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1 Chapter 13, problem 2.1 Mary Boas book. Second edition

Find the steady-state temperature distribution for the semi-infinite plate problem if the
temp at the bottom edge is T = f(x) = x (in degrees; that is the temp at x cm is x degrees).
The temperature of the others sides is zero degrees and the width of the plate is 10 cm.

A

Y-axis
T=0
T=0 T=0
- -
w=10 cm
»  X-axis
T=Ff(x)

Semi-infinite plate

Solution

Since we are looking for a steady state heat distribution, which means there is no heat
source, then we use Laplace PDE to represent the problem. We need to solve the following
PDE

For a 2D problem as the above, we start by assuming that the solution T(x,y) is of the
form T'(x,y) = X(x)Y(y). We now substitute this assumed solution into the Laplace PDE
and obtain



X"Y +Y"X =0

dividing by XY gives

1 1
=X +Y"= =0
X Y

1 1
X =YV = _kZ
X Y

Since the left hand side in the above equation depends only on the independent variable
x while the right hand side depends only on the independent variable y, and both sides
are equal to each others, then each side must be equal to the same constant. This is called
the separation of variables approach. Assuming this constant is —k? for k > 0 we obtain
two ODE’s to solve for X and Y

X" +k2X =0
and
Y” - KXY =0

To solve the X ODE, we assume the solution is X = Ae"™, for some constants A, m and
substitute this in the ODE to obtain m2Ae™ + k?Ae™ = 0, or m? + k% = 0. This is the
characteristic equation whose solution is m = +ik, hence X = Ae***,

A general solution is found by adding all the individual solutions, hence X = Ae* +

. . . etkx y p—ikx
Aemkx = A(elkx + e"kx). But cos(kx) = S hence X = 2A cos(kx) = cos(kx) by taking
constant 2A =1.

Another general solution can be obtained by taking the difference of the individual

ikx _ ,—ikx

solutions, hence, X = Aek* — Ae7kx = A(eikx - e‘ikx). But sinkx = ° _216 , hence
2
X = 2iAsinkx = sin(kx) by taking 2iA = 1. Therefore solutions to R T
X dx?

X1(x) = cos(kx)
X5(x) = sin(kx)

Now we solve Y’ — kY = 0. Assuming solution is Y = Ae™ hence the characteristic
equation is m2Ae™ —k2Ae™ =0, or m? — k% = 0, hence m = +k, then Y = Ae*"Y , and let
A=1,then Y=e¢e®orY =¢"

Since T(x, y) = X(x)Y(y), then the T solution is a combination of all the above solutions.

T(x,y) :{ sin kx { kv

coskx | et



Now we use the boundary conditions on the plate to find which of the above 4 solutions
is the correct solution.

Since this is a semi-infinite plate, then asy — oo, T(x, y) — 0, this means etV solution must
be rejected since they have the positive power of y on the exponential function. (since
k > 0). Therefore we now have

T ( ) sinkx eV
x,y) =
/ coskx ekv

Looking now at the left boundary condition where we want T = 0 for x = 0, this means
that solution cos kx e™* must be rejected since it is not zero at x = 0.

So, only solution left is
T(x,y) = sinkx e

And we have two boundary conditions to satisfy yet, the right hand side, and the bottom
side.

At the right side, where x = w = 10 cm, we need T = 0, hence this can be achieved by
having sin10k = 0 or 10k = nm, or k = % forn=1,2,3, - So the solution now looks like

nrt _nn
T(x,y) = sin(ﬁx)e 0 n=1,23,--

We have the last boundary condition to satisfy, which is the bottom side. On that side we
have T = f(x) = x at y = 0 hence if we let y = 0 in the above the solution becomes

T(x,0) = x = si (nnx)
,0) = x =sin 10

This solution is not satisfied for any n. for example, for x = 5, n = 1, we have sin(%S) =
sinz=1#5

Hence we need to find another method to find this boundary condition. Since a sum of
scaled solutions is also a solution (this is a linear system), then we write

T(x,y) = gbn 0V sin(rll—gx)

Now we try to find b, when y = 0. This is the Fourier series expansion for f(x).

Since sin functions are orthogonal to each others, i.e. KU sinax sinbx dx = 0a # b,the



above can be written as

Since all terms vanish expect when m = n then

£1O sm( )f(x) dx
" £10 s1n2( ) dx
£10 sm( 13 ) x dx
B £10 smz( ) dx
But £ sin? 10 )dx = 5 forn # 0. Hence b, = - EO sin(% )dx. integration by parts.

(fudvdx = ulzz))— fv dx. Letu = x, dv = sm(10 )thenZ— =1, 0= ;—cos(lgZ ).Hence
using w

W nm \W W nm
=|-x— cos|—x]|| - —cos| —x | dx
| 1w w /1y 0 NT w

> _ w
—W wl|l | nn
= [——cos(nm) - 0|+ —| 7 sin —x
nm nr w
0

SHENIRS

| nm
2

+ sinnm
n?m? l

w? (-1 ,
= —| — cos(nn) + ——sinnn
n\n n?m

Hence

-1 1
b, =2— (— cos(nm) + p sin nn)
n n?m

Since 7 is an integer, all the sin n7 terms vanish

-1
b, = 22(— cos(rm))
i\ n



Since w = 10 then

20(-1
b, = —O(— cos(nn))
nt\n

Then
20 1 20(-1
= 2(20) 220} 22 )
b _20 20(-1\ 20(+1
"= ?(7)’?(?)’
_ 20 _1n+1
-5
Hence

T(x, y) = gbn e Y sin(%x)

O [ 1 nmn
T(X,]/) = 2 Z( " )e 10y51n(%x)

Tt =1 n

Here is a plot of the solution for n up to 70.

