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1 Chapter 13, problem 6.1 Mary Boas. Second edition
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2 chapter 13, problem 4.1. Mary Boas, second edition

Complete the plucked string problem to get equation 4.0
Solution

Here we start with the solution given in 4.8

=Xty sin ") = 0 )

Where f(x) represents the initial position (shape) of the string.

y

Plucked

string
y0=f(x)

\

Now need to find b,

First need to define f(x), from diagram we see that from x = 0 to x = L/2 the slope is
L= % hence from equation of line we get y = %x

L2
Fromx = L/2tox = L, slope is —%,soy = h—%(x - %) = h—ZL—hx+h = 2h—%x = Z(h - hL—x)
so we have
% OSxS%
1= 2(h—’%x) Z<xsL

so from (1) we get, after applying inner product w.r.t. sin(%)
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L
2
L 2 2
b, - = —hfx sin( )dx+2hfsm(nnx) dx — i xsin(—nnx) dx
2 L . L

I~

L L

N~

2

4

L 164 Leos(™)sin("Z)’
2

~ 32h COS(%) sim(ﬂ)3

SO

nn)3

32thos( " )sm( "

n2m?

by =

Looking at few values of n to see the pattern

3
2 3n 3
32h cos(4)sm(4) 32h COS( 2 )Sln( I) 32h cos( " )sm( :)
= 12712 7 22ﬂ2 7 327_(2 g eee
B 8h 8h 8h
-2 9n? 252

8h10 1 0, 1
2 9" 25"

o
=

Notice that we have terms for only odd n.

Now, substituting the above in the general solution given in equation 4.7 in book, which
is

— _(nTx nmot
y—ansm( T )cos( T )

n=1

Gives

8h TIX oot 1  (3nx 3not 1  [bnx Smtot

y= 3 (sm( I )COS(T) +0+ 9 sm(T) COS(T) +0+ 5 sm( I )cos( I ) + )
8h X oty 1 . (3mx 3ot 1  (5nx 5ot

y= = (sm( T )cos(—L ) ~3 sm(—L )cos(—L ) + > s1n( T )cos( T ) + )

The above is the result we are asked to show.




3 chapter 13, problem 4.2. Mary Boas, second edition

A string of length L has zero initial velocity and a displacement y(x) as shown. Find
the displacement as a function of x and t.

Y

Plucked
string
y0=f(x)

Solution

2
The PDE that governs this problem is the wave equation V2 = 12y

v2 o2

The candidate solutions are

sin(kx) sin(wt)
sin(kx) cos(wt)
cos(kx) sin(wt)

cos(kx) cos(wt)

2 .
where w = kv and k = 771 where A is the wave length
Now we discard solutions that contains cos kx since the string is fixed at x = 0.

So we are left with

~ { sin(kx) sin(wt)

sin(kx) cos(wt)

Now, y = 0 at x = L then from sinkx = 0 or sinkL = 0 we need k = nTn

Hence solutions become

sin(%x) sin(%vt)

y:

sin(%x) cos(%vt)

Applying initial conditions, which says that at time ¢ = 0, velocity is zero.

. d
Hence from above, after taking 8_}?’ we get

nmo . nm nmo
Iy - s1n(fx) cos(Tt)
at | _m
L

nrt

sin( T

x) sin(—=t)

For the above to be zero at t = 0 then we discard first solution above with cost in it.
Hence final general solution is now

y={ sin(%nx) cos(nTnvt)

A general solution is a linear combination of the above solutions, hence
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y= ;§1 b, sin(nfnx) cos(nfnvt) 1)

To find b,,, we apply the second initial condition, which is y = yy = f(x)
(Notice that we use two initial conditions, i.e. at time t=0 we are looking at speed and

position, this is because we started with a PDE w1th - m it, which is a second order in
t.)
At t=0, (1) becomes

y= Eb sm(—x) f(x) (2)

