HW 1 EE 409 (Linear Systems), CSUF spring 2010 Spring 2010 CSUF

Nasser M. Abbasi

Spring 2010 Compiled on January 30, 2019 at 11:56pm

Contents

1	Problem 3.5			
	1.1	Part a	1	
	1.2	Part b	3	
	1.3	Part(c)	4	

Date due and handed in Feb. 11,2010

1 Problem 3.5

3.5. Solve the following differential equations.

(a)
$$(D^4 + 8D^2 + 16)y(t)] = -\sin t$$

Answer: $y(t) = c_1 \cos 2t + c_2 \sin 2t + c_3 t \cos 2t + c_4 t \sin 2t - \frac{\sin t}{9}$

(b) $(D^3 - 2D^2 + D - 2)[y(t)] = 0$, $y(0) = \frac{dy(t)}{dt}\Big|_{t=0} = \frac{d^2y(t)}{dt^2}\Big|_{t=0} = 1$

Answer: $y(t) = \frac{1}{5}(2e^{2t} + 3\cos t + \sin t)$

(c) $(D^4 - D)[y(t)] = t^2$

Answer: $y(t) = c_1 + c_2 e^t + e^{-t/2}\left(c_3 \cos \frac{\sqrt{3}t}{2} + c_4 \frac{\sin \sqrt{3}t}{2}\right) - \frac{t^3}{3}$

Figure 1: Problem description

1.1 Part a

Let $L \equiv D^4 + 8D^2 + 16$ and let $L_A \equiv D^2 + 1$. Since $^1L_A [-\sin t] = 0$, then the differential equation can be written as

$$L_A [L[y(t)]] = 0$$

$$(D^2 + 1) (D^4 + 8D^2 + 16) = 0$$

$$(D^2 + 1) (D^2 + 4) (D^2 + 4) = 0$$

Hence the characteristic equation is

$$(r^2 + 1) (r^2 + 4) (r^2 + 4) = 0$$

And the roots from the particular solution are $r_1 = j$ and $r_2 = -j$ and the roots from the homogeneous solution are $\pm 2j$ and $\pm 2j$, which we call $r_3 = 2j$, $r_4 = -2j$ and $r_5 = 2j$ and $r_6 = -2j$. Hence

$$y_p(t) = c_1 e^{-r_1 t} + c_2 e^{-r_2 t}$$

 $^{{}^{1}}L_{A}\left[-\sin t\right] = \left(D^{2} + 1\right)\left(-\sin t\right) = \left(D\left(D\left(-\sin t\right)\right) - \sin t\right) = \left(D\left(-\cos t\right) - \sin t\right) = \left(\sin t - \sin t\right) = 0$

and

$$y_h(t) = c_3 e^{-r_3 t} + c_4 e^{-r_4 t} + c_5 t e^{-r_5 t} + c_6 t e^{-r_6 t}$$

Hence

$$y_p(t) = c_1 e^{-jt} + c_2 e^{jt}$$

$$= c_1 (\cos t - j \sin t) + c_2 (\cos t + j \sin t)$$

$$= (c_1 + c_2) \cos t + (jc_2 - jc_1) \sin t$$

$$= C_1 \cos t + C_2 \sin t$$

Where $C_1 = (c_1 + c_2)$ and $C_2 = (jc_2 - jc_1)$

and

$$y_h(t) = c_3 e^{-2jt} + c_4 e^{2jt} + c_5 t e^{-2jt} + c_6 t e^{2jt}$$

$$= c_3 (\cos 2t - j \sin 2t) + c_4 (\cos 2t + j \sin 2t)$$

$$+ c_5 t (\cos 2t - j \sin 2t) + c_6 t (\cos 2t + j \sin 2t)$$

$$= (c_3 + c_4) \cos 2t + (-jc_3 + jc_4) \sin 2t + (c_5 + c_6) t \cos 2t + (-jc_5 + jc_6) t \sin 2t$$

$$= C_3 \cos 2t + C_4 \sin 2t + C_5 t \cos 2t + C_6 t \sin 2t$$

Where
$$C_3 = (c_3 + c_4)$$
, $C_4 = (-jc_3 + jc_4)$, $C_5 = (c_5 + c_6)$, $C_6 = (-jc_5 + jc_6)$