TO[x_, y_, m_] :=20/Pi Sum[ (-1)"(n + 1)/n Exp[- (n Pi/10) y] Sin[ (n Pi
/10) x], {n,1, m}%

]

p = Plot3D[TO[x, y, 100], {x, O, 10}, {y, O, 6}%

, PlotRange -> All,AxesLabel -> {x, y, z}, BaseStyle -> 20]







2 Chapter 13, problem 2.2 Mary Boas book. second edition

Find the steady-state temperature distribution for the semi-infinite plate with bottom
edge of 20 cm if the temp at the bottom edge temp. is held at

_ 0° 0<x<10
100 10 < x <20

The others sides at zero degrees.

Y-axis A
T=0
T=0 T=0
- - >
10 cm 10 cm
»  X-axis
T=0 T=100

Semi-infinite plate

solution To solve this, I will follow the same steps as in 2.1, until I get to the step of trying
to fit to the bottom edge conditions into the solution, and then I will use f(x) as a step
function:

£ 0 O0O<x<10
X) =
100 10 <x <20

Hence, as shown in problem 2.1, the candidate solutions for T(x, y) are



sin kx etV

. ( ) sinkx e kv
x,y) =
/ cos kx kv

coskx e kv

Now we use the boundary conditions on the plate to find which of the above 4 solutions
is the correct solution. We know by the uniqueness theorem of ODE solution that there
will be one solution only out of the above 4, and by the existence theorem, that a solution
will exist.

Since this is a semi-infinite plate, then as y — oo, T(x, y) — 0, this means sin(kx)et¥
and cos(kx)e" solution must be rejected since they have the positive power of y on the
exponential function. (since k > 0)

Looking now at the left boundary condition where we want T = 0 for x = 0, this means
that solution cos(kx)e™® must be rejected since it is not zero at x = 0.

So, only solution left is sin(kx)e™® and we have 2 boundary conditions to satisfy yet, the
right hand side, and the bottom side.

At the right side, where x = w = 20 cm, we need T = 0, hence this can be achieved by
having kw = nm, or k = % forn=1,2,3,--

so the solution now looks like

T(x, y) = Sin(%x) e_nz_:y n=1273,-

Now we have the last boundary condition to satisfy, Since a sum of scaled solutions is
also a solution (this is a linear system), then we write

T(X/ y) = Z bn e_z_”y sin(n—nx)
n=1 w
And now we try to find b, wheny = 0
This is the Fourier series expansion for f(x).

Since sin functions are orthogonal to each others, i.e. £w sinax sin(bx) dx = 0 fora # b



then the above can be written as

= Z b, f sin(n—nx) sin(@x)dx
" 0 w w
w
=D, sin(ﬂx) sin(ﬂx) dx
w w
Since all terms vanish expect when m = 1, hence
L‘“’ sin(“x) f(x) dx
w ., o(nm
£ sin (;x) dx
£w sin(%x) x dx
- fu sinz(%nx) dx

But l;w sinz(%x) dx = % for n # 0 Hence

b, = %fowf(x) sin(%x) dx

= %{ 010 f(x) sin(%x) dx +

b, =

20

f(x) sin(%x) dx}

10

But f(x) =0for 0 <x <10, and f(x) = 100 for 10 < x < 20 therefore

b o= 2 floo ‘(m)d + 20100'("”)51
= — m|—Xx X m|—Xx X
=201, M 20 o oM 20

200 2 (nm
= — s1n(—x) dx
20 Jq 20
20 nm
=10 sin(—x) dx
1 nm 120
=10 @[— CcoSs %x]
20

-2001 nm ]20
= COs —Xx
nt L 20

10

B =20071 nnzo nrm
= _cos 20 cos 20
=20071 nn]
= COS N7 — COS —
nrt L 2

10]

10
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Looking at few n values starting from n =1

-200 -200 -200 371 -200
b, = [cos ™ — cos ——[cos2m — cos 7], cos 31 — cos — |, ——[cos4m — cos2m],
iy 21 2m 3m 2 4r
-200 57’( -200 77Z -200
cos 57t — cos — |, ——[cos 67t — cos 371] cos 771t — cos — |, ——[cos 87t — cos 47|
i 2 n 2 iy
-200 -200 -200 -200
b, = —[ -1-0],- [1 - (-1, - [ -1-0], [1 1], = —[-1-0], [1 -D],
—200 200
—[ -1-0], [1 1]
-200 -200 -200 -200 -200 -200 -200 -200
= -1 2 -1 -1 2 -1], ——[0], --
by = ——[-1], 5 —[2], = —[-1, [0}, ——[-1], —[2], = —[-1, —10],

We see a term multiplier is -1,2,-1,0,-1,2,-1,0, ...

When 7 is multiple of 4, this multiplier is zero. when n is odd, the multiplier is -1, and
when n is even (not multiple of 4), this multiplier is 2.

Solution is

T(x,y) = i b, ¢ BV sin(rzl—gx)

n=1

2002 1 5Y sm( m x) nodd, 1,3,5,7,..
T(x, y) =4 400 oy
- E e » sm( % x) neven2,6,10,14,18, ...
0 Otherwise

Tilx_, y_, m_] :=200/Pi Sum[1/n Exp[- (n Pi/20) y] Sin[ (n Pi/20) x], {n,
1, m, 2}1;

T2[x_, y_, m_] := -400/Pi Sum[1/n Exp[- (n Pi/20) y] Sin[ (n Pi/20) x], {n,
2, m, 4}];

p = Plot3D[T1[x, y, 200] + T2[x, y, 1001, {x, 0, 20}, {y, 0, 10},

PlotRange -> All, AxesLabel -> {x, y, z}, BaseStyle -> 15]




100
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3 Chapter 13, problem 2.3 Mary Boas book. second edition

Find the steady-state temperature distribution for the semi-infinite plate problem if the
temp at the bottom edge is T = f(x) = cos(x) ( The temp. of the others sides is zero

degrees, and the width of the plate is = cm.

p»  X-axis

Y-axis A
T=0
T=0
—
w=Pl cm
T= COS(x)

Semi-infinite plate

Solution

This problem is similar to problem 2.1, but for a different boundary function at the bottom

edge.

As shown in problem 2.1, T(x, y) is given by one of these solutions:

T(x, y) =

sin kx etV
sin kx e kv
cos kx kv

coskx eV

Now we use the boundary conditions on the plate to find which of the above 4 solutions
is the correct solution. We know by the uniqueness theorem of ODE solution that there
will be one solution only out of the above 4, and by the existence theorem, that a solution
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will exist.

Since this is a semi-infinite plate, then as y — oo, T(x, y) — 0, this means sin kx e

and cos kx eV solution must be rejected since they have the positive power of y on the
exponential function. (since k > 0)

Looking now at the left boundary condition where we want T = 0 for x = 0, this means
that solution cos kx e must be rejected since it is not zero at x = 0.

Only solution left is sin kx e and we have 2 boundary conditions to satisfy yet, the right
hand side, and the bottom side.

At the right side, where x = w = © cm, we need T = 0, hence this can be achieved by
having kn = nm,ork=nforn=1,2,3,---

so the solution now looks like

T(x,y) = sin(nx) e™ n=1,2,3,-

Now we have the last boundary condition to satisfy, which is the bottom side. On that
side we have T = f(x) = cos(x) at y = 0 hence if we let y = 0 in the above the solution
becomes

T(x, y) = cos(x) = sin(nx)

This solution is not satisfied for any 7.

Hence we need to find another method to find this boundary condition. Since a sum of
scaled solutions is also a solution (this is a linear system), then we write

T(x, y) = i b, e sin(nx)
n=1

Now we try to find b, wheny =0,ie.aty =0

T(x,y) = f(x) = cos(x) = f] b, sin(nx)

n=1

This is the Fourier series expansion for f(x). Since sin functions are orthogonal to each
others, i.e. fz sinax sinbx dx = 0a # b,the above can be written as (taking inner product



of RHS and LHS w.r.t. sin(nx)) :
cos(x) = i b, sin(nx)
n=1
f " sin(mx) f(x) dx = f i sin(nx)( f} b, sin(mx))dx
0 0 m=1
f “sin(nx) cos@) dx = ¥ by, f " sin(x) sin(m)dx
0 m=1 0

f i sin(nx) cos(x) dx = b, f i sin(nx) sin(nx) dx
0 0

15

Where on the RHS we simplified it since all terms vanish expect when m = n. The above

now becomes

f sin(nx) cos(x) dx = b, f sin?(nx) dx
0 0

T 1’
f sin(nx) cos(x) dx = b,,—
0 2

2 7T
b, = — f sin(nx) cos(x) dx
U

2 n(1 + cos(nmn))

T n? -1

Looking at few values of n = 2,3, 4, ... (not defined for n=1).

b 2 2(1 + cos(2m)) 2 3(1 + cos(3m)) 2 4(1 + cos(4n))

" n 3 "7 8 " 15
22Q2) 2 4Q2)

b= ——,0,———,0,...

" n 3 n 8
4 n

= == for even n

™ N —

Since

T(x, y) = i b,, e sin(nx)
n=1

Then the final solution is
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T(x, y) = é i nzn_ 7 e " sin(nx)

Tt n=even

TO[x_, y_, m_] :=4/Pi Sum[n/(n"2 - 1) Exp[-n y] Sin[ n x], {n, 2, m, 2}];
p = Plot3D[TO[x, y, 200], {x, O, Pi}, {y, O, 1}, PlotRange -> All,
AxesLabel -> {x, y, z}, BaseStyle -> 15]
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4 Chapter 13, problem 2.7 Mary Boas book. second edition.

Find the steady-state temperature distribution of the following plate, height=1. Temp at
the bottom edge is T = cos(x) ( The temp. of the others sides is zero degree and width of
the plate is 7 cm.

Y-axis
A
T=0
T=0
A 10
R
w=Pl cm H=1
y p  X-axis
T= COS(x)

Solution As shown in problem 2.1, T(x, y) is given by one of these solutions:

sin kx etV

. ( ) sinkx e kv
X, 1Y) =
/ cos kx ekv

coskx e kv

Now we use the boundary conditions on the plate to find which of the above 4 solutions
is the correct solution. We know by the uniqueness theorem of ODE solution that there
will be one solution only out of the above 4, and by the existence theorem, that a solution
will exist.

Here we can not reject the 2 candidate solutions sin kx ¥ and cos kx e as we did for the
semi-infinite plate cases because as y — 1, these solutions do not blow up.

But to use one of them , looking at T(x, y) = sinkx k¥, then at y =1, where we require
T =0, we get 0 =sinkx , and this means we must have k = nm for integer n. but this means
that T = 0 everywhere in the plate and on the other boundaries, which is not correct.
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Similarly if we try to fit cos(kx)etV.

One way to avoid this problem is to use a linear combination of the exponential ae ™ + bek¥
and now we try to find 4, b. If we choose a = %ehk, b= —%e‘hk, where £ is the height of the
plate, we get

lehke_ky — %e‘hkeky — %ek(h_y) — le_k(h_y)

To verity, We want %ek(h_y ) _ %e_k(h_y) = 0 when y = h, Hence

1
2

The solutions to consider are now

sin kx (%ek(h‘y) - %e_k(h‘y))

T(x, 3/) - coske ( %ek(h_y) _ % e—k(h—y))

The initial 4 candidate solutions are now 2 candidate solutions since we have combined
a combination of two solutions together.

Looking now at the left boundary condition where we want T = 0 for x = 0, this means
the second candidate solution above which is cos kx (%ek(h_y ) %e_k(h_y )) must be rejected

since it is not zero at x = 0 for any y.

Only solution left is sin kx %ek(h_y ) - %e_k(h_y )). Write %ek(h_y ) - %e_k(h_y ) = sinh k(h - y)
then the final candidate solution which we want to fit on the remaining boundary condi-
tions can be written as

T(x,y) = sinh k(h — y) sin(kx)

We have 2 boundary conditions to satisfy yet, the right hand side, and the bottom side.
At the right side, where x = w = 1icm, we need

T=0= sinhk(h —y) sinkm

hence this can be achieved by having krt = nmt,ork =nforn =1,2,3,--- So the solution
now looks like
T(x,y) = sinhn(h -y)sin(nx) n=1,2,3,---
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Now we have the last boundary condition to satisfy, which is the bottom side. On that
side we have T = f(x) = cos(x) at y = 0 hence if we let y = 0 in the above the solution
becomes

T(x,y) = cos(x) = sinh(n(h)) sin(nx)

This solution is not satisfied for any n. We need to find another method to find this
boundary condition. Since a sum of scaled solutions is also a solution (this is a linear
system), then we write

T(x,y) = i b, sinh(n(h — y)) sin(nx)

n=1

And now we try to find b, wheny =0,ie.aty =0

T(x,y) = f(x) = cos(x) = f] b, sinh(nh) sin(nx)

n=1

This is the Fourier series expansion for f(x). Since sin functions are orthogonal to each
others, i.e.

7T
f sin(ax) sin(bx)dx =0 a #b
0

The above can be written as (taking inner product of RHS and LHS w.r.t. sinnx) :

cos(x) = i b,, sinh(mh) sin(mx)

m=1

f i sin(nx) f(x) dx = f i sin(nx)(i b,, sinh(mh) sin(mx) |dx
0 0

m=1
7T

f i sin(nx) cos(x) dx = i b, f sin(nx) sinh(mh) sin(mx)dx
0

m=1 0
s 7T
f sin(nx) cos(x) dx = b, f sin(nx) sinh(nh) sin(x) dx
0 0

Where on the RHS we simplified it since all terms vanish expect when m = n. Above now
becomes
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f sin(nx) cos(x) dx = b, f sinh(nh) sin®(nx) dx
0

0

Ui dx = sinh(ny) b, [ sin(nx) d
j; sin(nx) cos(x) dx = si (ny) . fo sin“(nx) dx

- gbn sinh(1h)

2 1 n

b, = 7 Sinh(ih) fo sin(nx) cos(x) dx
21 n(1 + cos(nm))
" msinh(nh) n2-1

Looking at few values of n = 2, 3,4, ... (not defined for n=1).

b= 2 1 2(1 + cos(2m)) 2 1 3(1 + cos(37)) 1 2 4(1 + cos(4n))
n— ; -

sinh(h) 3 "1 sinh(2h) 8 "sinh(2h) 15
, o2 1 20 1 24
" msinh(h) 3 'sinh@Bh)w 8 "~
4 1 n
= 7 sinh(ui) -1 orevenn
Since

T(x, y) = i b, sinh(n(h - y)) sin(nx)
n=1

The final solution becomes

4 & 1 , .
T(x, y) == E S nzn_ 1 smh(n(h - y)) sin(nx)

n=even

h=1;

TO[x_, y_, m_] := 4/Pi Sum[n/(n"2 - 1) (1/Sinh[n h]) Sinh[n (h - y)] Sin[
nxJ], {n, 2, m, 2}];

p = Plot3D[TO[x, y, 200], {x, 0, Pi}, {y, O, 1}, PlotRange -> All,
AxesLabel -> {x, y, z}, BaseStyle -> 15]aseStyle -> 15]
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5 Chapter 13, problem 3.2 Mary Boas book. second edition

A bar length L=10 cm with insulated sides is initially at 100 degrees. starting at t=0, the
ends are held at zero degree. Find the temperature distribution in the bar at time ¢.

At t=0 At t>0
Y-axis
Insulated boundaries Insulated boundaries
L=10 cm < Z

Temp=0 L=10 cm Temp=ZERO

temp=100 -« —>

Heat flow in x-direction
> X-axis »  X-axis

Solution

This is a heat distribution problem governed by the diffusion or heat equation

1 du(x,t
VZM(X, t) = ; ;t )

This is for a one spatial dimension.

To solve this PDE, assume the solution is
u(x,t) = F(x)T(t)

Where F(x) is a function of the spatial x independent variable, and T(¢) is a function of
the time ¢.

Solving using separation of variable as with the Laplace equation. By substituting in the
original PDE, we get

1d’F 1 1dT
Fdx> ~ o?T dt
Since RHS and LHS are both equal, and each is a function of a different independent

variable, then both must be equal to a constant. Let this constant be —k2. hence we get 2
ODE equations to solve

le_F = —k2
F dx?
lid_T ——

T a2 dt
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11410 _ 42
To solve = ——= = —k%,
1dT
- __ 2k2
Tdat
1
—dT = —a?k? dt
7 !
1
AT = [ -a?% dt
f T “
InT = -a?k*t
T = e—azkzt
2 2
To solve %ZTI; = —k%. Assume solution is F(x) = e~ then;i—l; = —me "%, ZTE = m?e™"™. Sub-
stituting in the ODE gives m2e™* = —e™* k2 or m?> = —k?, m = =ik, so F(x) = ¢”* or

F(x) = ¢**. By adding or subtracting these solutions we get a general solution that is
either cos kx or sin kx.

hence

So

u(x,t) = F(x)T(t)

22
e~k gin kx

u(x, t) =

—a2k%t

e cos kx

Now we have 2 candidate solutions. Since these are solutions for t > 0, we need to find
the conditions thatu = 0atx=0and x = L.

Since at x = 0, u = 0, then we can not use the cos kx, solution because that will not go to
zero at x = 0.

So we are left with the solution

u(x, t) = e~ *t gin kx

Now apply the second boundary condition, whichis x = L, u = 0.
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This means 0 = e=*** gin kL, then kL = ntor K = % forn =1,2,3,...50 our solution now
looks like

nr

2
u(x, t) = e_az(T) "sin %x n=1,2,3,..

Since a scaled sum of these solutions is a solution, then the general solution is

u(x,t) = an (T
n=1

Now we need to find the b,

For this we use the initial conditions, i.e. for t = 0. Then we had the sides at u = 100, and
since no time was involved then (this is the initial steady state), the governing PDE is the
Laplace equation with only the x spatial coordinate.

V2uy(x) = 0, a solution to this is ug(x) = ax + b. when x = 0, 1y = 100, hence 100 = b.
When x = L, u =100, hence 100 = La + b, or La = 100 — 100 = 0. hence a = 0.

Hence at t = 0,1y = 100. So now from equation (1) above, we write
u(x,0) = ug(x) =100 = Zb s1n

Taking the inner product of the LHS and RHS w.r.t. sin % over [0, L] gives

L L
f 100 sin n_nx dx :f (me sin %x) sin %x dx

Oml

100f sin —x dx = Zb f sin Tnx sin nfnxdx

100f sm—xdx—b fsm xdx

L L
-100 | — cosnn -—|=0b,
nr

100L
——— [cosnmt—-1] = b,
nmn

o
ONI NI N

S
=
I
|
a
o
2]
3
A
|
=
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Looking at few valuesof n=1,2,3,4,..., b, = —% [cosnmt —1]

200
b, = —— [cost—1],—— [cos 2t —1],——— [cos 3t — 1], ——— [cos 4Tt — 1], ...
e 27 37 4r
200 200 200 200
by =— —[1-1],~5= [1-1],~2= [-1 1], -—— [1 - 1],.
e 27 3n 47
b = 400 400
n — P 7Yy 37_[ VA4
Hence 1400
b, =——— foroddn
nm

From equation (1) above we had

00 nm\2
u(x,t) = Ebn e (T) tsin nfnx
n=1

Hence

)t gin( 1)
e s I X

Q-

400 &
u(x,t) = — E
T odd n

LO = 10; alpha = 0.2;

TO[x_, t_, m_] := 400/Pi Sum[1/n Exp[-(n Pi/LO alpha)~2 t] Sin[ n Pi/LO x
1, {n, 1, m, 2}];

p = Plot3D[TO[x, t, 40], {x, 0, 10}, {t, O, 500}, PlotRange -> All,

AxesLabel -> {x, "time", z}, BaseStyle -> 15]
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6 Chapter 13, problem 3.3 Mary Boas book. second edition

In the initial state of an infinite slab of thickness L, the face x=0 is at zero degrees, and
the face at x = [ is at 100 degrees. from t = 0 on, the face at x = 0 is held at 100 degrees,
and the face at x = L at zero degrees. find the temp. distribution at time .

At t=0 At t>0
Y-axis
A N
e temp= temp Lem Temp=ZERO
temp= temp=100 100 100 D
0 Heat flow in x-direction
> X-axis »  X-axis
Solution

This is a heat distribution problem governed by the diffusion or heat equation

1 du(x,t
V2u(x,t) = = ;t )

This problem is similar to problem 2.2, where an infinite slab is considered the same as
a slab with 2 insulated sides. Similar to problem 3.2, we get the following 2 candidate
solutions to the above PDE

—a2k?t

e sin kx

u(x, t) =
’ e—azkzt

cos kx
Since these are solutions for t > 0, we need to find the conditions that # = 100 at x = 0
andu =0atx=L.

—a2k2t

discard the cos kx solution because at x = 0 we want u = 100, which means e coskx =

=¥t =100 which is not generally true for all £.

L a2 . 22, . .
So the second solution is e * ¥ sinkx, which is 0 at x = L, hence e ***tsinkL = 0, i.e.

kL =nmork= %ﬂ So we start with the solution

_a2(Mm)? nm
u(x,t)= e (T) iLsinfx
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To make this solution fit at x = 0, we need to have 100 = L

at x = 0, hence to compensate, we start with the solution

sin - T “Zx. but sin(x) is zero

nmn 2
u(x,t) = 100 - e_(af) sin nTnx

This solution gives 100 when x = 0.

But now we need to check it again for x = L, we see it gives 1 = 100 which is not correct.

So need to subtract the term %x (which is found below for the initial steady state). Now
we have the candidate solution

100 _(a""V
u(x, t) = 100—Tx+e (2) sm%x (1)

To verify: at x = 0, this given u = 100, and at x = L, this gives u(x,t) = 100 — @L =0,

which is what we want.

Since a scaled sum of these solutions is a solution, then the general solution is

100 — _
u(x,t) =100 — T+ an at

n=1

nr 2 n’]’(

T) f'sin —x 2
- @)

Now we need to find the b,,. For this we use the initial conditions, i.e. for t = 0.

The sides x = 0 is at u = 0, and since no time was involved then (this is the initial steady
state), the governing PDE is the Laplace equation with only the x spatial coordinate.
VZ2uy(x) = 0, a solution to this is u(x) = ax + b. when x = 0, 1y = 0, hence 0 = b.

When x =L, u =100, hence 100 = La + 0, or a = 1E—O.Henc:e att=0

; 100x
7L
So now from equation (2) above, we write
100 100 — . nm
u(x,0) = ug(x) = —x =100 - Tx + an sin Tx
100 100 — . nm
Tx =100 - Tx + Z}lbn sin Tx
200 -

Tx 100 = nz:]lb sin %x



Take the inner product of the LHS and RHS w.r.t. sin %x over [0, L], we get

L(200 L
j(; (Tx—lOO) sin nTnx dx :j(; (mz::lbm sin %x) sin nfx dx

100[(——1)51n—xdx Zb f sanx sm%xdx

100 —Lnn(1l + cos(nm)) + 2L sin(nmn) b fL i mnx .
n2m? 0 L
100L —nn(l + cos(zn)z) + 2 sin(nmn) b, %
nem
—nm(1 + cos(nm)) + 2 sin(nm)
b, =200 ( o
so looking at few values of n =1,2,3,4, .... Hence b, = 200 (_m(HCOS:;Z)ZHZ Sin(m))
-n(1-1)+0 =2n(1+1)+0 -3n(1-1)+0
b, = 200 (T)' 200( 2 ,200 v
—4n(1+1)+0 -51(1-1)+0
el e e =
-4 81
b, = 200 (0), 200 ( = ) 200 (0),200 (16 ) 200 (0)...,
b, =0,-400 — L ,0,-400— 1 ,0,
B 21 4t
1
b, = -400 —
nm
Hence
1
b, =-400— n=2,4,6,..
nm
From equation (2) above we had
100 nm\2
u(x, t) —100—Tx+ Zb o) tsinnfnx

n=1

Hence

28
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. nm
sin —x
L

oF

~(a

1

-400 — e
nm

n even

(oe]
x+ Y,

100
L

u(x, t) =100 -

. nm
sin —x
L

nm 2
1 e‘(“?) t
n

o
n even

400
T

=100 - ——x - —

100

u(x, t)

a

LO = 1;

Sum[1/n Exp[-(a n Pi /L0)"2 t]

:= 100 - 100/LO x - 400/Pi

_, t_, m_]
Sin[n Pi/LO x], {n, 2, m, 2}%

TO[x

1;

p = Plot3D[TO[x, t, 200], {x, O, LO}, {t, O, 3},

"sec", u}, BaseStyle -> 15]

PlotRange -> All, AxesLabel -> {x,
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7 Chapter 13, problem 3.7. Mary Boas book. second edition

A bar of length L with insulated sides has its ends also insulated from time ¢t = 0. Ini-
tially the temp. is u = x, where is x is the distance from one end. Determine the temp.
distribution inside the bar at time ¢.

At t=0 At t>0
Y-axis Y-axis
A A
Lem Temp= ~ Lcm >
= du/dx=0
Tergp L _ du/dx=0
X-axis ?—axis
Initial temp.

distribution is u=x

Solution

In this problem, since all 4 sides are insulated, there will be no heat loss. Hence given the
initial amount of heat inside the bar, we should obtain a solution that keeps this amount
of heat the same. The solution should give a heat distribution at ¢ large, such that it will
be equally distributed over the length of the bar.