To find f(x) from diagram, we see that for 0 < x < 4, y= L = %x

For—<x£%,y=—(x——)m+h:—(x—%)i—h+h - ﬁ+Eﬁ h=-x —+2h

4h L

p— < < =

X O_x_4

4h L L

= N - < -

y 2h X7 7 <X<;
L

0 §<XSL

Do the inner product on both sides of equation (2) w.r.t. sin %x

L nm L nm
bnf sin? —x dx =f f(x) sin —x dx
0 L 0 L
L
1

L
L o onm 3 . nm L N7
bz = [ " f) sin T dx + fL £x) sin o dx + f; £) sin e dx

0

4h  nm 4h\  nm L nn
= —x sin —x dx + f 2h —x—| sin —x dx + f 0 sin —x dx
L : L L % L

|

o L

L

L
14h 2 4h
j; > sin %x dx + f; 2h sin(%x) — X sin(%x) dx

4
L L

L
f4 X sin n—x dx + fz 2h sin(n—nx)dx— fz x% sin(n—nx) dx
0 L L L L L
4 4
_ 4 f
L

4
X sin —x dx + th sm(n7I )dx - —h x sin(n—nx) dx
L L L
b, =

L
(2 ( nm ) . NTm )
sin 1 sin >

rlkll“

nz 02

Looking at few values of b,
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b 81 (2 sm(n) — sin E) ﬂ(2 sin(z—n) — sin 2_7Z) i(2 sin(3—n) — sin 3—7—()
" 12 2 4 2) 2212 4 2 ) 3272 4 2 )
= %P(Zsm(z) —sin n) 1 (2 smz—n —sin 27-[) ! (2 sms—n — sin 3—7—() l
772 | 4 2) 22 4 2 ) 32 4 2 )

8h| 1 (2 (7‘() _ n) > 2n 27 5 3n  3m
= sin[— ) — sin = |, [2sin — - sin — |, [2sin — - sin — |, ...
2 nz 4 2 4 2 4 2

8hP1 nm . onm
S )

f:]
I\)

Hence from equation (1) above, we get

ad nm nm
E b, —ut
y= 2 sin T —X COS T v
— 8h nm nm nm nr
- 2| n2 2 ' (_)_ ' _) ' L L t
2 1n2ln2( sin 1 sin 5 ]sm T X COS T v

8 nr

B, sm xcos—vt
p) 3

Where
1 nm . nm
B, = 3 (2 sm( 1 )—sm ?)

The above is the result required to show.
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4 chapter 13, problem 4.6. Mary Boas, second edition

A string of length L is initially stretched straight, its ends are fixed for all time t. At

d . .
time t=0 its points are given the velocity V(x) = (a—Z) as shown in diagram below.
t=0
Determine the shape of the string at time t.

V(x)

Solution

2
The PDE that governs this problem is the wave equation V2y = ;—2%

The candidate solutions are

sin(kx) sin(wt)
sin(kx) cos(wt)

cos(kx) sin(wt)

cos(kx) cos(wt)

Where w = kv and k = 2771 where A is the wave length

Now we discard solutions that contains cos kx since the string is fixed at x = 0.

So we are left with

sin(kx) cos(wt)

{ sin(kx) sin(wt)

nm

Now, y = 0 at x = L then from sinkx = 0 or sinkL = 0 we need k = —

Hence solutions become

. nrm . nrt
sin Tx sin Tvt

y - . nr nr
sin Tx CcoSs Tvt

Applying initial conditions, which says that at time t = 0, velocity is given by V(x)

. d
Hence from above, after taking a—z, we get

T sin Zx cos 2t
dy L L L
ot - nnY ., Nm . nmo
——sin —xsin —
. sin— XS T t

For the above we discard velocity solution above with sin t in it since that will give zero
velocity at time t=0, which is not the case here. Hence we discard y solution with cos ¢
in it, then the final general solution for y is now

. nrm . nrmt
= sin —xsin —vt
Yy s L s L

A general solution is a linear combination of the above solutions, hence
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nmot
L

1)

(o)
nmx
y= 2 b, sinT sin
n=1

To find b,,, we apply the velocity initial condition. Hence differentiate equation (1) and
set t=0, we have

Yy <, nmv  nnx  nmot
Eng" T sin T cos i

Setting t=0
dy i , MO mmx )
- = —sin— =V,
ot AL L 7
Now to find V,;_j. From diagram, we see that for 0 < x < % -w,Vig=0
L L
Forz—w<xsz+w,Vt:0:h

L
For5+w<st,Vt=0=0

Hence

L
0 OSXSE—ZU
L
Vt:()— h E—w<x$—+w
L
0 E+w<x<L

Do the inner product on both sides of equation (2) w.r.t. sin %x

nmo (L n L nmx
b, T [ sin? X dx = f V(x) sin 2% gy
L . L

L Jy
L w L+w L
nmo 2” nm 2 nmx nr
b,— = fz Osin—xdx+f2 hsin—dx+f 0 sin —x dx
2 0 L E_w L £+w L