Hence we have

$$y(t) = \underbrace{C_1 \cos t + C_2 \sin t}_{g_h} + \underbrace{C_3 \cos 2t + C_4 \sin 2t + C_5 t \cos 2t + C_6 t \sin 2t}_{g_h}$$
(1)

To determine C_1 and C_2 , we insert $y_p(t)$ into the ODE and obtain

$$(D^4 + 8D^2 + 16) y_p(t) = -\sin t$$

$$(D^4 + 8D^2 + 16) (C_1 \cos t + C_2 \sin t) = -\sin t$$

$$C_1 (D^4 + 8D^2 + 16) \cos t + C_2 (D^4 + 8D^2 + 16) \sin t = -\sin t$$
(2)

But $D^4(\cos t) = D^3(-\sin t) = D^2(-\cos t) = D(\sin t) = \cos t$ and $D^2(\cos t) = D(-\sin t) = -\cos t$ and $D^4(\sin t) = D^3(\cos t) = D^2(-\sin t) = D(-\cos t) = \sin t$ and $D^2(\sin t) = D(\cos t) = -\sin t$, hence (2) becomes

$$C_1(\cos t - 8\cos t + 16\cos t) + C_2(\sin t - 8\sin t + 16\sin t) = -\sin t$$

$$(C_1 - 8C_1 + 16C_1)\cos t + (C_2 - 8C_2 + 16C_2)\sin t = -\sin t$$

Hence by comparing coefficients, we see that

$$C_2 - 8C_2 + 16C_2 = -1$$

 $C_1 - 8C_1 + 16C_1 = 0$

Or

$$9C_2 = -1$$
$$9C_1 = 0$$

Hence $C_2 = \frac{-1}{9}$ and $C_1 = 0$, therefore the particular solution is

$$y_p(t) = C_1 \cos t + C_2 \sin t$$
$$= \frac{-1}{9} \sin t$$

Substitute the above into (1), we obtain

$$y(t) = \frac{-\sin t}{9} + C_3 \cos 2t + C_4 \sin 2t + C_5 t \cos 2t + C_6 t \sin 2t$$

Which is what we are required to show. Book uses different names for the constants I used. This can be easily changed: Let $C_3 = C_1$, Let $C_4 = C_2$, Let $C_5 = C_3$ and let $C_6 = C_4$, the above can be written as

$$y(t) = C_1 \cos 2t + C_2 \sin 2t + C_3 t \cos 2t + C_4 t \sin 2t - \frac{\sin t}{9}$$

1.2 Part b

We need to solve $(D^3 - 2D^2 + D - 2)$ y(t) = 0 subject to the initial conditions y(0) = y'(0) = y''(0) = 1. The characteristic equation is

$$r^3 - 2r^2 + r - 2 = 0$$

By trial and error, we see that

$$(r-2)(r-j)(r+j) = (r-2)(r^2+1)$$

= $r^3 - 2r^2 + r - 2$

Therefore, the roots are $r_1 = 2$, $r_2 = j$, $r_3 = -j$, hence the solution can be written as

$$y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + c_3 e^{r_3 t}$$

$$= c_1 e^{2t} + c_2 e^{jt} + c_3 e^{-jt}$$

$$= c_1 e^{2t} + c_2 (\cos t + j \sin t) + c_3 (\cos t - j \sin t)$$

$$= c_1 e^{2t} + (c_2 + c_3) \cos t + (jc_2 - jc_3) \sin t$$

Let $c_2 + c_3 = C_2$ and let $jc_2 - jc_3 = C_3$, the above can be written as

$$y(t) = C_1 e^2 t + C_2 \cos t + C_3 \sin t \tag{1}$$

Now to find the constants C_i we apply the boundary conditions. The first boundary condition y(0) = 1 yields

