Due Thu June 2.

Here's an integrative project based on a technique developed by Eric Polizzi ("Density-matrix-based algorithm for solving eigenvalue problems", Phys. Rev. B, 115112, 2009).

Goal: Suppose you have a real symmetric matrix A that is too big to write, but for which you could solve $Ax = b$, e.g., by using multigrid. For such a matrix, finding its eigenvalues and eigenvector with a method like QR is impractical: you can't even create the necessary data structures because of the size of the problem. For this matrix, we wish to find all eigenvalues in a given range $(\lambda_{\min}, \lambda_{\max})$ and the associated eigenvectors.

The technique presented here uses lots of other methods

- An iterative approach like multigrid to solve $Ax = b$.
- The QR method for eigenvalues
- Gauss-Legendre quadrature
- Gram-Schmidt orthogonalization

and the theory makes nice use of the Cauchy integral formula!

Some theory

Fact 1: In the complex plane, Cauchy's integral formula says

$$
\frac{1}{2\pi i} \oint_C \frac{dz}{z - a} = \begin{cases} 0 & a \notin C \\ 1 & a \in C. \end{cases}
$$

That is, if complex point *a* lies in the closed contour *C* in the complex plane, the integral is 1. Otherwise, it is zero.

Fact 2: Real symmetric matrix **A** is diagonalizable,

 $\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$

and its eigenvectors can be made orthornormal so the decomposition

$$
\mathbf{A} = \mathbf{X} \mathbf{\Lambda} \mathbf{X}^T
$$

exists. Λ is diagonal and real, and **X** is $N \times N$ and real.

The matrix function

$$
\mathbf{F}(\mu) = \mathbf{A} - \mu \mathbf{I} = \mathbf{X}(\mathbf{\Lambda} - \mu \mathbf{I})\mathbf{X}^T
$$

is real and symmetric, and matrix $(Λ – μI)$ is diagonal. and

$$
\mathbf{F}(\mu)^{-1} = \mathbf{X} \text{diag} ((\lambda_1 - \mu)^{-1}, (\lambda_2 - \mu)^{-1}, ...) \mathbf{X}^T
$$

Fact 3: Think of \mathbf{F}_{ij}^{-1} as being

$$
\mathbf{F}_{ij}^{-1} = \sum_{k} \mathbf{X}_{ik} (\lambda_k - \mu)^{-1} \mathbf{X}_{kj}^T = \sum_{k} \mathbf{X}_{ik} (\lambda_k - \mu)^{-1} \mathbf{X}_{jk}
$$

or, if column k of matrix \bf{X} is eigenvector \bf{x} _k, then

$$
\mathbf{F}^{-1} = \sum_{k} \mathbf{x}_{k} (\lambda_{k} - \mu)^{-1} \mathbf{x}_{k}^{T}.
$$

Fact 4: Combine facts 1 and 3:

$$
-\frac{1}{2\pi i}\int_C d\mu \mathbf{F}(\mu)^{-1} = \sum_{k|\lambda_k \in C} \mathbf{x}_k \mathbf{x}_k^T.
$$

Fact 5: The matrix $\sum_{\sum_{k} | \lambda_k \in C} x_k x_k^T$ has rank equal to the number of eigenvalues in the contour C . Survey as that number was M. Then if **V** were an $N \times M$ mardom contour *C*. Suppose that number was *M*. Then, if **Y** were an $N \times M$ random matrix,

$$
\mathbf{Q} = -\frac{1}{2\pi i} \int_C d\mu \mathbf{F}(\mu)^{-1} \mathbf{Y}
$$

would create an $N \times M$ matrix Q in the column space of the M eigenvectors of A associated with eigenvalues in the contour *C*.

Fact 6: Symmetry can be used to express the contour integral as an integral over

only half the contour:

$$
Q = -\frac{1}{2\pi i} \oint d\mu \mathbf{F}(\mu)^{-1} \mathbf{Y}
$$

\n
$$
\mu = \bar{\lambda} + re^{i\theta}
$$

\n
$$
Q = -\frac{1}{2\pi i} \int_{-\pi}^{+\pi} d\theta r i e^{i\theta} \mathbf{F}(\bar{\lambda} + re^{i\theta})^{-1} \mathbf{Y}
$$

