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1 Problem1

Determine the null space of A and verify the Rank-Nullity Theorem

Solution

1 21 4

A=13 8 7 20

279 23

The null space of A is the solution A% = 0. Therefore

The augmented matrix is

Ry = Ry — 3R, gives

R3 = R3 - 2R1 gives

_ Ry .
Ry = = gives

R3 = R3 - 3R2 gives

O N =

X2

X3

20

9 23

9 23

7 15

7 15

—_

X1

X4

0
=0 (1)
0




Now the reduced echelon phase starts.

RZ = Rz - 2R3

Ri =Ry —Rj3

R; =R, - 2R,
0
01
0

0
0
1

5
-2
3

(e}

)

R
0
O_

The above in RREF form. There are 3 pivots. They are A(1,1), A(2,2),A(3,3). Hence

original system (1) becomes

1 00
010
0 01

5
-2
3

Xq

Il
o O =

The base variables are x1, x,, x3 and the free variable is x, = s. Last row gives x5 + 3x4, = 0
or x3 = —3s. Second row gives x, — 2x; = 0 or x, = 2s. First row gives x; + 5x4 = 0 or

x1 = —5s. Hence the solution is

X2

X3

Xq




It is one parameter solution. Hence the dimension of the null space is 1. (it is subspace

o]

of R" or R* in this case). Any scalar multiple of 3 is basis for the null space. For

1

verification, using the Rank-nullity theorem (4.9.1, in textbook at page 325) which says,
for matrix A of dimensions m X n

Rank(A) + nullity(A) =n

Therefore, since n = 4 in this case (it is the number of columns), and rank is 3 (since there
are 3 pivots) then
3 +nullity(A) = 4

Hence
nullity(A) =4 -3
=1

This means the dimension of the null space of A is 1. The nullity (A) is the dimension of
null-space(A), which is also the number of free variables at the end of the RREF phase.
This verifies the result found above.




2 Problem 2

Using the definition of linear transformation, verify that the given transformation is linear.
T:R? - R? defined by T (x, y) = (x +2y,2x - y)

Solution

The mapping is linear if it satisfies the following two properties

T(i+3)=T(@)+T(d) foralli,geV
T (cﬁ) =cT (ﬁ) for all 1 € V and all scalars ¢

T above is the linear mapping that assigns each vector ¥ € V one vector w € W, where
V, W are vector spaces. V is called the domain of T and W is called the codomain of T. The
range of T is the subset of vectors in W which can be reached by the mapping T applied

to all vectors in V.i.e. Rng(T) = {T (?5) 1veE V} . To find if T is linear, we need to check both
X1

0=
n Y2
holder since we do not know yet if LHS is equal to RHS. It should really be < but this

gives a Latex issue when used)
T(ii+73)=T(i)+T(d)

X2
T =T +T
X1+ Xy X1+ 2y1 Xy + 2y2
T = +
[l% + Y 2x1 — }/1] [sz - yj

(xl +x2) +2(]/1 +]/2) r.7C1 +2y1 +XZ +2y2<

X2

properties above. Let il = . Then (Please note that = below is used as a place

X1 X1 X2

—+

Y1 Y1 Y2

2(.7(,'1 + Xz) - (]/1 + yz) hle —t 2xp _]/2_

X1+ Xy +2y1 + ZyZ- le +x, + 2y + Zyz-

20+ 20 -1-Y2| |20+ 2% - Y1~ Y2

Comparing both sides shows they are indeed the same. Hence the first property is satis-




X
then
y

fied. Now the second property is checked. Let c be scalar and let i =

T (cﬁ) =cT (ﬁ)

x] x
T|c =cT
Y Yy
cx| xX+2
T =c /
cy| 2x -y
cx + 2qu cx + 2cy
2cx —cy | 2cx - cy

Comparing both sides shows they are the same. Hence the second property is satisfied.

