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1 Problem1

Solve the following system of equations and write the solution as a parametric vector
form

xX+2y—-3z=5
2x+y—-3z=13
-x+y=-8
Solution

In matrix form Ax = b, the above system is

2 -3||x 5
=3(lyl =113 (1)
-1 1 0]z -8

The augmented matrix is

1 2 -3 5
2 1 -3 13
-11 0 -8
R, =R, - 2R,
1 2 -3 5
0 3 3 3
-1 1 0 -8
Ry =R;+Ry
1 2 -3 5
0 -3 3 3
0 3 -3 -3
R; =R3+R,
1 2 835
0 -3 3 3
0 0 0 O
Hence original system (1) becomes
1 2 -3|[x
0 -3 3|ly[=]3 (2)
0 0 O0]fz 0



The above shows that z = t is a free variable and x, y are basic variables. Second row gives
-3y+3t=3o0or-y+t=1ory=1t-1 Firstrow givesx +2y -3t =50rx=5+3t-2(t-1)
or x = 7 + t. Hence the solution is

X (7 + ¢t

yl=|t-1

z| |t
(7] [t
=|-1|+|t
0] |t
(7] [
=|-1|+t]1
o] |1

The above is the solution in parametric vector form. For any value of the parameter ¢, a
solution exist.



2 Problem 2

Compute the determinant using a cofactor expansion

1 5 0
A=12 4 -1
0 -2 0

solution

Expanding along the last row since it has most number of zeros gives (only the element
A(3,2)#0)

det() = (1?2 ()| °
2 -1
1 0
=2
2 -1
—2(1)



3 Problem 3
Let
1 -3 -4
A=|-4 6 -2
3 7 6
[ 3
u=|3
4

a is u in NullSpace of A ? Justify your answer.
b Is u in columnspace of A ? Justify your answer.
¢ Determine the rank A and the Nullity of A. Show your work

solution

3.1 Parta

For an m X n matrix, the solution set corresponding to AX = 0 is called the NullSpace(A).
Therefore we need to first find this solution set by solving

1 -3 —4{|x| |0
-4 6 =2[|ly|=|0 (1)
-3 7 6||z|] |0
The augmented matrix is
1 -3 40
-4 6 20
-3 7 6 0
R; = Ry + 4R,
1 -3 -4
0 -6 -18
-3 7 6 0
R; = R3 + 3R,
1 -3 -4 0
0 -6 -18 0



R; =Ry~ 3R,
1 -3 4 0
0 -6 -18 0
0 0 0 O
Hence (1) becomes
1 -3 —4||x 0
0 -6 -18||y|=10 (2)
0 0 0 ||z 0

The above shows that z = t is free variable and x, y are basic variables. Second row gives
—6y —18t = 0 or y = —3t. First row gives x — 3y — 4t = 0 or x = 3 (-3¢) + 4t or x = —5t. Hence
the solution is

X —5t
y|=|-3t
z t
-5
=t|-3
1
3
Now we are ready to answer the question if u = | 3 | is in the NullSpace(A). In other
—4
-5 3
words, does there exist f which make t|-3| =| 3 |. It is clear there is no such t. To show
1 —4

this, looking at the second row, it says -3t = 3 or t = —1. But third row says t = —4.
Therefore there is no t which makes u in NullSpace(A). Hence u is not in NullSpace(A)

3.2 Partb

The columnspace of A is the set of all linear combinations of the columns of A. The basis
for the columnspace are columns of A that correspond to the pivot columns are doing
the above REF. From part A we found that column 1, 2 are the pivot columns. Hence the



basis of columnspace of A are

11]1]-3
—41,( 6
=3| |7

Hence the columnspace of A is two dimensional subspace of IR®. To find if u is in columnspace
of A, we need to find if there exists a linear combination of these basis which gives u.
Therefore we need to solve

1 -3
Cq 4|+ Cy 6 = 3
-3 7 -4

For ¢y, ¢, to see if a solution exist. In matrix form the above becomes

-4 6 [ ] (1)
-3 7
The augmented matrix is
(1 3 3]
-4 6 3
-3 7 4]
R, = R, + 4R,
1 -3 3
0 -6 15
-3 7 -4
R; = R; + 3R,
1 -3 3
0 -6 15
0 -2 5
R; = Ry — 3R
1 -3 3
0 -6 15

(@)
(e
(@)



RZ = —%
1 -3 3
5
01 -3
0 0 O
Rl = R1 + 3R2 )
9
10—
5
01 -3
00 O
Hence (1) becomes ]
9
10 . T2
0 1| '|=]|_3
0 Cy 2
- 0 4

Therefore the solution is

1 -3

9456—

21 7| 2 -
-3 7 —4

This means u is in the columnspace of A.

3.3 Partc

The rank of A is the dimension of the columnspace of A. Which is the same as the number
of pivot columns found. In this case, it is 2 as found in part b above. Hence rank(A) = 2.

Nullity of A is the dimension of the nullspace of A. From part (a) we found that the
-5
nullspace of A is given by the one parameter vector t | -3 |. Hence the dimension is 1. It is

1



the number of the free variables. Therefore Nullity of A =1. To verify this, we can use

the rank-nullity theorem, which says for a matrix m X n,
rank(A) + nullity(A) = n

Since n = 3 and since rank(A) = 2 then nullity (A) = 1.
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4 Problem 4

a Using the definition, verify that the given transformation is linear transformation T :
C2(I) — CO(I) defined by T(y) =y’ +y

b Find the kernel of T

solution

4.1 Parta
The transformation T is linear if
1. T(u+9v) = T(u) + T(v) for all u,v in C*(I)
2. T(cu) = cT(u) for all scalars ¢ and u in C2(])

To show property 1:
Tu+v)=w+0)" +Ww+0)

By linearity of second derivatives (and since u, v are in C? (I)) the above becomes

Tw+v)=wW'"+7")+u+0)
=u"+u+0"+v
=W +u)+ @ +0)

But (u”” + u) = T(u) and (v"" + v) = T(v), Hence the above becomes
T(u+v)=T(u)+T()

To show property 2:
T(cu) = (cu)” + (cu)

But since c is a scalar, we can move it outside the derivative and the above becomes

T (cu) = c(u)” + cu
=c(u” +u)

But u” + u = T(u). Hence the above becomes
T (cu) = cT(u)

Both properties are satisfied. Hence T is linear transformation.

4.2 Partb

The kernel of T : V — Wisker(T) = {u € V : Tu = 0}. In this case V = C?(I) and W = C°().
Hence we need to find all u, such that T (1) = 0. Which is the same as saying all # which
satisfies u”” + u = 0. Hence ker(T) is the solution of this ode.
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This is linear constant coefficient ode. The characteristic equation is A2 + 1 = 0. The so-
lutions are A = +i. Hence the basis functions are {eix, e‘ix} (assuming the independent
variable is x), or using Euler relation {cos x, sin x}. Therefore the solution is linear combi-

nation of these basis given by u = ¢; cosx + ¢, sinx where ¢y, ¢, are arbitrary constants.
Hence

ker(T) = {u : u = ¢ cosx + ¢, sin x}
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5 Problem5
Solve (y + 3x2) dx + xdy = 0
solution
Writing the ODE as
Mdx + Ndy =0

Where M = y + 3x%, N = x. Checking if the ODE is exact

M

iy |

9y

IN 1

dx

oM _ N

Since Sy = o

D (x, y) = ¢ which satisfies
P

_= = 2
e M=y+3x
i =N=
dy -7

For all (x, y) in R. Integrating (1) w.r.t. x gives

@ = yx + 2% + g(y)
Taking derivative of the above w.r.t. y gives
D
§§=X+§@)
Comparing (4) and (2) gives
x+g'(y)=x
gy =0
Hence g(y) = c¢; a constant. Substituting this in (3) gives

D =yx+ x>+

But ® = c. Combining the constants c, c; into one constant, say C, the above becomes

C=yx+x°
Solving for y gives
yx=C-x°
Forx #0
C-x°
y =

then it is exact in some region R. Let there exists constant function

(1)
(2)
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6 Problem 6

Using the method of undermined coefficients, find the general solution of the given
differential equation

y' -y -2y=e*+2cosx (1)

solution

The solution is

Y=Yntlp
Where yj, is the solution to the homogenous ode y” -y’ — 2y = 0 and y, is a particular
solution to the ode. We start by finding ;. Since this is linear second order with constant
coefficient, then the characteristic equation method is used. The characteristic equation
fory’ -y -2y =0is

A2-1-2=0

A-2)(A+1)=0

Hence the roots are A, = 2, A, = —1. Therefore the basis set of solutions for yj, is the set
{ezx, e‘x] (2)
And y, is linear combination of these basis. Therefore
Yp = 16 + cpe™ (3)

Looking at RHS of (1) shows it is linear combination of basis [¢™*, cos x]. For each basis
in this list, we generate all possible derivatives. Which gives (ignoring sign changes and
any leading constants as they will be parts of the unknowns to be found later on). This
results in the following list

[{e7}, {cos x, sin x}] (4)

Now we compare each basis in (2) with each basis in (4) to see if there is any duplication.
We see that e™ is in (4) as well in (2). We now multiply e™ in (4) by an extra x and obtain
new list

[{xe ™}, {cos x, sin x}] (4A)

We repeat this process again, checking if (2) still has any duplication in (4A). There are
no duplication now. Hence the trial solution is linear combination of the basis in (4A).
Which gives

Yp = Axe™ + Bcosx + Csinx (5)
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To determine A, B, C, we substitute Yp back in the ODE (1) and solve for these unknowns
by comparing terms.

Y, = Ae™* — Axe™ — Bsinx + Ccosx (6)
yy =—Ae™ — Ae™ + Axe™ - Bcosx — Csinx
= -2A¢™* + Axe™ —Bcosx - Csinx (7)

Substituting (5,6,7) into the ODE (1) gives

(—2Ae™ + Axe™ — Bcosx — Csinx) — (Ae™ — Axe™ — Bsinx + Ccosx) —2(Axe™ + Bcosx + Csinx) = e™* +2cosx
—2Ae™ 4+ Axe™ —Bcosx — Csinx — Ae™ + Axe™ + Bsinx — Ccosx —2Axe™ —2Bcosx —2Csinx = e™* + 2cosx
Which simplifies to

—3Ae™* —=3Bcosx—3Csinx+ Bsinx—Ccosx =e ¥+ 2cosx
—3Ae™* + cosx(-3B—-C) +sinx(-3C + B) = e +2cosx

Comparing terms on each side gives 3 equations to solve for A, B, C

-3A =1
-3B-C=2
-3C+B=0

First equation gives A = —%. Multiplying second equation by -3 and adding the result to
third equation gives

9B+ 3C =-6
-3C+B=0
Adding gives
9B+B=-6
10B = -6
3 6
10
B 3
-5

From -3B - C = 2 we now find -3 (—%) -C=20rC= —%. Hence the particular solution

(5) becomes
1 3 1

Yp = _Exe_x - E cOS X — E sinx (8)

Substituting (8) and (3) in y = y;, + Y, gives the final solution as

Y =c1e¥ +cpe ™ - 1xe‘" -~ Ecosx -~ lsinx
3 5 5
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7 Problem 7

Use the Laplace transform to solve the given initial-value problems. You can use the table
of transformation

solution
Taking the Laplace transform of both sides of y’ + y = ¢* gives (using linearity)
L)+ 2w =Z() (1)
Assuming Z(y) = Y(s), and using the property that
Z(y") = L) - sy(0) - y'(0)

And from table 10.2.1 ¥ (ezt) = é, s > 2, then the ode becomes

1
(LW -syO -y©)+ L) = —;

1
2y —s(0)-1)+Y = —
(s s(0) ) p—
1
2Y -1+Y=—
’ s—2

Y(sz+1):%+1

5
1 1
Y:(S—Z)(52+1)+52+1 (14)

Using partial fractions on the first term in the RHS above gives
1 A Bs+C
(s—2)(52+1) Ts2 TP
A(s2+1)+(Bs+C) (s -2)
(s-2) (32 + 1)
As? + A+ (Bs? - 2Bs + Cs - 2C)
B (s—2) (52 + 1)
_ A+ A+Bs?-2Bs+Cs-2C
- (s—2) (52 + 1)
_ s2(A+B)+5s(C-2B)+(A-20)
- (s—2) (52 + 1)
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Therefore
1=5*(A+B)+s(C-2B)+(A-20)

Comparing terms gives

A+B=0
C-2B=0
A-2C=1
In matrix form the above is
1 1 0]|A 0
0 -2 1]||B|=|0 (2)
1 0 -2/|C 1
The augmented matrix is
11 0 0
0 -2 0
0 21
R3 =R3 - Ry
1 1 0 0
0 -2 0
0 -1 -2 1
R3 = 2R,
1 1 0 0
0 -2 1
0 -2 -4 2
R3; =R3-R,
11 0 0
-2 1
0 -5 2
Rz = %R'g’,Rz = —%RZ gives
11 0 0
01 = 0
001 2




