U T U ke ijq = 2uj + ugi g
U 2 _ — 1yt —
if 2 12 Ty 12
11+1 11+1 1’l+1
n+l _ n n+l n+1 1 2 2 2
i ki 2w gy _ ki 2uy T+ U
1 2 hz 1] 2 hZ

Hence, in operator form the above becomes

Ko\l [ K\
I- ELx ”ij =+ ELy ”ij
k k s
1 _

1
+ =
In the class notes, uj; was used to represent u?j ? but they are the same. The above is the
ADI scheme for 2D. The 3D equations are now derived. Since three different directions
exist now, the time step is divided into 3. This results in

. implicit explicit explicit
n+z 1
A3 \ox2) 2] \0dz2).
Y Y i
explicit implicit explicit
2 1
n+s n+s 1 2 1
3 3 +3 +2 +
U = U 2u\"3 .\ 2u\""3 . 2u\""3
A3 \ox?) 2. 9722 | .
Y Y Yy
explicit explicit implicit
n+1 ”+§ n+Z n+Z n+l
At3 \ox?). 2 ). 22 | .
Y Y 1

Similar to what done in the 2D case, the above are rearranged resulting in

DAt 1 DAt DAt

(1 - TLx)u’“s =+ Ly+ 5L |0 1)
DAt 2 DAt DAt 1

(1 - TLy)u”+3 =+ =5 L+ =L u'"s 2)
DAt DAt DAt 2

(1 - TLZ)u”” =|I+—5Le+ 5Ly u'"3 (3)




6 Matlab Source code developed for this HW
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6.1 nma_math228b HW2_prob2.m

function nma_math228b_HW2_prob2

% This function implements refinement study for HW2
% problem 2, Math 228B, Winter 2011, UC Davis

o

o

% By Nasser M. Abbasi

% set up initialization for the error table, such as headings
% and formating

close all;

% for formating of error table

titles = {'#','N','delt','h',"'|ul’', 'mean(u)','lel|', ' 'ratio'};
fms = {'4','qa','.6f','.5f','.6f"',' . 5f"',"' . de',"' .5f"'};

wid = 13;

filelID = 1;

% use 8 runs, and allocate the table to store the error and ratios
N=5;
table=zeros(N,8); % #, t, h, |ul,|u-u_last|, ratio, N, mean(u), |exact|

% Initialize space and time steps.
grid_size = 9;

hl = figure();

D 0.1; Y%diffusion constant
time_to_run = 1; 7 1 second

for n = 1:N
% Simulatiously divide space step and time step.

grid_size = grid_size * 3;
h = 1/grid_size;
k = h;

[u,u_steady_state] = solve_2D_diffusion(grid_size,h,k,D,time_to_run) ;

7% the numerical solution now is stored in u. Make

% a new entry in the error table for this iteration.
table(n,1) = n;

table(n,7)
table(n,8)

grid_size;
mean(mean(u)) ;

table(n,2) = k;
table(n,3) = h;

table(n,4)

h*norm(u(:),2); 7% use grid 2-norm

if n>1
table(n,5) = abs(table(n-1,4)-table(n,4)); %e
%table(n,5) = h*norm( u-u_steady_state,2); %e

if n==2

table(n,6)=1;
else

table(n,6) = table(n-1,5)/table(n,5); %e ratio
end
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[(hd,bdy]=nma_format_matrix(titles,
[table(2:n,1) table(2:n,7) table(2:n,2) table(2:n,3) table(2:n,4) tabl
wid,fms,fileID,true );

clf(hl);

set (0, 'CurrentFigure',hl);
ax = axes();

set(hl, 'CurrentAxes',ax);
cla('reset');

text(.1,.60,bdy, 'FontSize',10);
set(ax, 'YTick', [1);

set(ax, 'XTick',[1);

text(.1,.9,hd, 'FontSize',10);
title('result of refinement study');
drawnow() ;

end
end

% The refinment study is completed. Generate plots and error table

h2 = figure();

ax2 = axes();

set (0, 'CurrentFigure',h2);
set(h2, 'CurrentAxes',ax2);
cla('reset');

set (0, 'defaultaxesfontsize',8) ;

loglog(table(2:end,3) ,table(2:end,5),'-d"');

xlabel('log(h)', 'FontSize',8);

title({'refinement study result, ';'log vs successive errors difference'},...
'FontSize',8);

ylabel('log(error norm)','FontSize',8);

grid on;

end

function [u,u_steady_statel=solve_2D_diffusion(...
grid_size,...
h,... % space step size
k,... % time step size
D,... % diffusion constant
max_t... J, maximum time to run solver for