This verifies that the given transformation T is linear



3 Problem 3

Determine the matrix of the given linear transformation
T:R® - R? definedbyT(x,y,z):(x—y+z,z—x)
Solution

X
) ] 411 412 413 N
Let the matrix of the transformation be A = and let ¥ = |y | be some vector
dp1 Gz A3

4
in the domain of T, then we need to solve
X
ay1 Adip a3 X—y+z
dp1 Ay 43 Z—-X
z
For the unknowns aq1, a5, 413, 421, A, ay3. The first row equation is
anXx+apy+az=x-y+z (1)

Comparing coefficients for each of the variables x, y, x gives a;; = 1,41, = =1,a13 = 1. The
second row equation is

Ap1X + ApY + A3z =z — X (2)
Comparing coefficients again gives a1 = -1, a5, = 0,43 = 1. Hence the matrix A is

1 -1 1
A=
-1 0 1



4 Problem 4

5 2 1
Let T : R? > R? be a linear transformation that maps # = [J into [J and 7 = [J into

. Use the fact that T is linear to find the image under T of 3 + 27
3

Solution

The mapping is linear if it satisfies the following two properties
T(ﬁ+5)=T(ﬁ)+T(ﬁ) forallu,7eV
T (cﬁ) =cT (ﬁ) for all i € V and all scalars ¢
By using first property above we can then write
T (34 + 28) = T (31) + T (25)
And by using the second property the RHS above can be written as

T (34 + 20) = 3T (i) + 2T (3)

But we are given that T (ﬁ) =

Il
Y o
— -

+

Hence the image under T of 3u + 27 is

T (31 + 27) = Lj



5 Problem 5

Assume that T defines a linear transformation and use the given information to find the
matrix of T.
T:R?> - R*

Such that T(0,1) =(1,0,-2,2)and T(1,2) = (-3,1,1,1)
Solution

Let A be the representation of the linear transformation and let X vector in the domain of
T. Hence 5

AX=b
Where b € R?*, hence it has dimensions 4 X 1 and since X € IR? then it has dimensions 2 x 1.

Therefore
(mxn)2x1)=4x1)

Since inner dimensions between A and X must be the same for the multiplication to be
valid, then n = 2. Therefore m = 4. Hence A must have dimensions 4 X 2. Let A be

ap;p app
a1 4

azy azp

| 741 (42|

Using T(0,1) = (1,0, -2,2), then we can write

ajp app [ 1 ]
ax1 ax||0 B 0
az azp ||l |2

fl41 6142_ | 2 ]
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or by carrying out the multiplication

(011 0) +app@)| 1]
21(0) + a(1) 0

a31(0) + az(1)| |2
a41(0) +agp(1)| | 2]

—51121 1]
a2 _ 0 )
asp -2
V] I 2 ]

And using the second relation T (1,2) = (-3,1,1,1) gives

—1111 alz- 3]
axn axp||1l |1
az; asp||2 - 1
441 Q42| [ 1]

a11(1) + aq2(2

)

a1(1) + ax(2) 1
)
)

a31(1) + az(2 1

a4 (1) +ap(2)] |1 ]
01+ 201, [_3]
ay1 + 245 1
az + 2az B 1
Ay +2ag| | 1]




Substituting values found in (1) into the above gives

[ 0 +20) | [-3)
ap1 +2(0) 1
am+2(2)| |1
ag +2(2) | |1]
—all +2] [_3]
a21 1
az; —4 B 1
0y +4] | 1]
_1111< 3 - 2]
a21 1
as B 1+4
ay | 1-4 ]
5]
1
B 5
__3_

All entries of A are now found. Therefore the matrix representation of T is

s g
1 O
A=
5 -2
>_3 2 .
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6 Problem 6
Find the ker(T) and Rng(T) and their dimensions. T : R®> — IR? defined by T(x) = Ax
where
1 -1 2
A=
-3 3 —6}
Solution

Rng(T) are all vectors in R? (subspace of R™) which can be reached by T for every vector
in domain of T which is R?. It is the same as the column space of A.

Ker(T) are all vectors in R® which map to the zero vector in R2. They are the solution of
A% = 0. Ker(T) is the same as null-space of A where A is the matrix representation of the
linear mapping T. To find Ker(T), we then need to solve the system AX = 0.