L
nmo ptw nmx
bn% _ fz_w h sin%dx
L
nmo LT nmx 12 t¥
bni = —h — Cosi]2
2 nrl L %_w
[ L L
R
b—— = - —|cos ——L _cos —— 1
" - cos T cos 7
b nTo I L ' (rm N nnw) (nn nm(J)]
— = -h—|cos|— + — | -cos[ — - —
"2 nrel 2 L 2 L
3 2hL nmn Nmw nT NTw
b= g o5+ ) ~eos( 5 )

But cos(a + b) = cos(a) cos(b) — sin(a) sin(b)

and cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

nm
Leta = T,b— T

Hence b, becomes
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2hL
b,, = ————][cos(a + b) — cos(a — b)]
n?mo

= ————[cos(a) cos(b) — sin(a) sin(b) — {cos(a) cos(b) + sin(a) sin(b)}]
n?m?v

= —ih—g[cos(a) cos(b) — sin(a) sin(b) — cos(a) cos(b) — sin(a) sin(b)]
n2m2o

=— th; [-sin(a) sin(b) — sin(a) sin(b)]
n?m?v

= M sin(a) sm(b)

_4hL | (nm\ | (mmw
- n2n2v sm(7)sm( L )

For even n, the term sin(%) is zero. For n odd sin(%) =1whenn =1,5,9,.. and

sin(%) = -1 whenn =3,7,11, .. Hence

b, = A(n)

4hl.  (nnw
sm( ) n=1,3,5,7,..

n2m2o L

And A(n) is a function which returns 1 when n = 1,5,9, .. and returns -1 when n =
3,711, ..

Hence now we have b,, we can substitute in (1)

. nmx | nnot
y= Z b, sin — sin

n=1 L L

— 4hlL.  (nnw _ nmx . nmot
1o 5, 0 () 2

4hl & 1 | (nnw . nmx | nmot
V= Sz A0 7 sin( ) [ sin T sin == |

Which is the general solution. Looking at few expanded terms in the series we get

_4hL si (nw) sin X sin ot 1 sin 3w sin 3nx sin 3not n 1 sin S5nw sin 5mx sin nmot
Y= L L L 9 L L L 25 L L L

Which is the result required.
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5 chapter 13, problem 5.1. Mary Boas, second edition

2 . .
_20_ for the first 3 terms of the series
o km]l(km)

u= Zcm Jo(k,,r)e ™ n* for the steady state temp. in a solid semi-infinite cylinder when

Compute numerically the coefficients c,, =

=1
u :6natr:1andu =100atz=0.finduatr=1/2,z=1
Solution

Here, we are looking at the solution for temp. inside a semi-infinite cylinder. This solu-

tion is for the case of a uniform temp. distribution on the boundary z = 0 is given by u
200

equation shown above. Note that in the expression c,,, = , the k,, are the zeros of

km]l(km)
]0 not ]1.
: 200
Need to find ¢y, ¢y, c3 where c; = ——
k1J1(k1)
To find k; and J;(k;) I used mathematica.
I plotted Jy(x) to see where the zeros are located first
In[16]:= Plot[Besseld [0, x], {x, 0, 10}]
0.
0.6
0.4
0.2
b \1/ g g8 10
-0.2
-0.4
Outf16}= = Graphics =

So I see there is a zero near 2,5, and 9. I use mathematica to find these:

n20l:= k1l = FindRoot [Besseld [0, x] =0, {x, 2}]
Outf20}= {x - 2.40483 }
n21}= k2 = FindRoot [BesselJ[0, x] =0, {x, 5}]
out21}= {x - 5.52008 }
In22k= k3 = FindRoot [BesselJ [0, x] =0, {x, 9}]

outEzl= {x - B.65373 }

Now I need to find J;(k,,). This is the result for 3 terms:

In[371= Besseld[1, kK1[[1, 2]]]
Ou37}= 0.519147

36} Besseld[1, k2[[1, 2]1]
ouf3s}= —0.340265

In[38= BesselJd[1, k3[[1, 2]]]

out[3gl= 0.271452

Hence, now the c,, terms can be found:
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200 200 160,30
Ch = = = .
V7 kJi(k) ~ (2.404)(0.519)