$$y(0) = 1 = C_1 + C_2 \tag{2}$$

Now

$$y'(t) = 2C_1 e^{2t} - C_2 \sin t + C_3 \cos t$$

And the second boundary condition y'(0) = 1 yields

$$y'(0) = 1 = 2C_1 + C_3 \tag{3}$$

and

$$y''(t) = 4C_1e^{2t} - C_2\cos{-C_3}\sin{t}$$

and the third boundary condition y''(0) = 1 yields

$$y''(0) = 1 = 4C_1 - C_2 \tag{4}$$

So we have 3 equations to solve for C_1 , C_2 , C_3 . Add (2) and (4), we obtain $2 = 5C_1$, hence

$$C_1 = \frac{2}{5}$$

Hence from (2) we obtain $C_2 = 1 - \frac{2}{5}$

$$C_2 = \frac{3}{5}$$

and from (3) we obtain

$$C_3 = 1 - 2C_1 = 1 - \frac{4}{5}$$
, hence

$$C_3 = \frac{1}{5}$$

Hence the solution is from (1) is found to be

$$y(t) = C_1 e^{2t} + C_2 \cos t + C_3 \sin t$$

= $\frac{2}{5} e^{2t} + \frac{3}{5} \cos t + \frac{1}{5} \sin t$
= $\frac{1}{5} (2e^{2t} + 3\cos t + \sin t)$

Which is the answer we are asked to show.

1.3 Part(c)

The ODE is

$$(D^4 - D) y(t) = t^2$$

Hence $L \equiv D^4 - D$ and $L_A = D^3$ since $D^3(t^2) = D^2(2t) = D(2) = 0$, then the above ODE can be written as

$$D^3 \left(D^4 - D \right) \, y \left(t \right) = 0$$

And the characteristic equation is

$$r^3 (r^4 - r) = 0$$

$$r^3 r (r^3 - 1) = 0$$

Hence, for the roots that are related to the particular solution are $r_1 = r_2 = r_3 = 0$.

And the roots that are related to the homogenous solution are $r_4 = 0$ (notice now that this root is repeated 4 times now), and the roots of $(r^3 - 1) = 0$ which are the cubic roots of unity and can be found as follows

$$r^{3} = 1$$

$$r^{3} = e^{2\pi j}$$

$$r = e^{\frac{2\pi}{3}j}$$

Hence the 3 roots of unity are 1, $e^{\frac{2\pi}{3}j}$, $e^{\frac{4\pi}{3}j}$, therefore the first root of unity 1, and the second root of unity is $e^{\frac{2\pi}{3}j} = \cos\left(\frac{2}{3}\pi\right) + j\sin\left(\frac{2}{3}\pi\right) = -\frac{1}{2} + j\frac{1}{2}\sqrt{3}$ and the third root of unity is $e^{\frac{4\pi}{3}j} = \cos\left(\frac{4}{3}\pi\right) + j\sin\left(\frac{4}{3}\pi\right) = -\frac{1}{2} - j\frac{1}{2}\sqrt{3}$

Hence $r_5 = 1$, $r_6 = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$, $r_7 = -\frac{1}{2} - j\frac{\sqrt{3}}{2}$, in otherwords, the solution is

$$y_{p}(t) = \underbrace{c_{1}e^{r_{1}t} + c_{2}te^{r_{2}t} + c_{3}t^{2}e^{r_{3}t}}_{y_{h}(t) + c_{4}t^{3}e^{r_{4}t} + c_{5}e^{r_{5}t} + c_{6}e^{r_{6}t} + c_{7}e^{r_{7}t}}$$

We now substitute the values of r_i we found and obtain

$$y(t) = c_{1} + c_{2}t + c_{3}t^{2} + c_{4}t^{3} + c_{5}e^{t} + c_{6}e^{\left(-\frac{1}{2} + j\frac{1}{2}\sqrt{3}\right)t} + c_{7}e^{\left(-\frac{1}{2} - j\frac{1}{2}\sqrt{3}\right)t}$$

$$= c_{1} + c_{2}t + c_{3}t^{2} + c_{4}t^{3} + c_{5}e^{t} + c_{6}e^{-\frac{1}{2}t}e^{j\frac{\sqrt{3}}{2}t} + c_{7}e^{-\frac{1}{2}t}e^{-j\frac{\sqrt{3}}{2}t}$$

$$= c_{1} + c_{2}t + c_{3}t^{2} + c_{4}t^{3} + c_{5}e^{t} + e^{-\frac{1}{2}t}\left(c_{6}e^{j\frac{\sqrt{3}}{2}t} + c_{7}e^{-j\frac{\sqrt{3}}{2}t}\right)$$

$$= c_{1} + c_{2}t + c_{3}t^{2} + c_{4}t^{3} + c_{5}e^{t} + e^{-\frac{1}{2}t}\left(c_{6}\left[\cos\frac{\sqrt{3}}{2}t + j\sin\frac{\sqrt{3}}{2}t\right] + c_{7}\left[\cos\frac{\sqrt{3}}{2}t - j\sin\frac{\sqrt{3}}{2}t\right]\right)$$

Hence

$$y(t) = c_1 + c_2 t + c_3 t^2 + c_4 t^3 + c_5 e^t + e^{-\frac{1}{2}t} \left(\left[c_6 + c_7 \right] \cos \frac{\sqrt{3}}{2} t + \left[j c_6 - j c_7 \right] \sin \frac{\sqrt{3}}{2} t \right)$$

Let $[c_6 + c_7] = C_6$ and let $jc_6 - jc_7 = C_7$ the above becomes

$$y(t) = c_1 + c_2 t + c_3 t^2 + c_4 t^3 + c_5 e^t + e^{-\frac{t}{2}} \left(C_6 \cos \frac{\sqrt{3}}{2} t + C_7 \sin \frac{\sqrt{3}}{2} t \right)$$
(1)

Now plug $y_p(t)$ back in the original ODE we obtain

$$(D^{4} - D) y_{p}(t) = t^{2}$$

$$(D^{4} - D) (c_{1} + c_{2}t + c_{3}t^{2}) = t^{2}$$

$$D^{4} (c_{1} + c_{2}t + c_{3}t^{2}) - D (c_{1} + c_{2}t + c_{3}t^{2}) = t^{2}$$

$$D^{3} (c_{2} + 2c_{3}t) - (c_{2} + 2c_{3}t) = t^{2}$$

$$D^{2} (2c_{3}) - (c_{2} + 2c_{3}t) = t^{2}$$

$$- (c_{2} + 2c_{3}t) = t^{2}$$

Hence we see that $c_2 = 0$ and $c_3 = 0$, then (1) simplifies to

$$y(t) = c_1 + c_4 t^3 + c_5 e^t + e^{-\frac{t}{2}} \left(C_6 \cos \frac{\sqrt{3}}{2} t + C_7 \sin \frac{\sqrt{3}}{2} t \right)$$
 (2)

To find c_4 , we substitute y(t) found above, into the ode, hence

$$(D^4 - D) y(t) = t^2$$

$$(D^4 - D) \left[c_1 + c_4 t^3 + c_5 e^t + e^{-\frac{t}{2}} \left(C_6 \cos \frac{\sqrt{3}}{2} t + C_7 \sin \frac{\sqrt{3}}{2} t \right) \right] = 0$$

Now, since we only care about finding c_4 , we can just apply D on that, hence

$$D^{4} \left[\cdots + c_{4}t^{3} + \cdots \right] - D \left[\cdots + c_{4}t^{3} + \cdots \right] = t^{2}$$

$$D^{3} \left[\cdots + 3c_{4}t^{2} + \cdots \right] - \left[\cdots + 3c_{4}t^{2} + \cdots \right] = t^{2}$$

$$D^{2} \left[\cdots + 6c_{4}t + \cdots \right] - \left[\cdots + 3c_{4}t^{2} + \cdots \right] = t^{2}$$

$$D \left[\cdots + 6c_{4} + \cdots \right] - \left[\cdots + 3c_{4}t^{2} + \cdots \right] = t^{2}$$

$$- \left[\cdots + 3c_{4}t^{2} + \cdots \right] = t^{2}$$

By comparing coefficients, we see that $c_4 = -\frac{1}{3}$ then (1) becomes

$$y(t) = c_1 + c_5 e^t + e^{-\frac{t}{2}} \left(C_6 \cos \frac{\sqrt{3}}{2} t + C_7 \sin \frac{\sqrt{3}}{2} t \right) - \frac{1}{3} t^3$$

Which is what we are asked to show.