1o 2| _Jo "
3 3 6|/’ |o

1 -1 2 0

3 3 -6 0

1 -1 20

0 0 0O
Base variable is x;. Free variables are x, = s,x3 = t. Pivot column is the first column.
Hence (1) becomes

The augmented matrix is

Ry = Ry + 3R, gives

X1

s

X3
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First row gives x; —s + 2t = 0 or x; = s — 2t. Hence the solution is

X1 [s - 2t
Xl=| s
xz| | ¢
S -2t
=|ls|+| O
0 t
1 -2
=s|1|{+¢t|0
0 1

It is two parameters system. The dimension of the null-space is therefore 2. (it is also the
number of the free variables). The null-space is subspace of IR®. Hence

1 -2
ker(T) ={7eR3:B=s|1|+t|0],s,teR
0 1

Now Rng(T) is the column space. From above we found that the first column was the

pivot column. This corresponds to the first column in A given by . Therefore

It is one dimension subspace of R2.
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7 Problem 7

Let T : R® — R3 be linear transformation defined by Tx = Ax where
351
A=(1 2 1
267

Show that T is both one-to-one and onto.
Solution

Using Theorem 6.4.8 which says, the linear transformation T : V — W is
1. one-to-one iff ker(T) = {6}
2. onto iff Rng(T) = W

To show one-to-one, we need to find ker(T) by solving the system AX = 0.

3 5 1|1™M 0
Xy | = 0 (1)
0

Augmented matrix is

6 7 0

Swapping R;, R; gives (it is simpler to have the pivot be 1 to avoid fractions)

1210
3510

3510
1210
2

2 6 70
Rz :R2—3R1 gives

(@)
|
—_
|
N
(@]

R3 = R3 - 2R1 gives
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R3 = R3 + 2R2 gives
1 2 1 O

0 0 1 0
Ry = =R, gives

S O =

S = DN
N
(e}

Rz = R2 - 2R3 giVGS

—_
N
—_
(@]

Ry = Ry — Rj gives

Ry = Ry = 2R, gives
1 0 0 0
0100

010

There are no free variables. Number of pivots is 3. The system (1) becomes

1 0 0f|* 0
010 Xy | = 0
0 0 1||x; 0
Which shows that the solution is x; = 0, x, = x3 = 0. Hence ker (T) = {6} Since number of

free variables is zero, then we see that the dimension of the null space is zero. Therefore
T is one-to-one.

Now we need to show if it is onto. The matrix A is 3x3. Therefore the mapping is R> — RR>.
Hence W is R3. But Rng(T) is the column space of A. From above, we find that there are
3 pivots. So the 3 columns of A are pivots columns. Hence

3 5 1
Rng(T) ={0€R®>:T=c|1|+c|2| +c3|1]|,c1,c0,c53€R
2 6 7
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Which is all of W, since there are 3 independent basis vectors which span all of R? and
W is R3. Hence onto.
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8 Problem 8

5 -4
Determine all eigenvalues and corresponding eigenvectors of the given matrix 1) [ ],
-7

” 7 4 3 7 3
1 31" -6 1

Solution
8.1 Partl
5 -4
A=
8 —7}
The eigenvalues are found by solving
|[A-All=0
5 -4 |A 0
det - =0
8 =71 10 A
5-A4 -4
=0
8§ -7-47

G-MN(E7-1)-(-4)@®) =0
G5-A)(=7-1)+32=0
A2 +21-35+32=0

A2 421 -3=0
A-1)(A+3)=0

Hence the eigenvalues are A; =1, A, = 3. For each eigenvalues, we now find the corre-
sponding eigenvector.

Alzl
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We need to solve AU = A, for vector ©. This gives

5 4[] v
1 :/11 1
8 -7 (%) (%]

01

5 —41]v;
-y —
|:8 —7} |:UZ Uy 0
5- /\1 -4 —01- —0—
8  —7-M||v| |0]

But A; = 1. The above becomes
4 —4(|v1| |0
8 —8||v, 0

. Hence v, is the base variable and v, = t is the free variable.