200 200 106,56
Chr = = = - .
27 koJik,) — (5.52)(=0.34)

200 200
e = 85.635

" kai(ks) | (8:65)(0.27)

Evaluating u = Z cplo(k,,)e”*m? for the first 3 terms whenr = 1/2,z = 1

m=1

u = c1Jo(kyr)e ™= + cpJg(kpr)e™2% + c3]o(kyr)e ™
1 1 1
= leo(kli)e_kl + Cz]o(kzi)e_kz + C3]0(k3§)€_k3

1 1 1
= (160.30)]0(2.4045)(2'404 ~ (106.56)], (5.525)(3—5-52 + (85.635)]0(8.655)(3‘8'65

= (160.30)J,(1.202)e~24%% — (106.56)](2.76)e™>2? + (85.635)](4.325)e 865

Mathematica was used to evaluate |, values above.

In[40]:= Besseld[0, 1.202]
Out[40]= 0.670136

n[£1}= Besseld[0, 2.76]
Outl41}= —-0.168385

In[¢2}= Besseld [0, 4.325]

Outf42]= -0.356614

Hence

-5.52

u = (160.30)(0.67)e~2404 — (106.56)(-0.168)e
u=9.7043+71713 %1072 - 5.3389 x 1073
u =9.7707 degrees

+ (85.635)(—0.356)¢7865
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6 chapter 13, problem 5.2. Mary Boas, second edition

Find the solution for the steady state temp. distribution in a solid semi-infinite cylinder
if the boundary temp. areu =0atr=1andu =y =rsinOatz =0.

Solution

The candidate solutions are given by the solution to the Laplace equation in cylindrical
coordinates which are

J.(k ¥)sin(n@)e™® = (1)

J.(k r)cos(n@)e™* = (2)
Where k is a zero of |, (This is because we have used the B.C. of u = Oatr =1 to

determine that the k’s have to be the zeros of J,,) when deriving the above solutions. See
book page 560.

From boundary conditions we want u = rsin & when z = 0, hence we need to keep the
solution (1) above, with n = 1. Hence a solution is

u=Jkr)sin(@e*z  (3)

A general solution is a linear series combinations (eigenfunctions) of (3), each eigen-
function for each of the zeros of ;. Call these zeros k,,

u= Y e ilky Nsin@) = ()
m=1
We now apply B.C. at z = 0 to find c,,,. From (4) whenz =0

rsin @ = i ¢, J1(k,, 1) sin(6) 5)

m=1

We use (5) to find c,, and then substitute into (4) to obtain the final solution.

To find c,, from (5), take the inner product of each side with respect to r/;(k, r) from
r=0tor=1

fl rsin O[r]1(k, r)] dr = i Cm (fl J1(ky, 7) sin(O)[1]1 (k,, 7)] di”)
0 0

m=1

1 0 1
sin 0 f Plile, dr= Y ¢, sm(@)( f Tuk, DTGk, )] dr)
0 m=1 0
Dividing each side by sin 0

1 > 1
[ Prkndr=Yc, ( AT dr)
0 m=1 0

From orthogonality of Bessel function, we know that

[ Iyt P, i =0
0

If m # u. Hence in above equation all terms on the right drop except for one when u = m.
We get
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1 1
[ Pt nar= e [ 1 Bt ik N
0 0

f 2]k, 1) dr
Cp = (6)

L7 1) Jyly ) r

The integral in the denominator above is found from equation 19.10 in text on page 523
which gives

1 1 5
J 7 Rt ke dr = S0P @)

Now, we need to find the integral of the numerator in equation (6).

Using equation 15.1 in text, page 514, which says

d

—[,@] = 2y

Putting p = 2 above, and letting x = k,,r gives

1d
| ) Takun) | = )1 )

1d
Ea[k%ﬁ]z(km] = 12,12]; (kyu)

1d
Pl = P kr)

Integrating each side w.r.t » from 0...1

1 1
ifo %[rzfz(kmr)]dr:j; 2], (k1) dr

L 1eptenn] = [ #htmdr
0

km 0

1 1
£ Uatkn) 01 = fO 1] (kyir) dr

1 1
P etk = fo Plr)dr  (8)

Substituting (7) and (8) into (6)

[ T, ) dr
L7 11k 1) e ) dr
Ttk

EACHS
2

A

Cy =

Substituting this into (4) above, we get



cy J1(k,, 1) sin(Q)e~m 2

=
Il

MS ||M8

where k,, are zeros of [;