Since the two end sides are insulated, this is a Neumann type problem, so at t > 0 we will

use % =0atbothends (x =0,x =L)

This is a heat distribution problem governed by the diffusion or heat equation

1 du(x,t)

2 _
Veu(x,t) = peRT

Similar to problem 3.2, we get the following two candidate solutions to the above PDE

22
e~k gin kx

u(x, t) =

_ 212
ekt cos kx
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Since these are solutions for t > 0 we need to find the conditions that % =0atx=0and
u

= = 0 at x = L. The above conditions tells us to discard the sin kx solution because at

J . . .
x=0 a_z = R cog kx = e~k # 0. So the second solution we are left with is

e—azkzt

cos(kx)

. . 0 d d _.252
Which satisfies a—i =0atx = 0. Now at x = L, we also want a—z =0, hence e @kt cogkx =

—k =¥t sin kL. = 0. For this to be true we need k = 0 or sin kL = 0,ie. kL =nmork = =

L
So there are two solutions to look at, one for k = 0 and one for k = % Looking at the

k= % solution first, we start with the solution

anTt )2

_(enm nm
u(x,t)=e ()

COS —X
L

Now consider the initial conditions at t = 0. Att = 0, when x = L/2, u = L/2. Since we are
told that 1y = x. So from the above, we get

L 0 nmn L nm
ul=,0| = —— = —
> Ccos > cos >

Which is zero for integer n. Hence to force the outcome to be é, we need to add this term
to the solution above. The solution now looks like

L _(amy? nm
u(x, t) = §+e (7 )tcos—x

- M)

Now Since a scaled sum of these solutions is a solution, then the general solution is

L

u(x, £) = f]bn (e‘(“"Tn)zf cos ”—”x) 2)
n=1

Now we need to find the b,,. For this we use the initial conditions, i.e. for t = 0. We are
told that at t = 0, uy = x. From equation (1) above, we write, at time t = 0



Taking the inner product of the LHS and RHS w.r.t. cos %x over [0, L] gives

L nm L mr nm
—x = b, — —xd
j;xcosLx j;(z cosLx)cosLxx
fL nm ib fL mr L
X COS —X = COS —X €0Ss —Xx dx
. L mJ, L L
L2(-1 + cos(nm) + nm sin(nm)) L omm
=b, Ccos” —x dx
n?m? 0
L2(-1 + cos(nm) + nm sin(nm)) 3 L
n2m2 = bn 2
2L(-1 + cos(nm) + nm sin(nm))

b, =
" n2m2

Looking at few valuesof n =1,2,3,4 ...

2L(-1 + cos(nm) + nm sin(nmn))

bu = n2m?
Hence
_ 2L(-1 + cos(mt) + msin(n)) 2L(-1 + cos(27) + 27 sin(27))
bu = 72 ’ 22772 ’
2L(-1 + cos(3m) + 37 sm(3n)) 2L(-1 + cos(4m) + 4m s1n(47z))
3272 4272
OL(-1-1) 2L(~1+1) 2L(-1-1) 2L(~1 +1)
bu = G 2n2 7 Rp2 T 422 T
2L(-2) 2L(0) 2L(-2) 2L(0)
bu = n2  22p2’ 3p2 7 422”7
_ 4L —4[
=z OO
4L
nT 22
Hence
i= s n=135..

From equation (1) above we had
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anTt )zt nrc

L _(_
,t = — + L JR—
u(x, t) > e cos T X
L & (% nm
=—+Ebn (e ( L ) cos—x)
2 odd L
L & —4L _(anmy? nm
u(x,t)z E+ Zme ( L )tCOSTX
odd
Hence
L 4L &1 _(m)zt nm
= — - — —_— L -
u(x, t) > nzznze cos T X

odd

LO =1; a= .2;

TO[x_, t_, m_ ] := LO/2 - 4 LO/Pi"2 Sum[1/n"2 Exp[-(a n Pi /L0)"2 t] Cos[n
Pi/LO x], {n, 1, m, 2}%

1;

p = Plot3D[TO[x, t, 501, {x, O, LO}, {t, O, 5}%

, PlotRange -> All,AxesLabel -> {x, "sec", u}, BaseStyle -> 15]

Now we need to consider the k = 0 solution we had at the beginning. Starting with
u(x, t) = e=@Kt cos kx, for k = 0, we have u(x,t) = 1, and as before we want to look for a

general solution as uy(x,t) = Elbn u(x, t), which is now will be
n=

ug(x, t) = ilbn
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To find b,,, as before we use the conditions at t = 0, which is u(x,0) = x. Therefore
u(x,0)=x = Ebn
n=1

[o0]

Therefore )} b, = x. The general solution in this case is given by
n=1

ug(x/ t) = Zbi’l
n=1
ug(x, t) = x

which is what we are required to show. What this means is that for k = 0, the heat distri-
bution does not change. So this is the same as the time-independent initial conditions.
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8 Chapter 13, problem 3.9. Mary Boas book. second edition

A bar of length L = 2 with insulated side at x = 0 only, at t = 0 held at zero temperature. at
t > 0 the right side is held at T = 100 degrees. Determine the time dependent temperature
distribution inside the bar

Att=0 At t>0

Y-axis Y-axis

A

L=2cm Temp=
A Temp=100
Temp 0 du/dx=0 P

X-axi >
-axis X-axis

Solution

In this problem, since left side is insulated, this is a Neumann condition at the x = 0 side.

So att > 0 we will use % = 0 at x = 0. This is a heat distribution problem governed by

the diffusion or heat equation

1 du(x,t
V2u(x, t) = s ;t )

Similar to problem 3.2, we get the following 2 candidate solutions to the above PDE

e~ R gin kx
u(x, t) =

_ 212
e~k cos kx

Since these are solutions for t > 0. We need to find the conditions that % =0atx =0and

u =100 at x = L. Since we want % = 0 at x = 0, then we can not use the sin kx solution.

