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Chapter

Introduction

1.1 Course description

This course part of my Masters degree in Applied Mathematics at California State University,
Fullerton

Course description (from CSUF catalogue)

MATH 504A Simulation Modeling and: Prerequisites:

Math 501A,B; 502A,B; 503A,B. Corequisite: Math 504B.
Advanced techniques of simulation modeling, including

the design of Monte Carlo, discrete event, and continuous
simulations. Topics may include output data analysis,
comparing alternative system configurationms,
variance-reduction techniques, and experimental design
and optimization.Units: (3)

MATH 504B Applications of Simulation Modeling
Techniques

Description: Prerequisites: Math 501A,B; 502A,B; 503A,B.
Corequisite: Math 504A. Introduction to a modern

simulation language, and its application to simulation
modeling. Topics will include development of computer
models to demonstrate the techniques of simulation modeling,
model verification, model validation, and methods

of error analysis.Units: (3)

N

1.2 Instructor

Professor Gearhart, W. B. CSUF Math department.
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1.3 Class description handout /flyer

/*/c‘/h//‘”'f //22/20")7,

Math 504: Simulation Modelling and Analysis

Text The course is based on notes written by the instructor. However, M4,

2%
52 ol

many of the course topics are covered in the text entitled Introduction
to Probability Models, by S. Ross and published by Academic Press.
This text is an excellent reference in applied probability.

Instructor W. B. Gearhart

Office MH 182F

Phone 714-278-3184

Email wgearhart@fullerton.edu

Office Hours MW 4-5 pm, MWThF 2-3 pm. If you wish to see me any
other time, just let me know, and we will arrange a meeting.

Course Description The course concerns the development and analysis
of models of stochastic systems. There are three phases to the course.
The first provides an introduction to the theory of stochastic processes.
The second concerns modelling discrete event systems using simulation.
The software Extend will be used to provide an introduction to the
structure and use of a simulation environment. The third and last
phase is devoted to further topics in stochastic modelling, and may
include statistical aspects of simulation modelling, Brownian motion,

signal processing, and Kalman filtering.

mo  €ve] 5= teseefsa (77“/ .

=X



CHAPTER 1. INTRODUCTION

Grading There will be two exams, scheduled approximately every five to
six weeks. Also, there will be a comprehensive final exam. