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1 chapter 14, problem 1.6

Problem Find real and imaginary parts u,v of ez
Solution
Let z = x + iy, then

f (z) = ez

= ex+iy

= exeiy

= ex (cosy + i siny)

= ex cosy + iex siny

Hence u (x,y) = ex cosy and v (x,y) = ex siny

2 chapter 14, problem 1.12

Problem Find real and imaginary parts u,v of f (z) = z
z2+1

Solution
Let z = x + iy then

z2 + 1 = (x + iy)2 + 1

=
(
x2 − y2 + 1

)
+ i (2xy)

Hence
f (z) =

x + iy

(x2 − y2 + 1) + i (2xy)

Multiplying numerator and denominator by conjugate of denominator gives

f (z) =
(x + iy)

( (
x2 − y2 + 1

)
− i (2xy)

)
((x2 − y2 + 1) + i (2xy)) ((x2 − y2 + 1) − i (2xy))

=

(
x

(
x2 − y2 + 1

)
+ y (2xy)

)
+ i

(
y

(
x2 − y2 + 1

)
(y (2xy))

)
(x2 − y2 + 1)2 + (2xy)2

=
x

(
x2 − y2 + 1

)
+ 2xy2

(x2 − y2 + 1)2 + (2xy)2
+ i

y
(
x2 − y2 + 1

)
− 2x2y

(x2 − y2 + 1)2 + (2xy)2

Hence

u (x,y) =
x

(
x2 − y2 + 1

)
+ 2xy2

(x2 − y2 + 1)2 + 2xy

v (x,y) =
y

(
x2 − y2 + 1

)
− 2x2y

(x2 − y2 + 1)2 + (2xy)2
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3 chapter 14, problem 2.22

Problem Use Cauchy-Riemann conditions to find if f (z) = y + ix is analytic.
Solution
CR says a complex function f (z) = u + iv is analytic if

∂u

∂x
=
∂v

∂y
(1)

−
∂u

∂y
=
∂v

∂x
(2)

Here u = y andv = x , since f (z) = z = x + iy. Therefore ∂u
∂x = 0, ∂v∂y = 0 and (1) is satisfied. And ∂u

∂y = 1

and ∂v
∂x = 1, hence (2) is NOT satisfied. Therefore not analytic.

4 chapter 14, problem 2.23

Problem Use Cauchy-Riemann conditions to find if f (z) = x−iy
x 2+y2 is analytic.

Solution
CR says a complex function f (z) = u + iv is analytic if

∂u

∂x
=
∂v

∂y
(1)

−
∂u

∂y
=
∂v

∂x
(2)

Here f (z) = x
x 2+y2 − i

y
x 2+y2 , hence

u =
x

x2 + y2

v =
−y

x2 + y2

Therefore
∂u

∂x
=

1
x2 + y2

−
x

(x2 + y2)2
(2x)

=
x2 + y2 − 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2

And
∂u

∂y
=

−1
x2 + y2

+
y

(x2 + y2)2
(2y)

=
−

(
x2 + y2

)
+ 2y2

(x2 + y2)2

=
y2 − x2

(x2 + y2)2

Hence (1) is satisfied. And
∂u

∂y
=

−2xy

(x2 + y2)2

And
∂v

∂x
=

2xy

(x2 + y2)2

Hence (2) is satisfied also. Therefore f (z) is analytic.
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5 chapter 14, problem 2.34

ProblemWrite power series about origin for f (z) = ln (1 − z). Use theorem 3 to find circle of conver-
gence for each series.
Solution
From page 34, for −1 < x ≤ 1

ln (1 + x) = x −
x2

2
+
x3

3
−
x4

4
+ · · ·

Hence

ln (1 − z) = (−z) −
(−z)2

2
+
(−z)3

3
−
(−z)4

4
+ · · ·

= −z −
z2

2
−
z3

3
−
z4

4
− · · ·

= −

(
z +

z2

2
+
z3

3
+
z4

4
+ · · ·

)
= −

∑
n=1

1
n
zn

To find radius of convergence, use ratio test.