4 -4

0 0
Therefore the system becomes

RZ = Rz - 2R1 gives

Using first row gives

Then the eigenvector is

s [ ]-

Choosing t = 1. (any arbitrary value will work), then the eigenvector is

|

N
U/h =
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We need to solve AU = A, for vector v. This gives (as was done above)

5- /\2 -4 ] rvl— _Oq
8 -7 — AZ (%)

8 —4- PU1—
8 —4_ LUz_ _O‘

8 -4

Ry, = Ry — Ry gives . Hence v; is the base variable and v, = f is the free variable.
0

Therefore the system becomes

Using first row gives

801—402—0
1 1t
U1 = =0y = —
1 > 2

Therefore the eigenvector is

1 1
v —t = 1

@223: Ho|2 =t|2| =t
(%) t 1 2

Choosing t = 1. (any arbitrary value will work), then the eigenvector is

ﬂ

= —
0/11 =

Summary table

eigenvalue | Algebraic multiplicity | Geometric multiplicity | defective? | eigenvector

%
A =1 1 1 No

1
Ay=-3 |1 1 No

2




20

8.2 Part2

The eigenvalues are found by solving

A=Al =0
7 4 A0

det - =0
-1 3 0 A
7-A 4

=0
-1 3-A

(7-A)@B-A)+4=0
A2-10A+21+4=0
A2-10A+25=0
A-5@A-5=0
Hence the roots is A = 5 which is a repeated root. (its algebraic multiplicity is 2)
A=5

We need to solve A7 = A, for vector v. This gives

7-1 4 |[o]
1 3-Alloy| |0

7-5 4 |[oi| o]
1 3-5||o,| |0

2 4 l[n] ol
1 -2||o,

. Hence v, is base variable and v, =t is free variable. Therefore

R, = Ry + R, gives |-
) = 2+— 1ves
2 1BV

the system becomes
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The first row gives

201 +40, =0
201 = 40,
U1 = =20,
= -2t

Therefore the first eigenvector is

P

Choosing t = 1. (any arbitrary value will work), then the eigenvector is

ali

Since we are able to obtain only one eigenvector from A = 5, then this is a defective eigenvalue.

It has an algebraic multiplicity of 2 but its geometric multiplicity is only 1. When the geo-
metric multiplicity is less than the algebraic multiplicity then the eigenvalue is defective.
Summary table

eigenvalue | Algebraic multiplicity | Geometric multiplicity | defective? | eigenvector

-2
A=5 2 1 yes [1‘

The matrix is defective and hence not diagonalizable.

8.3 Part3

7 3
-6 1



The eigenvalues are found by solving

|A = Al
7 3| |A 0
det -
-6 1| |0 A
7-A 3
-6 1-A7
(7-A)1-2A)+18
A2-81+7+18
A% 81 +25
Using quadratic formula A = —2 o L\ " dac gives
2a  2a

=0

=0

=0

=0
=0
=0

8 1
AZEiEVMe4Q®

1
=4+ -V64-100

Il
N
H+
I
[68)
(@)

1

NN

H
NN~ RN

H
«

22

Hence the eigenvalues are complex conjugates of each other. They are A; =4 + 3i, A, =

4 — 3i .For each eigenvalues, we now find the corresponding eigenvector.

Ay =4+3i

We need to solve A7 = A, for vector ©. This gives

7—/\1 3 01
-6 1—/\1 (%) -

But A; = 4 + 3i. The above becomes

7 — (4 + 3i) 3 ||v]
-6 1-(4+30)] |0,

3-3 3 |[o
-6 -3-3i||0]

g
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N1 1. 1 1)\ [ 1 1.
3-3i (—+—z) 3(—+—z) 1 -+
R1:R1(2+%i)gives( Nets 6 6/f= 2 2 landnow R, = R, +6R;
-6 —3-3i -6 —-3-3i
gives _
1 1.
1 -+ i 1 1.
2 2 _ 1 >t 5t
. 1 1.
0 (3-3)+6(3+3i) [0 o

Hence the system using RREF becomes

1 1
1 E+EZ

ol

vy is the base variable and v, = t is the free variable. First row gives

0 0

1 1.
0 + §+§l 02:0

01 = (—
Therefore the eigenvector is

v 2L 1—i
. 11 1
gy = [=tl? %=t

(%) 1 2

Choosing t = 1. (any arbitrary value will work), then the eigenvector is

N
'0/11 = )

Ay =4-3i

We need to solve A = A, for vector 7. We could follow the same steps above to find
the second eigenvector, but since the eigenvectors are complex, then they must come as
complex conjugate pairs. Hence 7, can directly be found using