The above is the result we are asked to show.

k,, 1) sin(6) e¢7km

19
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7 chapter 13, problem 5.4. Mary Boass, second edition

A flat circular plate of radius 1 is initially at temp. 100°. From ¢ = 0 on, the circumference
of the plate is held at 0°. Find the time-dependent temp distribution u(r, 6,t)

Solution
First convert heat equation from Cartesian coordinates to polar.

heat equation in 2D Cartesian is

V2y = & + A
u_8x2u 8x2u_0¢28tu

First need to express Laplacian operator V2 in polar coordinates:

x =rcosB
y=rsin0
Hence
)
8—3: = cos 0 (A)
)
(9_Z =sinf
And
)
£ = —r sin6 (B)
)
% =r cosB
y
P(x,y)
r

r sin(theta)

theta

r cos(theta)

From geometry, we also know that

r =X + 12

y

O = arctan =
X

The above 2 relations imply

J_x9 I 4 9 _9xd a9
dr  drdx = Irdy 20 J0dx 90y
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Hence we can express the above, using equations (A) and (B) as follows:

2 _xd o

ar o"rc9x+&ro"y

= cos 0— + sin 60—

dx dy
Multiply each side by r
o _ O— +rsin6
ro- =rcosfo—+rsin E»
d d
=X+ Yoy (1)

Squaring each sides of (1) gives

d( d 9 a\
313503
2 9 )9 9 9 9 ) d
r(rﬁ+5): xgxg +ya—yy(9—y+2x$ya—y
L2 9 9 9 d( 9 o ( 9
75 =) g v) 2 )
=1 =1 =0

I RN O TR DO W AL

~ o T o ox yy&yz 8yy8y xy8x&y Ix” dy

_ 2?9 a0 0 P 2)
Yo o Y Jy? y&y nyx&y

d d
Notice that when manipulating of differential operators, x— # —x. Similarly
ax = dx

9 _9x9 Y9
d0  Jd0dx IOy

J
=—r sinB— +7r cos 06—

Idx dy
d d
BRETRREY (3)

Squaring each side of (3) gives
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3 -3)

AL N DL (W NRUWLC (W AW A
0000 = Yax\Yax) T ay\"ay) " Yax\"ay) T oy Vox
J
+

=0 -0
5 AN 2 9 a
Sz =Y —ya—x2+8—x(—y) &CJ X x&_y2+8_y(x)8_y
-1 =1
P2 9 9 2 9 9
Y x&y&x " £x8_y e _y8xc9y +8_y Jx
W N R R
AT y? _yx&y8x _y&_y_xy8x8y T
L2 P N R
Vet Jy? _Zyx&y8x R4 dy ~ox )

Adding equation (2) and (4) and carry cancellations

2 d

r2&2+r8+a2— 2L 3+ >+ y— +2x il A K W i J
7 - ]/ y&J y&xz yx =

2 Yoxay P ayax Y 3y

- R (v Xy i 2(92+x2’92
P T Rl R Al R U e R

Hence we get

N I A Y
PRt e = o Yo T o T g
2 P
_ 2 2
- (24757 + )

Dividing by 72

P2 19 17 C(@+y)( L
a2 rdr 12902 12 Ix?  Jy?

But 72 = x2 + y? hence

82+18+1 22 82+(92 _ 2
a2 rdr 12902 \dx2  Iy2)

Now that we have the Laplacian in polar coordinates, we can solve the problem by
applying separation of variables on the heat PDE expressed in polar coordinates.

92 . 10 . 1 9?2 10 5)
— U+ -——UF ———U= ——1U
ar? ror r2 062 a? ot

Let solution u(r, 0, t) be a linear combination of functions each depends on only r, 0, or ¢

u(r,0,t) = R(r)®(0)T(t) (6)

Substitute (6) in (5). First evaluate the various derivatives:

8

)
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J J
5= OO)T()=-R()

2 92
—u= @(G)T(t) R(r)
or?

iu = R(r)T(t)i®(6)

20
2 02

d d

Hence equation (5) becomes

LR )
or? 2" r&ru 72892u_a2&tu

d? d?
(Q)T(t) R(T) + @(Q)T(f) R(V) + R(Y)T(t) d62®(9) L (7)9(9) T(f)
Divide by R(r)®(0)T (t)
1 d? 11 1 1 & 1
mﬁR(r)—F_?E (r) + 2 0(0) 462 ©(6 )_—zma (t)
1 [d2 1d 1 1 d2 1 1 d
RO\ r ——R(r )+ - R(”) 0(0) d92®(6) =3 WET(”

We notice that the RHS depends only on t and the LHS depends only on r, 0 and they
equal to each others, hence they both must be constant. Let this constant be —k?