L = lim
n→∞

|an+1 |

|an |

= lim
n→∞

�� 1
n+1

���� 1
n

��
= lim

n→∞

n

n + 1
= 1

Hence R = 1
L = 1. Therefore converges for |z | < 1.

6 chapter 14, problem 2.37

Problem Find circle of convergence for tanh (z)
Solution

tanh (z) = −i tan (iz)

But tanx = x + x 3

3 +
2
15x

5 + 17
325x

7 + · · · , therefore

tanh (z) = −i

(
iz +

(iz)3

3
+

2
15

(iz)5 +
17
325

(iz)7 + · · ·

)
= −i

(
iz −

iz3

3
+

2
15
iz5 + · · ·

)
= z −

z3

3
+

2
15

z5 + · · ·

This is the power series of tanh (z) about z = 0. Since tanh (z) = sinh(z)
cosh(z) =

sinh(z)
cos(iz) and cos (iz) = 0 at

iz = ±π
2 then |z | < π

2 to avoid hitting a singularity. So radius of convergence is R = π
2 .
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7 chapter 14, problem 2.40

Problem Find series and circle of convergence for 1
1−z

Solution
From Binomial expansion

1
1 − z

= 1 + z + z2 + z3 + · · ·

For |z | < 1. Hence R = 1.

8 chapter 14, problem 2.55

Problem Show that 3x2y −y3 is harmonic, that is, it satisfies Laplace equation, and find a function f (z)
of which this function is the real part. Show that the function v (x,y) which you also find also satisfies
Laplace equation.
Solution
The given function is the real part of f (z). Hence u (x,y) = 3x2y −y3. To show this is harmonic, means
it satisfies ∇2u = 0 or ∂2u

∂x 2 +
∂2u
∂y2 = 0. But

∂u

∂x
= 6xy

∂2u

∂x2
= 6y

∂u

∂y
= 3x2 − 3y2

∂2u

∂y2
= −6y

Therefore ∂2u
∂x 2 +

∂2u
∂y2 = 0, hence u (x,y) is harmonic. Now, we want to find f (z) = u (x,y) + iv (x,y)

and analytic function, where its real part is what we are given above. So we need to find v (x,y). Since
f (z) is analytic, then we apply Cauchy-Riemann equations to find v (x,y) CR says a complex function
f (z) = u + iv is analytic if

∂u

∂x
=
∂v

∂y
(1)

−
∂u

∂y
=
∂v

∂x
(2)

But ∂u
∂x = 6xy, so (1) gives

6xy =
∂v

∂y

v (x,y) =

∫
6xydy

= 3xy2 + д (x) (3)

From (2) we obtain

−3x2 + 3y2 =
∂v

∂x
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But from (3), we see that ∂v
∂x = 3y2 + д′ (x), hence the above becomes

−3x2 + 3y2 = 3y2 + д′ (x)

д′ (x) = −3x2

д (x) =

∫
−3x2dx

= −x3 +C

Therefore from (3), we find that
v (x,y) = 3xy2 − x3 +C

We can set any value to C . Let C = 0 to simplify things. Hence

f (z) = u + iv

=
(
3x2y − y3

)
+ i

(
3xy2 − x3

)
Now we show that v (x,y) is also harmonic. i.e. it satisfies Laplace.

∂v

∂x
= 3y2 − 3x2

∂2v

∂x2
= −6x

∂v

∂y
= 6xy

∂2v

∂y2
= 6x

Hence we see that ∂2v
∂x 2 +

∂2v
∂y2 = 0. QED.

9 chapter 14, problem 2.55

Problem Show that xy is harmonic, that is, it satisfies Laplace equation, and find a function f (z) of
which this function is the real part. Show that the function v (x,y) which you also find also satisfies
Laplace equation.
Solution
The given function is the real part of f (z). Hence u (x,y) = xy. To show this is harmonic, means it
satisfies ∇2u = 0 or ∂2u

∂x 2 +
∂2u
∂y2 = 0. But

∂u

∂x
= y

∂2u

∂x2
= 0

∂u

∂y
= x

∂2u

∂y2
= 0

Therefore ∂2u
∂x 2 +

∂2u
∂y2 = 0, hence u (x,y) is harmonic. Now, we want to find f (z) = u (x,y) + iv (x,y)

and analytic function, where its real part is what we are given above. So we need to find v (x,y). Since
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f (z) is analytic, then we apply Cauchy-Riemann equations to find v (x,y) CR says a complex function
f (z) = u + iv is analytic if