?))/\2 = (5/12)*
-1+
2

Summary table
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eigenvalue | Algebraic multiplicity | Geometric multiplicity | defective? | eigenvector
| B
A =4+3i |1 1 No
2
) ——1 + i-
Ap=4-3i |1 1 No )
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9 Problem9
1
If v, = [ ) and v, = L eigenvectors of the matrix A corresponding to the eigenvalues
Ay =2,A, = =3 respectively. Find A (3v; - v;)
Solution
By definition

Av = Av

Where A is the eigenvalue and v is the corresponding eigenvector. Therefore by linearity
of operator A

A (301 - Uz) =A (301) - AUz

= 3A01 — A'Uz
=3 (A01) = (A7)
1 2
=3|2 -1-3
-1 1
2 6
=3 +
6 6
= +
-6 3
B 6+6
-6+3
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10 Problem 10

Determine the multiplicity of each eigenvalue and a basis for each eigenspace of the given
matrix A. Determine the dimension of each eigenspace and state whether the matrix is
defective or nondefective.

1 4
A=
2 3]
Solution
The eigenvalues are found by solving
|A-AIl =0
1 4 (A O
det - =0
[[2 3 |0 PJ
1-4 4
=0
2 3-A

1-A2)@B-A1)-8=0
A2-41+3-8=0
A2 -41-5=0
A=-5)A+1)=0
Hence the eigenvalues are A; = 5 with multiplicity 1, and A, = -1 with multiplicity 1. For
each eigenvalues, we now find the corresponding eigenvector.

A1:5

We need to solve AU = A, for vector v. This gives
1- Al 4 01 0
2 3 - /\1 (%) - 0
-4 4 ||| |0
2 -2 (%] 0

. Hence v, is base variable and v, = ¢ is free variable. Therefore

But A; = 5. The above becomes

R, = Ro+ 1R, gives| * 4
9 = 2+— 1 glves
218 0 0

the system becomes
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Using first row gives

—401 + 47]2 =0
U1 =70z
=t
R 01 —t— ; 1
'()A = = =
! Uy t 1
By choosing t =1
R 1
U/ll = 1

Azz—l

We need to solve AU = A, for vector v. This gives (as was done above)

PRI WX
R

. Hence v, is base variable and v, =t is free variable. Therefore

But A, = —1. The above becomes

2 4
Rz = R2 - Rl giVGS
00

the system becomes

First row gives
2?71 + 402 =0

U1 = =20,

Choosing t =1 the eigenvector is

Summary table
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eigenvalue | eigenvector
1

/\1 =5
1

Ay =-1 &

’ 1

The matrix is not defective because we are able to find two unique eigenvalues for a 2 x 2
matrix. The dimension of eigenspace corresponding to each eigenvalue is given by the
dimension of the null space of A—AI where A is the eigenvalue and I is the identity matrix.
For A, =5, since there was one free variable, then the dimension of this eigenspace is one.

Similarly for A, = -1 since there was one free variable, then the dimension of this eigenspace
is one.
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11 Problem 11

Determine whether the given matrix A is diagonalizable

N e
-2 2
Solution
A matrix is diagonalizable if it is not defective. The eigenvalues are found by solving
JA-AIl=0
-1 -2 |A 0
det - =0
-2 2 0 A
-1-4 -2
=0
-2 2-A

(-1-1)(2-1)-4=0
A2-1-2-4=0
A2-1-6=0
A=3)(A+2)=0

Hence the eigenvalues are A; = 3,1, = -2. For each eigenvalues, we now find the corre-
sponding eigenvector.

A1:3

We need to solve A7 = A, for vector 7. This gives

IS
g B

.Hence v; is base variable and v, = tis free variable. Therefore

But A; = 3. The above becomes

1 ) -4 -2
Rz = RZ_ERl glves

the system becomes
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First row gives

—401 - 202 =0
1
Uy = =20
2= 750
1
=——t
2
Therefore the eigenvector is
o 1
- 1 3
O = =t| 2
Uy 1
Choosing t =1 then
. -1
U)\l == 5

/\2:—2

We need to solve AU = A, for vector v. This gives
-1- Az -2 (4] 0
-2 2 - /\2 (%) - 0
But A, = -2. The above becomes
1 -2 |0
2 4 |lo,] |0

-2
. Hence v, is base variable and v, = t is free variable. Therefore

1
Ry = Ry +2R; gives [O

the system becomes

First row gives

01 —202 =0
01 :202
=2t

Therefore the eigenvector is
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Choosing t =1 gives

Summary table

eigenvalue | eigenvector
A =3 B
' 2
Ay =-2 2
’ 1

Since the matrix is not defective (because it has two unique eigenvalues), then it is
diagonalizable. To show this, let P the matrix whose columns are the eigenvectors found,

and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write
A =PDP!

