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1 Problem
Show that the recurence formula
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can be written as
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2 Solution
Proof by induction on g. For ¢ = 1, equation (1) becomes
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Hence it is true for ¢ = 1. Now assume it is true for g = n, in otherwords, assume that
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Now for the induction step. we need to show that it is true for n+ 1, i.e. given (4) is true, we need to
show that, by replacing n by n+ 1 in the above, that
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We start with (5), and replace the C,, term with what we assumed to be true from (4), hence (5) can
be rewritten as

C, from (4)

2(k—(n+1)) ’{(_1)”( 2 > k—1!  (20+1)!
(n+1)((n+1)+20+1)(k+1) k+1) k—n—1D)nln+20+1)1"°

Cn—H = -

Simplify the above leads to

w2 VY k=1 @)
Co1=(—1) 0
k+1 (k—n=2)!'n!(n+20+2)!
Which is (6). Therefore, the relationship is true for any n. QED
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