∂u

∂x
=
∂v

∂y
(1)

−
∂u

∂y
=
∂v

∂x
(2)

But ∂u
∂x = y, so (1) gives

y =
∂v

∂y

v (x,y) =

∫
ydy

=
y2

2
+ д (x) (3)

From (2) we obtain

−x =
∂v

∂x

But from (3), we see that ∂v
∂x = д

′ (x), hence the above becomes

−x = д′ (x)

д (x) =

∫
−xdx

= −
x2

2
+C

Therefore from (3), we find that

v (x,y) =
y2

2
−
x2

2
+C

We can set any value to C . Let C = 0 to simplify things. Hence

f (z) = u + iv

= (xy) + i

(
y2 − x2

2

)
Now we show that v (x,y) is also harmonic. i.e. it satisfies Laplace.

∂v

∂x
= −x

∂2v

∂x2
= −1

∂v

∂y
= y

∂2v

∂y2
= 1

Hence we see that ∂2v
∂x 2 +

∂2v
∂y2 = 0. QED.
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10 chapter 14, problem 2.60

Problem Show that ln
(
x2 + y2

)
is harmonic, that is, it satisfies Laplace equation, and find a function

f (z) of which this function is the real part. Show that the function v (x,y) which you also find also
satisfies Laplace equation.
Solution
The given function is the real part of f (z). Hence u (x,y) = xy. To show this is harmonic, means it
satisfies ∇2u = 0 or ∂2u

∂x 2 +
∂2u
∂y2 = 0. But

∂u

∂x
=

2x
x2 + y2

∂2u

∂x2
= 2

(
1

x2 + y2

)
+ 2x

(
−1

(x2 + y2)2
(2x)

)
=

2
x2 + y2

−
4x2

(x2 + y2)2

=
2
(
x2 + y2

)
− 4x2

(x2 + y)2

=
−2x2 + 2y2

(x2 + y)2

∂u

∂y
=

2y

x2 + y2

∂2u

∂y2
= 2

(
1

x2 + y2

)
+ 2y

(
−1

(x2 + y2)2
(2y)

)
=

2
x2 + y2

−
4y2

(x2 + y2)2

=
2
(
x2 + y2

)
− 4y2

(x2 + y2)2

=
2x2 − 2y2

(x2 + y2)2

Therefore

∂2u

∂x2
+
∂2u

∂y2
=

−2x2 + 2y2

(x2 + y)2
+

2x2 − 2y2

(x2 + y2)2

= 0

Hence u (x,y) is harmonic. Now, we want to find f (z) = u (x,y)+ iv (x,y) and analytic function, where
its real part is what we are given above. So we need to findv (x,y). Since f (z) is analytic, then we apply
Cauchy-Riemann equations to find v (x,y) CR says a complex function f (z) = u + iv is analytic if

∂u

∂x
=
∂v

∂y
(1)

−
∂u

∂y
=
∂v

∂x
(2)
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But ∂u
∂x =

2x
x 2+y2 , so (1) gives

2x
x2 + y2

=
∂v

∂y

v (x,y) =

∫
2x

x2 + y2
dy

= 2 arctan
(y
x

)
+ д (x) (3)

From (2) we obtain

−
2y

x2 + y2
=
∂v

∂x

But from (3), we see that ∂v
∂x = −

2y
y2+x 2 + д

′ (x), hence the above becomes

−
2y

x2 + y2
= −

2y

y2 + x2
+ д′ (x)

д′ (x) = 0

д (x) = C

Therefore from (3), we find that
v (x,y) = 2 arctan

(y
x

)
+C

We can set any value to C . Let C = 0 to simplify things. Hence

v (x,y) = 2 arctan
(y
x

)
And therefore

f (z) = u + iv

= ln
(
x2 + y2

)
+ i

(
2 arctan

(y
x

) )
Now we show that v (x,y) is also harmonic. i.e. it satisfies Laplace. We find that

∂2v

∂x2
=

4xy

(x2 + y2)2

∂2v

∂y2
= −

4xy

(x2 + y2)2

Hence we see that ∂2v
∂x 2 +

∂2v
∂y2 = 0. QED.