Ry =Ry + 3Ry

Rlle_RZ

Hence (2) becomes

Hence

e
—_
- o O
0O = >
Il
|

O &S
I
|

1 A Bs+C

= +

(5—2)(52+1) s—2 s2+1

1 2
5575

s +1
1s+2
s—2 5s2+1

1 1 s 2 1

—_

)
N

—

Q1| = Q1 = Q1] =

s—2 5s52+41 5s2+1

17
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Substituting (4) back in (1A) gives

1 1 1 s 2 1 1
Y=:—- - -_° < +
55—2 552+1 5s2+1 s2+1
1 1 1 s 3 1
_55—2_552+1+532+1 (5)

Now we will use tables to do the inverse Laplace transform. From table 10.2.1

1
Z1 (—2) =e?  s>2
S_

1
3‘1(SZ+1):sint s>0

Using this result in (5) and since -Z ! (Y(s)) = y(t) then (5) becomes

1 1 3
y(t) = geZt 3 cost + z sin t
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8 Problem 8

Find a series solution in powers of x of the differential equation y”” + x*y’ + y = 0
solution

Let the solution be

v = Yo )
Then
Ve = Y nat
=0
= i na,x"! (2)
n=1
And

Yy’ (x) = Y n(n—1)a,x"?
n=1

= Y n(n-1)a,x"? (3)
=2
Substituting (1,2,3) into the given ODE gives

o0 [e¢] (o]
Yn(n-1)a,x"2+x2 Y na,x"t + Y a,x" =0
n=2

n=1 n=0

Z nn-1)a,x"2 + Z na,x"*1 + Z a,x" =0 (3A)
n=2 n=1 n=0

Now we make all powers of x the same by rewriting Z:’:z nn-1)a,x"?= ZZO:O n+2)(n+1)a, ,x"
and 22021 na,x"*1 = EZOZZ (n=1)a,_1x". The way the above is done is by using the rule:

When adding a value to the summation index 7 inside the sum, then we must at same

time subtract the same value from the starting index n.

Hence (3A) now becomes

Z (m+2)(n+1)a,x"+ Z n-1)a,_1x"+ 2 a,x" =0
n=0 n=2 n=0

To be able to compare coefficients of x, we expand up to n = 1 the sums in order to make
all sums start from n = 2. This gives

Ma, + 1 +2)1+1)azx + Z nm+2)(n+1)a, x" + Z (n—1)a,_x" + (ag + ayx) + Z a,x" =0
n=2 n=2 n=2

(2a2+a0)+x(6a3+a1)+(Z(n+2)(n+1)an+2+Z(n—l)an_1+Zan)x”:O
n=2 n=2 n=2
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Now we are to compare coefficients on each power of x. The above gives the three equa-
tions

2ﬂ2+11020 (4)
6a3+a1 =0
nm+2)y(n+1)a,.p+(n-1)a,_,+a,=0 n>2

First equation above gives

1
ay =—=a
2= "5
Second equation in (4) gives
4
a S —
T 6

And the third equation in (4) gives the recursive equation which allows us to find all a,,

after these
n+2)(n+1)a,p+mn-1a,;+a,=0 n>2

Or

_ Ty (n B 1) Ap—1
2 = T 4 1)

Therefore, for n = 2 the above gives

1, = —dy — :—ﬂz—bh
T2+ 2+ 12

1
But a; = —2ay, therefore the above becomes

! 1
B (_an) “M cag-a gy -2a

“UETT e 12 4 (6)

And for n = 3 (5) gives
4 _—03—(3—1)ﬂ2_—ﬂ3—2ﬂ2
> B3+2(B+1) 20

1
Buta, = —zag,a3 = — the above becomes

o
2 @©)

I U Y o
_ ( <2><3>) 2( 2“0) @3 %N a+6a

= 7
20 20 120 7)

And for n = 4 (5) gives
4 _—a4—(4—1)a3_—a4—3a3
*T @+2@d+1) 30
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Buta, = 22 and a; = —%1. The above becomes
610—2&1 a _ 2
L _( 24 )_3(_?) _ %"‘ %1 _ o +2ay +12a;  —ag+14ay _ —ap +14m
6 30 30 (30) (24) (30) (24) 720

And so on. Therefore, from (1)

o0
y() = Y a”
n=0
= ag + a1x + apx% + a3 + agx* + asx® + agx® + -

1 a ag—2a a; + 6a —ag + 14a
= ag + ax — =agx? — =3 + | L |t + [ S [ | xf +

2 6 24 120 720

1 - 7
:a0+a1x——a0x2—a—lx3+(@—a—l)x4+(ﬂ+@)x5+ o )6y

2 6 24 12 120 20 720 360

Therefore

1, 1, 1. 1 1. 1, 1 7
a1t e 5 6, S S S - S S
ye) ”0( 2" Toat T20" T 720" ) ”1(x 6 127 T120" T 360"
(8)

The series solution above contains two unknowns a, a;. There are the same as the constant
of integrations. Since this is a second order ODE, then there will be two unknowns in
the general solutions. These can be found from initial conditions. For example, assuming
y(0) = yo,¥'(0) = y. Then from (8) at x = 0, it gives y(0) = a. Taking one derivative of (8)
gives

4 3
I — _ 3 4., — X2 4 ...
y(x)—ao( x+24x+ )+a1(1 6x+ ) 9)
At x = 0 the above becomes y;, = a;. Therefore (8) can be written as

1, 1, 1 1 1. 1 1 7
TN § T S SN DI SR R S S S N LAY S
y®) =y )( 2" T2a" T 20t T 720" VO =57~ 5%+ 1557 ¥ 360"
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9 Problem?9

a) Determine all the equilibrium points of the given system. b) Select two equilibrium
points and classify them as saddle, node, spiral or center and whether they are stable or
unstable.

X' =2x-x*-xy

¥’ = 3y — 3xy — 2y

9.1 Parta
equilibrium points are the solutions in x, y of
2x-x?—xy=0 (1)
3y —3xy —2y> =0 (2)
Which can be written as
x(2—x—y):0 (1)
y(3-3x-2y)=0 (2)
From (1), we see that
x=0 (3)
is a solutionand 2 -x -y =0 or
x=2-y (4)

Is another solution. For each x value in (3,4), now we solve for y from (2). When x = 0
then (2) becomes

y(3-2y)=0

Which has solutions y = 0,y = . Therefore {0, 0} and {O, g} are two solutions found so

far. And when x = 2 — y then (2) becomes

y(3-3(2-y)-2y) =0
y(3-6+3y-2y)=0
y(3-6+y)=0

Which has solutions y = 0 and y = 3. When y = 0 then x = 2 — y gives x = 2. Therefore
{2,0} is a solution, and when y = 3 then x = 2 —y gives x = 2 - 3 = -1. Hence {-1, 3} is
another solution. Putting all these together gives the solutions as

~ N W

{0,0}, {O, g} ,12,0},{-1,3}



9.2 Partb

The given system is matrix form is

x/
=F
¢
[ 2x—x2—xy
B 3y - 3xy — 2y
_f@w
5 (xy)

The Jacobian matrix for the system is given by the gradient of F

J=VF
ENii
dx dy

]:

98 98
dx dy

[ 8(2x—x2—xy) &(Zx—xz—xy)

ox dy

&(3y—3xy—2y2) 8(3y—3xy—2y2)

dx dy
2 -2y - v -X
=3y 3-3x-4y

. . 3 .
Selecting points {0, 0} and {O, 5} for analysis.
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At Point {0,0} the linearized system matrix A is the Jacobian matrix evaluated at this

equilibrium point. Hence

—2—2x—y —X
-3y 3-3x—-4y| _,

y=0
2 0
_O 3
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The eigenvalues are found by solving det (A — AI) = 0 or
2-1 0

0 3-1
2-1)(3B-1)=0

=0

Hence A; = 2and A, = 3. Since both eigenvalues are positive, then this is unstable critical point.

It is a negative attractor also called a node.

At Point {0, g} the linearized system matrix A is the Jacobian matrix evaluated at this

equilibrium point. Hence

—2—2x—y -X
A=
-3y 3-3x—4y|,-0
"=

3

2-7 0

- 3 3

(3) 3-4()

[ 1

9 4

(L-d)es-n=0

Hence A = % and A, = 3. Since one eigenvalue is positive, and one eigenvalue is negative,
then this is unstable critical point. It is a saddle point.
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