3
Where D =
0 -2

and P = . Hence

2 1

1 2} [3 OH—l 2]1
A=
2 1|0 2|2 1
e 2624 2
129 2|21

i 1-1
B -3 —4{|-1 2
6 212 1




. Hence the above becomes

-1
N T E - R R
o 1| T, 4|50 4

1[-3 -4l[1 -2
A= —

—5_6 2] [2 1}

1 [3) M)+ (-4)(-2) (-3)(=2) + (-4) (-1)

-5 | 6)1)+(-2)(-2)  (6)(-2) +(-2)(-1)
1[5 10
-5 10 -10

7

Verified.



33

12 Problem 12

Determine the general solution to the given differential equations a) y”” -y’ — 2y = 0. b)
y'+10y' +25y =0.c) y”" + 61" +11ly = 0

Solution

12.1 Parta

This is a constant coefficients second order linear ODE. Hence it is solved using the
characteristic polynomial method. Assuming solution is y = e*. Substituting this into
the ODE gives

A2eM — Qe — 2 =

Since e’ # 0, the above simplifies to
A2-1-2=0
A+1DHA-2)=0
The roots are A; = -1,A, = 2. Therefore there are two basis solutions, they are y; =

eM* = ¢ and y, = ¢'2* = ¢?*. The general solution is a linear combination of these basis
solutions. The general solution is

y(x) = cry1(x) + coy2 (x)
= 0167 + pe®*

Where cy, ¢, are the constants of integration.

12.2 Partb

This is a constant coefficients second order linear ODE. Hence it is solved using the
characteristic polynomial method. Assuming solution is y = e*. Substituting this into
the ODE gives

A%e™ +10Ae™ + 25eM = 0

Since e!* # 0, then the above simplifies to

A2 +10A+25=0
A+5A+5)=0

Hence the roots are A = =5, which is double root. Since the root is double, then the first
basis solution is ; = e™* and the second is x times the first, which gives y, = xe™*.
The general solution is a linear combination of these basis solutions

y(x) = cy1(x) + oy (%)

= 1€ + cyxe™>*
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12.3 Partc

This is a constant coefficients second order linear ODE. Hence it is solved using the
characteristic polynomial method. Assuming solution is y = e*. Substituting this into
the ODE gives

A%eM + 6AeM +11eM = 0

Since e’* # 0, then the above simplifies to
A2+6A+11=0
Using quadratic formula A = ~2 o L\ " dac gives
2a  2a

-6 1
A=z E\/36—4(11)
1
=3+ E«/36—44

1
:—3i5\/—_8

=-3+V-2
= -3+i\2

Hence roots are A = -3 + i\/E ,Ay=-3— i\/i. Hence there are two basis solutions, they
are

yl — e/\lx
_ 3+
— e—3xei 2x
And
- e/\zx

_ )

Y2

— e—3xe—i 2x
The general solution is a linear combination of these basis solutions. Therefore

y(x) = cqy1(x) + ey (%)

— Cle—Sxel 2x+cze—3xe—z 2x
= g3 (clel 2x+cze—z Zx)

Using Euler formula e'V2¥ = cos (\/Ex) + isin (\/E x) and e71V2¥ = cos (\/Ex) —isin (\/Ex)
The above becomes

v(9) = ¢ e (cos (V2e)  fsin V2] + o cos (V2] = sin (V)
= o3 (cos (\/Ex) (c1 + cp) + sin (‘/EX) (icy + iCz))



Let (¢; + ¢) = Cq and (icy + icy) = C, be new constants. Hence the above becomes

y(x) = e (C1 cos (\/E x) + C, sin (\/E x))
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