)

n = grid_size-2; Jinternal nodes

ic = @(X,Y) exp( -10*%((X-0.4).72 + (Y-0.4).72 )); % initial data
[X,Y] = meshgrid(h/2:h:1-h/2,1-h/2:-h:h/2); 7, coordinates

u_mean = quad2d(ic,h/2,1-(h/2),h/2,1-(h/2));

%u_mean = quad2d(ic,0,1,0,1);

%hic= @(X,Y) -exp( -(X-0.25).72 - (Y-0.6).72 );

/» create sparse matrices for A and B (implicit and explicit) see HW report
A = lap2D_diffusion_ADI_A(n,D,k,h);
A_RHS = lap2D_diffusion_ADI_A_RHS(n,D,k,h);

u = ic(X,Y); % initial U
u_steady_state = zeros(size(u));
u_steady_state(:,:)=u_mean;
u_max = max(max(u));

u_min = min(min(u));

e(2:n,8) tat
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hi figure(;
current_t = O0;
done false;

while not(done)

% solve for Ux

tmp = reshape(flipud(u(2:end-1,2:end-1))',n"2,1);
A\ (A_RHS*tmp) ;

u(2:end-1,2:end-1) = flipud(reshape(sol,n,n)');

sol

%update the boundaries
u = update_BC(u);

% solve for U_n+1

tmp = reshape(flipud(u(2:end-1,2:end-1)),n"2,1);
sol = A\ (A_RHS*tmp) ;

u(2:end-1,2:end-1) = flipud(reshape(sol,n,n));

u = update_BC(u);

set (0, 'CurrentFigure' ,hl);

surf (X,Y,u);

colormap cool;

title(sprintf('solution at time = %1.3f, D=J,.3f, N=Yd\nsteady state=),1.4f, hs
current_t,D,grid_size,u_mean,h));

hold on;
mesh(X,Y,u_steady_state);
zlim([u_min u_max]);
drawnow() ;

hold off;

%update current time and check if reached end of time
current_t = current_t + k;
if current_t > max_t
done = true;
end

end
close(hl);
end

function A=lap2D_diffusion_ADI_AC(...

n, ... %size of matrix (1D size)
D, ... %diffusion constant

k, ... %time step

h) hspace_step

= Dxk/(2*h~2);
e = ones(n,1);
B = [-r*e (1+2*r)*e -r*e];
Lx = spdiags(B,[-1 0 1],n,n);
Ix = speye(n);
A = kron(Ix,Lx);

% adjust A, see HW report

pos = 1:n:n"2;

for i = 1:length(pos)

HL.5E', ...



A(pos(i),pos(i))=1+r;
end

pos = n:n:n"2;

for i=1:length(pos)
A(pos(i),pos(i))=1+r;

end
end
A —
function A=lap2D_diffusion_ADI_A_RHSC(...
n, ... %size of matrix (1D)
D, ... %diffusion constant
k, ... %time step
h) %space_step
r = Dxk/(2*h"2);

e = ones(n”~2,1);
B = [r*e (1-r)*e rxe];
A = spdiags(B,[-n 0 n],n"2,n"2);

%adjust matrix, see HW report

pos = n+l:n"2-n;

for i=1:length(pos)
A(pos(i),pos(i))=1-2xr;

end

end

R —

function u = update_BC(u)
u(l,2:end-1) = u(2,2:end-1);
u(end,2:end-1) = u(end-1,2:end-1);
u(2:end-1,1) = u(2:end-1,2);

u(2:end-1,end)

u(2:end-1,end-1);

u(i,1) =u(1,2);

u(end, 1) = u(end-1,1);
u(end,end) = u(end,end-1);
u(1,end) = u(l,end-1);

end
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