Hence

1 1 d
— ——T(t) = —k? 7
a® T(t)dt ® 7)
1 dz 1 1 1 42
il - 4 — 2
equation (7) is a linear first order ODE with constant coeff. %T(t) = —a?T(t)k? or % =

—a?k2dt

Integrating to solve gives

dT(t)
m = f—azkzdt

InT(t) = —a?k?t

or

T(t) = ekt (9)
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Looking at equation (8). Multiply each sides by * we get

2 [ a2 1 d°
r—[dz )+ ——R(r)] —550(0) =~k

R(r) 0(0) do?
d? 1d 1 d?
(r)[d ZR( ) + —d—R(T’)] + 2k + @d—gz@(e) =0
1 [ d? 1d 1 d?
Z(R( )[d SR(r) + ——R(r)] k2) + @ﬁ(a(@) =0 (10)

The second term depends only on 0 and the first term depends only on r and they are
equal, hence they must be both constant. Let this constant be -1 hence

1 d?
O(0) do?
dZ

do?

0(0) = -n?

—0(0) = -n*O(0)

This is a second order linear ODE with constant coeff. Solution is
sinnf@

Q(0) = (11)

cosnb

From (10) we now have

1 [ d? 1d
2| —|—=R(r) + ——R(@) |+ K| -n? =
r(R(r)[er ") rdr ™ ) =0

r? [ d? 1d
m[—R(r) + ——R(7)

+7?k*-n?=0
dr? rdr ! "

d? 1d
2| _—
r [ drzR(r) + p drR(r)

+ (r2k2 —~ nZ)R(r) =

rZ;—:ZR(r) + r%R(r) + (r2k2 —~ nz)R(r) =0 (12)

Equation (12) is the Bessel D.E,, its solutions are J,(kr) and N, (kr) . As described on
book on page 560, we can not use the N, (kr) solution since plate contains the origin and
N,,(0) is not defined. So we use solution R(r) = J,,(kr). From boundary conditions, we
want solution to be zero at r = 1, hence we want J,,(k) = 0, hence the k’s are the zeros of

In

Putting these solutions together, we get from (6)

u(r,6,t) = R(r)®(0)T(t)

], (kr) sin n@e=*k*t

J..(kr) cos n@e=a’k’t

From symmetry of plate, the solution can not depend on the angle 6, hence let n = 0 and
so as not to get u = 0, we must pick the solution with cos n0 term. Hence our solution
now is
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u(r, t) = Jo(kr) ekt

Where k is a zero of |,

The general solution is a linear combination of this eigenfunction for all zeros of ], hence

u(r, ) = 3 n Jolkr) 5! (13)
m=1
We find ¢,, by using initial condition. When t = 0, temp. was 100° hence

100 = Y ¢ Jolk?)
m=1

Applying inner product w.r.t. r]y(k,r) from 0 ... 1

1 1/
f 100 rJo(k,r) dr = f (E Con ]O(kmr)) rfo(k,r) dr
0 0 \m=1

o0 1
100 fo Y o) dr = Ve, fo Totkr) rlo(k,r) dr
m=1

From orthogonality of Jy(k,,r) and Jy(k,r), all terms drop expect when m = u

100 f ok dr = ¢, f ok dr
0 0

From here we can follow the book on page 561 to get

200
" k1 (k)

Substitute this in equation 13

w(r,t) = 3 ey Jolkyr) e n t

)
3

Jolkyr) ek t

»

1 Kl (km)

S —a?k2, t
00 2, kmh<km> Jolknt) €

—_

Il
N

Where k,, are zeros of ],

Notice that final solution does not depend on 6
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Solve
d [ dR _ 2R
rdr rdr -
d({ .,dR
22 =
dr(r dr) I1+1)R
Solution

First equation, use power series method.