11 chapter 14, problem 3.3(b)

Problem Find
∮
C

z2dz over the half unit circle arc shown.

Solution
Since f (z) = z2 is clearly analytic on and inside C and no poles are inside, then by Cauchy’s theorem∮
C

z2dz = 0
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12 chapter 14, problem 3.5

Problem Find
∫
e−zdz along positive part of the line y = π . This is frequently written as

∫∞+iπ
iπ e−zdz

Solution
Let z = x + iy, then

I =

∫∞+iπ

iπ
e−zdz

=

∫∞+iπ

iπ
e−xe−iydz

But dz = dx + idy, the above becomes

I =

∫∞+iπ

iπ
e−xe−iy (dx + idy)

=

∫∞

0
e−xe−iydx + i

∫ iπ

iπ
e−xe−iydy

=

∫∞

0
e−xe−iydx

But y = π over the whole integration. The above simplifies to

I = e−iπ
∫∞

0
e−xdx

= e−iπ
(
e−x

−1

)∞
0

= −e−iπ (0 − 1)

= eiπ

= −1

13 chapter 14, problem 3.17

Problem Using Cauchy integral formula to evaluate
∮
C

sin z
2z−π dz where (a) C is circle |z | = 1 and (b) C is

circle |z | = 2
Solution
For part (a), since the pole is at z = π

2 , it is outside the circle |z | = 1 and f (z) is analytic inside and on

C , then by Cauchy theorem
∮
C

sin z
2z−π dz = 0.

For part(b), since now the pole is inside, then∮
C

sin z
2z − π

dz = 2πi Residue
(π
2

)

10



But

Residue
(π
2

)
= lim

z→ π
2

(
z −

π

2

)
f (z)

= lim
z→ π

2

(
z −

π

2

) sin z
2z − π

= sin
(π
2

)
lim
z→ π

2

(
z − π

2

)
2z − π

Applying L’Hopital

Residue
(π
2

)
= sin

(π
2

)
lim
z→ π

2

1
2

=
1
2

Hence ∮
C

sin z
2z − π

dz = πi

14 chapter 14, problem 3.18

Problem Integrate
∮
C

sin 2z
6z−π dz over circle |z | = 3

Solution
The pole is at z = π

6 . This is inside |z | = 3. Hence∮
C

sin 2z
6z − π

dz = 2πi Residue
(π
6

)
But

Residue
(π
6

)
= lim

z→ π
6

(
z −

π

6

) sin 2z
6z − π

= sin
(π
3

)
lim
z→ π

6

(
z − π

6

)
6z − π

Applying L’Hopitals

Residue
(π
6

)
= sin

(π
3

)
lim
z→ π

6

1
6

=
1
6
sin

(π
3

)
Hence ∮

C

sin 2z
6z − π

dz = 2πi

(
1
6
sin

(π
3

) )
But sin

( π
3

)
=

√
3
2 and the above simplifies to∮

C

sin 2z
6z − π

dz = 2πi

(
1
6

√
3
2

)
=

πi

2
√
3
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15 chapter 14, problem 3.19

Problem Integrate
∮
C

e3z
z−ln 2dz if C is square with vertices ±1,±i

Solution
The pole is at z = ln 2 = 0.693 so inside C . Hence∮

C

e3z

z − ln 2
dz = 2πi Residue (ln 2)

But

Residue (ln 2) = lim
z→ln 2

(z − ln 2) f (z)

= e3 ln 2 lim
z→ln 2

z − ln 2
z − ln 2

= e3 ln 2

Hence ∮
C

e3z

z − ln 2
dz = 2πie3 ln 2

= 2πi (2)3

= 16πi

16 chapter 14, problem 3.20

Problem Integrate
∮
C

cosh z
2 ln 2−zdz if C is (a) circle with |z | = 1 and (b) Circle with |z | = 2

Solution
Part (a). Pole is at z = 2 ln 2 = 1.38. Hence pole is outside C . Therefore