\n
$$
Q = -\frac{1}{2\pi i} \int_{0}^{+\pi} d\theta r i e^{i\theta} \mathbf{F}(\bar{\lambda} + re^{i\theta})^{-1} \mathbf{Y} - \underbrace{\frac{1}{2\pi i} \int_{-\pi}^{0} d\theta r i e^{i\theta} \mathbf{F}(\bar{\lambda} + re^{i\theta})^{-1} \mathbf{Y}}_{\text{let } \theta = -\phi}
$$

\n
$$
= -\frac{1}{2\pi i} \int_{0}^{\pi} d\theta r i e^{i\theta} \mathbf{F}(\bar{\lambda} + re^{i\theta})^{-1} \mathbf{Y} + \frac{1}{2\pi i} \int_{0}^{\pi} d\phi r(-i)e^{-i\phi} \mathbf{F}(\bar{\lambda} + re^{-i\phi})^{-1} \mathbf{Y}
$$

the integrands are complex conjugates of one another, so, we have for example $[\mathfrak{R}(z) + i\mathfrak{I}(z)] - [\mathfrak{R}(z) - i\mathfrak{I}(z)] = 2i\mathfrak{I}(z)$ where *z* is the integrand:

$$
\mathbf{Q} = -\frac{1}{\pi} \int_0^{\pi} d\theta \mathfrak{I} \left[r i e^{i\theta} \mathbf{F} (\bar{\lambda} + r e^{i\theta})^{-1} \mathbf{Y} \right]
$$

Fact 7: Recall Gauss-Legendre quadrature:

$$
\int_{-1}^{+1} f(s)ds = \sum_{j=1}^{n} w_j f(x_j).
$$

Then, change variables in from $\theta \in [0, \pi]$ to $s \in [-1, 1]$ via $\theta = (\pi/2)[s + 1]$,

$$
\mathbf{Q} = -\frac{1}{2} \int_0^{\pi} ds \mathfrak{V} \left[rie^{i\pi(s+1)/2} \mathbf{F}(\bar{\lambda} + re^{i\pi(s+1)/2})^{-1} \mathbf{Y} \right]
$$

= $\frac{1}{2} \int_0^{\pi} ds \mathfrak{V} \left[re^{i\pi s/2} \mathbf{F}(\bar{\lambda} + rie^{i\pi s/2})^{-1} \mathbf{Y} \right]$
= $\frac{1}{2} \sum_{j=1}^n w_j \mathfrak{V} \left[re^{i\pi s_j/2} \mathbf{F}(\bar{\lambda} + rie^{i\pi s_j/2})^{-1} \mathbf{Y} \right]$

This will involve complex math, but the final result should be real.

Fact 8: If **z** is an eigenvector of $Q^T A Q$, then $x = Qz$ is an eigenvector of A.

An algorithm

With this in mind, here's an algorithm to accomplish the stated goal.

- Given λ_{\min} and λ_{\max} calculate $\bar{\lambda}$ and *r*.
- Make **Q**:
	- choose a random y.
	- for each quadrature point $j = 1, ..., n$, solve $\mathbf{F}(\bar{\lambda} + rie^{i\pi x_j/2})$ solve $\mathbf{Fp}_j = \mathbf{y}$ for **p**. If **A** bence **F** is titanic, then a technique like multigrid would y for p*^j* . If A, hence F, is titanic, then a technique like multigrid would be used that does not require $N \times N$ storage.
	- $q = \frac{r}{2}$ $\frac{r}{2}\sum_j w_j \mathfrak{I}\left(\mathbf{p}_j e^{i\pi x_j/2}\right)$
	- make the new q orthogonal to the already-determined columns of Q using Gram-Schmidt orthogonalization.
	- when no new q can be found, the number of columns of Q is *M* the number of eigenvalues in the range.
- Make $\mathbf{A}_0 = \mathbf{Q}^T \mathbf{A} \mathbf{Q}$, a matrix of size $N \times N$. Note: this does not require ever writing A. One need only be able to evaluate the matrix-vector product Aq.
- Apply QR to find the eigenvalues and eigenvectors of A*Q*.
- The eigenvectors of A_Q can be converted to eigenvectors of A .

The homework questions

(1) Polizzi does not use Gram-Schmidt orthogonalization. How could one make this work with the pseudoinverse \mathbf{Q}^{\dagger} ? Note: the issue here is not just the similarity transform $Q^T A Q$, but also the determination of M.

(2) Show how this works by calculating the two eigenvalues and eigenvectors of

$$
\mathbf{A} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix}
$$

that lie in [−2, 0]. Note: I expect this to be a pencil and paper exercise, with matlab assistance (for example). No need to write an elaborate code.