dr\ dr
d’R N dR 2R = 0
rir — | -n“R =
dr2  dr
d’R  dR
2 IR 2p —
7 72 +r ” n“R =0

Let R = ayr® + a7t + a,r°2 + a3r°*3 + a4°** + --- then

R = agr® + 17" + ayr°t? + agrt3 4+ st + -

_nZR — —1’126101’5 _ n2a175+1 _ n2a275+2 2 s+3 _ 2 1’5+4 _

— n-asr n-ay
dR
- = agr 4 (s +1) a7 + (s +2) aprst + (s + 3) agr™2 + -
dR
r- = apr® + (s +1) a1t + (s + 2) apr*™2 + (s + 3) azrs3 + -
r
@R -2 -1 1
7= (s=1)sagr = +s(s+1) ar' +(s+1)(s +2) apr’ + (s +2)(s + 3) azr* + -
L 4°R 1 2 3
rog = (s=1)sagr® +s(s+1) a;r* + (s +1)(s +2) apr*™= + (s + 2)(s + 3) azr®™™ + -
Table is
7S 1’S+1 1’S+2 pstm
-n?R | —n?ay —n?ay —nay -n? a,,
ri—f s ag (s+1)a; | (s+2)a (s + m)ay,
> d?R
-z (s—Dsay | s(s+1)a; | s+1)(s+2)ay | (s+m—1)(s+m)a,

Hence, from first column we see , and since ay # 0 we solve for s

-n?ag+say+(s—1)say=0
ao(—n2+s+(s—1)s) =0
—n?+s+(s-1)s=0

-n?+ s2=0

S==n

We see from second column, a; (—n2 +(s+1)+s%+ s) =0 or al(—sz +25s+1+ 52) =0,
hence a;(2s +1) =0
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1 . . . .
Fora; # 0 then s = Y this means 7 is not an integer since s = *n. hence a, must be

Zero.

The same applies to all a,, , m > 0 Hence solution contains only a,

R = agr*"
agr™"
R =
agr*™

For some constant ag. This solution is when n # 0

If n =0, table is

7S 1’S+1 1’S+2 pStm
-n’R | 0 0 0 0
dR
r— S dy (s+1)a; | (s+2)ay (s + m)a,,
zdzR
0 (s=Dsay | s(s+1D)a; | s+1)(s+2)ay | (s+m—1)(s+m)a,,

From first column:

sag + s?ay —sag = 0
ao(s+sz—s =0
s2=0

s=0

And all other a’s are zero. Hence R = a; or R is constant.

Now for the second ODE
d( ,dR
5(1’ %) = l(l + 1)R
d?R dR
Vi _ = =
r 72 + 2r P I[l+1)R=0

Let R = agr® + a;r°*! + ayr°*? + a3r° ™3 + ag ¥t + -+ then

R = ayr® + a7t + 4,52 + agrst + a4+ -

I+ 1)R = =101 + Dagr® = (1 + 1)ay s+t = 10+ 1)aprs*2 — (1 + 1)agrs*® = (1 + 1)agrs+s — -

dR
5 = agr* ™t + (s +1) a7 + (s + 2) apr™™ + (s + 3) agrt? + .-
dR
21’5 =2s5ayr® +2(s +1) 17" +2(s + 2) ayr* ™ + 2(s + 3) agrt3 + -
dzR _2 _]_ 1
e (s=1Dsagrr=+s(s+1)ar "+ (s+1)(s+2)a + (s +2)(s+3) azr't + -
4R 1 2 3
rog = (s=Dsapgr' +s(s+1) ayr"* + (s +1)(s + 2) ar"* + (s + 2)(s + 3) azr*™ + ---

Table is
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5 rs+1 7.s+2 psm
-n?R | =I(I +1)ag | =1l + 1)a; | -1 +1)a, -I(l+1)a,,
Zr?j—lf 2s ag 2(s+1)a; | 2(s+2)a, 2(s + m)a,,
2
72271; (s—=Dsay | s(s+1)a; | (s+1)(s+2)ay | (s+m—-1)(s+m)a,,

From first column:

—l(l+Dag+2sag+(s—1)say=0
ag(-I(l+1)+2s +(s—1)s)=0
=Il+1)+2s +(s=1)s=0
—1(l+1)+s +s>=0
(s=Ds—-(-1-1)=0

Hences=1Ilors=-1-1.
We also see that all other a’s will be zero, since recursive formula has only 4,, in it and

no other a. Hence

R = aygr®
agr’
R =
agr1-1

For some constant a4
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