∮
C

cosh z
2 ln 2−zdz = 0 since f (z) is

analytic on C
Part(b). Now pole is inside. Hence∮

C

cosh z
2 ln 2 − z

dz = 2πi Residue (2 ln 2)

But

Residue (2 ln 2) = lim
z→2 ln 2

(z − 2 ln 2) f (z)

= lim
z→2 ln 2

(z − 2 ln 2)
cosh z

2 ln 2 − z

= cosh (2 ln 2) lim
z→ln 2

z − 2 ln 2
2 ln 2 − z

= − cosh (2 ln 2)

Therefore ∮
C

cosh z
2 ln 2 − z

dz = −2πi cosh (2 ln 2)

= −4.25πi
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17 chapter 14, problem 3.23

Problem Integrate
∮
C

e3z

(z−ln 2)4
dz if C is square between ±1,±i

Solution
The pole is at z = ln 2 = 0.69 which is inside the square. The order is 4. Hence∮

C

e3z

(z − ln 2)4
dz = 2πi Residue (ln 2)

To find Residue (ln 2) we now use different method from earlier, since this is not a simple pole.

Residue (ln 2) = lim
z→ln 2

1
3!

d3

dz3
(z − ln 2)4 f (z)

= lim
z→ln 2

1
3!

d3

dz3
(z − ln 2)4

(
e3z

(z − ln 2)4

)
= lim

z→ln 2

1
3!

d3

dz3
(
e3z

)
= lim

z→ln 2

1
3!

d2

dz2
(
3e3z

)
= lim

z→ln 2

1
3!
9
d

dz
e3z

= lim
z→ln 2

1
3!
27e3z

= lim
z→ln 2

27
6
e3z

=
27
6
e3 ln 2

= (27)

(
8
6

)
= 36

Hence ∮
C

e3z

(z − ln 2)4
dz = 2πi36

= 72πi

18 chapter 14, problem 4.6

Problem Find Laurent series and residue at origin for f (z) = 1
z2(1+z)2

Solution
There is a pole at z = 0 and at z = −1. We expand around a disk of radius 1 centered at z = 0 to find
Laurent series around z = 0. Hence

f (z) =
1
z2

1

(1 + z)2

13



For |z | < 1 we can now expand 1
(1+z)2

using Binomial expansion

f (z) =
1
z2

(
1 + (−2) z + (−2) (−3)

z2

2!
+ (−2) (−3) (−4)

z3

3!
+ · · ·

)
=

1
z2

(
1 − 2z + 3z2 − 4z3 + · · ·

)
=

1
z2

−
2
z
+ 3 − 4z + · · ·

Hence residue is −2. To find Laurent series outside this disk, we write

f (z) =
1
z2

1

(1 + z)2

=
1
z2

1(
z
(
1 + 1

z

) ) 2
=

1
z4

1(
1 + 1

z

) 2
And now we can expand 1(

1+ 1
z
) 2 for �� 1

z

�� < 1 or |z | > 1 using Binomial and obtain

f (z) =
1
z4

(
1 + (−2)

1
z
+
(−2) (−3)

2!

(
1
z

) 2
+
(−2) (−3) (−4)

3!

(
1
z

) 3
+ · · ·

)
=

1
z4

(
1 −

2
z
+ 3

(
1
z

) 2
− 4

(
1
z

) 3
+ · · ·

)
=

1
z4

−
2
z5
+

3
z6

−
4
z7
+ · · ·

We see that outside the disk, the Laurent series contains only the principal part and no analytical part
as the case was in the Laurent series inside the disk.

19 chapter 14, problem 4.7

Problem Find Laurent series and residue at origin for f (z) = 2−z
1−z2

Solution
There is a pole at z = ±1. So we need to expand f (z) for |z | < 1 around origin. Here there is no pole at
origin, hence the series expansion should contain only an analytical part

f (z) =
2 − z

1 − z2

=
2 − z

(1 − z) (1 + z)

=
A

(1 − z)
+

B

(1 + z)

=
1
2

1
(1 − z)

+
3
2

1
(1 + z)

=
1
2

(
1 + z + z2 + z3 + · · ·

)
+
3
2

(
1 − z + z2 − z3 + z4 − · · ·

)
= 2 − z + 2z2 − z3 + 2z4 − z5 + · · ·
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No principal part. Only analytical part, since f (z) is analytical everywhere inside the region. For |z | > 1
we write

f (z) =
1
2

1
(1 − z)

+
3
2

1
(1 + z)

=
1
2z

1( 1
z − 1

) + 3
2z

1( 1
z + 1

)
=

−1
2z

1(
1 − 1

z

) + 3
2z

1( 1
z + 1

)
=

−1
2z

(
1 +

1
z
+

(
1
z

) 2
+

(
1
z

) 3
+ · · ·

)
+

3
2z

(
1 −

1
z
+

(
1
z

) 2
−

(
1
z

) 3
+

(
1
z

) 4
− · · ·

)
=

1
z
−

2
z2
+

1
z3

−
2
z4
+

1
z5

−
2
z6
+ · · ·

We see that outside the disk, the Laurent series contains only the principal part and no analytical part.

20 chapter 14, problem 4.9

Problem Determine the type of singularity at the point given. If it is regular, essential, or pole (and
indicate the order if so). (a) f (z) = sin z

z , z = 0 (b) f (z) = cos z
z3 , z = 0, (c) f (z) = z3−1

(z−1)3
, z = 1, (d)

f (z) = ez
z−1 , z = 1

Solution
(a) There is a singularity at z = 0, but we will check if it removable

f (z) =
z − z3

3! +
z5
5! − · · ·

z

= 1 −
z2

3!
+
z4

5!
− · · ·

So the series contain no principal part (since all powers are positive). Hence we have pole of order 1
which is removable. Therefore z = 0 is a regular point.
(b) There is a singularity at z = 0, but we will check if it removable

f (z) =
1 − z2

2! +
z4
4! − · · ·

z3

=
1
z3

−
1
2z
+

z

4!
− · · ·

Hence we could not remove the pole. So the the point is a pole of order 3.
(c) There is a singularity at z = 1,

f (z) =
z3 − 1

(z − 1)3

=
(z − 1)

(
z2 + 1 + z

)
(z − 1)3

=

(
z2 + 1 + z

)
(z − 1)2

Hence a pole of order 2.
(d)

f (z) =
ez

z − 1
There is no cancellation here. Hence z = 1 is a pole or order 1.
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21 chapter 14, problem 4.10

Problem Determine the type of singularity at the point given. If it is regular, essential, or pole (and
indicate the order if so). (a) f (z) = ez−1

z2+4 , z = 2i (b) f (z) = tan2 z, z = π
2 . (c) f (z) =

1−cos(z)
z4 , z = 0, (d)

f (z) = cos
( π
z−π

)
, z = π

Solution
(a) To find if the point is essential or pole or regular, we expand f (z) around the point, and look at the
Laurent series. If the number of bn terms is infinite, then it is essential singularity. If the number of bn
is finite, then it is a pole of order that equal the largest order of the bn term. If the series contains only
analytical part and no principal part (the part which has the bn terms), then the point is regular.
So we need to expand ez−1

z2+4 around z = 2i . For the numerator, this gives

ez = e2i + (z − 2i) e2i + (z − 2i)2
e2i

2!
+ · · ·

For

1
z2 + 4

=
1

(z − 2i) (z + 2i)

= −
i

4
1

(z − 2i)
+

1
16
+

i

64
(z − 2i) −

1
256

(z − 2i)2 − · · ·

Hence

f (z) =

(
1 − e2i + (z − 2i) e2i + (z − 2i)2

e2i

2!
+ · · ·

) (
−
i

4
1

(z − 2i)
+

1
16
+

i

64
(z − 2i) −

1
256

(z − 2i)2 − · · ·

)
We see that the resulting series will contain infinite number of bn terms.These are the terms with 1

(z−2i)n .
Hence the point z = 2i is essential singularity.
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(b) We need to find the series of tan2 z around z = π
2 .

tan2
(
z −

π

2

)
=

sin2
(
z − π

2

)
cos2

(
z − π

2

)
=

( (
z − π

2

)
−

(
z− π

2

) 3
3! +

(
z− π

2

) 5
5! − · · ·

) 2
(
1 −

(
z− π

2

) 2
2! +

(
z− π

2

) 4
4! − · · ·

) 2

=

(
z − π

2

) 2 (
1 −

(
z− π

2

) 2
3! +

(
z− π

2

) 4
5! − · · ·

) 2
(
1 −

(
z− π

2

) 2
2! +

(
z− π

2

) 4
4! − · · ·

) 2

=

(
z − π

2

) 2 (
1 −

(
z− π

2

) 2
3! +

(
z− π

2

) 4
5! − · · ·

) 2
( (
z − π

2

) (
1

z− π
2
−

(
z− π

2

)
2! +

(
z− π

2

) 3
4! − · · ·

) ) 2

=

(
z − π

2

) 2 (
1 −

(
z− π

2

) 2
3! +

(
z− π

2

) 4
5! − · · ·

) 2
(
z − π

2

) 2 (
1

z− π
2
−

(
z− π

2

)
2! +

(
z− π

2

) 3
4! − · · ·

) 2

=

(
1 −

(
z− π

2

) 2
3! +

(
z− π

2

) 4
5! − · · ·

) 2
(

1
z− π

2
−

(
z− π

2

)
2! +

(
z− π

2

) 3
4! − · · ·

) 2
So we see that the number of bn terms will be 2 if we simplify the above. We only need to look at the
first 2 terms, which will come out as

f (z) =
1(

z − π
2

) 2 −
2
3
+

1
15

(
z −

π

2

) 2
+ · · ·

Since the order of the bn is 2, from 1(
z− π

2

) 2 , then this is a pole of order 2. If the number of bn was infinite,
this would have been essential singularity.
(c) f (z) = 1−cos(z)

z4 , Hence expanding around z = 0 gives

f (z) =
1 −

(
1 − z2

2! +
z4
4! −

z6
6! + · · ·

)
z4

=

z2
2! −

z4
4! +

z6
6! + · · ·

z4

=
1
2
1
z2

−
1
4!
+
z2

6!
+ · · ·

Since bn = 1
2

1
z2 and highest power is 2, then this is pole of order 2.

(d) f (z) = cos
( π
z−π

)
. We need to expand f (z) around z = π and look at the series. Since cos (x)

expanded around π is

cos (x) = −1 +
1
2
(x − π )2 −

1
24

(x − π )4 + · · ·
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Replacing x = π
z−π , the above becomes

cos
( π

z − π

)
= −1 +

1
2

( ( π

z − π

)
− π

) 2
−

1
24

( ( π

z − π

)
− π

) 4
+ · · ·

The series diverges at z = π so it is essential singularity at z = π . One can also see there are infinite
number of bn terms of the form 1

(z−π )n

22 chapter 14, problem 5.1

Problem If C is circle of radius R about z0, show that∮
C

dz

(z − z0)
n =

{
2πi n = 1

0 otherwise

Solution
Since z = z0 + Re

iθ then dz = Rieiθ and the integral becomes∫ 2π

0

Rieiθ(
Reiθ

) ndθ = ∫ 2π

0

(
Rieiθ

) 1−n
dθ

= (R)1−n
∫ 2π

0
ieiθ (1−n)dθ (1)

When n = 1 the above becomes ∫ 2π

0

Rieiθ(
Rieiθ

) ndθ = ∫ 2π

0
idθ

= 2πi

And when n , 1, then (1) becomes∫ 2π

0

Rieiθ(
Reiθ

) ndθ = i (R)1−n [
eiθ (1−n)

i(1−n)

] 2π
0

=
R1−n

1 − n

[
eiθ (1−n)

] 2π
0

=
R1−n

1 − n

(
ei2π (1−n) − 1

)
But ei2π (1−n) = 1 since 1 − n is integer. Hence the above becomes∫ 2π

0

Rieiθ(
Reiθ

) ndθ = R1−n

1 − n
(1 − 1)

= 0

QED.
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