We are left with the solution e~ cos(kx) which satisfies Z—Z =0atx=0.Nowatx =1L,
we want u = 100, hence g’k cos(kL) = 100. The way this is presented will not allow

—a2k2t

exact expression for k so we have to write u(L,t) =100 +e cos(kL), and now we are

able to set only the P cos(kL) term to zero, which means we need to have cos(kL) = 0

2n-1 2n-1
or kL = nTn ork = nT% Hence we start with the solution
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2n-1

2
_2(2 -1
u(x, t) = 100+ea( 2 L)tcos( " zx)

2 L
2n—1n2
B 2n -1
= 100 +e¢ (a 2 L)tcos( n2 %) (1)

Since a scaled sum of these solutions is a solution, then the general solution is

(o) 2711712
a?= 2n —1mnx
£ =100+ b ) = 2
u(x, t) 00+n:1ne cos( 5 L) (2)

Now we need to find the b,,. For this we use the initial conditions. We are told thatatt = 0,
ug = 0. So now from equation (1) above

u(x,0) =
ad 2n -1 mx
=100 + an cos( > T)
n=1
i 2n -1 7nx
-100= )b —
nz::l " cos( 7T )

Taking the inner product of the LHS and RHS w.r.t. Cos(ZZ—_l%x) over [0, L] gives

o0

™ fL 2n —1 mx gy — f 2 2m—1mx 2n -1 mx
- Cos = cos — || cos —
0 2 L o L 2 L

L

1 (2n-1nx & L 2m—1mx 2n -1 mx

-100 [2”12 sm( > T)} = m}_:lbm fo cos( > T) cos( > T) dx
2 L =

0
100 2L (2n-1nx - . fL ,(2n-1nx P
— —  |sin| ———— = — |aXx
2n-Dr|" 2 ), N\ T2 T

200L [ (2n-17L
Cn-1n [T 2

l
(Z;ZO%Nl. (zn : )] ~ 2
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Looking at few values of 1, b,, = (Z:i()l(;n [sim(znz_1 n) , hence

, 400 [Sm(z—1n)] ~400 'Sm(4—1n)l
" 2-1n 2 ) @-1Dn| 2 )Y
~400 [ (6-1 —400 [ (8-1
(6_1)n[sm( 2 ﬂ)], (8—1)71 |sm(Tn)]...

b -400] . 1 —400]| . E —400 | . §
" - sin 271 e sin 27’( o sin 271 ...

b= —400 +400 -400

T 37 " 5n’
(-1)" 400
n = _271 +17 n=0,1,273,..
Therefore
(-1)" 400
n:—2n+17 n:0,1,2,3,...

From equation (2) above we had

2

u(e,H) =100+ b, ) tcos(zn —1 ”—x)

2 L

n=1

Substituting the value for b, and adjusting the summation index to start from n = 0 since
2n+1

this is where b,, is defined to start from, and so we need to replace ? by in the rest

of the above terms. Hence

2 L

(D" 400 e—(az”” E)2t (Zn +1 nx)

=100+ - s
u(x 1) ,Zg) M+l n O\ L
2
400 & (-1)" _(azmz)t 2n+17x
-100 - — 21 L
w A1 N2 1

LO = 2; a= .2;

TO[x_, t_, m_] := 100 - 400/Pi Sum[(-1)"n/(2 n + 1)

Exp[-(a (2 n + 1)/2 Pi/L0)"2 t] Cos[(2 n + 1)/2 Pi/LO x], {n, 0, m, 1}];
p = Plot3D[TO[x, t, 50], {x, 0, L0}, {t, 0, 10}, PlotRange -> All,
AxesLabel -> {x, "sec", u}, BaseStyle -> 15]
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9 Problem chapter 13, 3.10. Mary Boas book. Second edi-
tion

2

. 19%u
Separate the wave equation V2u = ~—7 into space and time equation and show that the

space equation is the Helmholtz equation.

Solution

Assume that the solution is of this form u(x, v,z t) =F (x, Y, z)T(t)

That is, the solution of the PDE is the product of 2 functions, one that depends only on
the spatial displacements and a function that depends only on time.

Substituting back in the PDE which when written in the long form is:

*u . %u N ?u _19%u
ax2 Y2 922 v It

Hence,

u _TO) JF
dx dx
2%u -1 )&ZF
0x2 dx?
similarly we get
2%u d0%F
Z 7 T(t)—
Iy? Iy?
u T d%F
022 d72
2%u a’T
o7 = Fve) g
Now V2u = 1% can be written as
d%F J%F J*F 1 a7
,. 1 _d°T
TV<F = —F —

dar?
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dividing the equation by T F, we get

1 VIF - 11 d°T

F ~oT ar
Since the LHS is a function of space only, and RHS is a function of time only, and they
equal to each others, then they must be equal to a constant, say —k?

Hence we get

1

—V2?F = —k?
F
ll dZ_T -
oT dt?

Looking at the space equation only:

Ll w _ 2
F(x,y,z) \% F(x,y,z) k
VZF(x, Y, z) =—F (x, Y, z) k2

VZF(x,y,z) + F(x,y,z) k2=0

So the space equation is the Helmholtz equation.
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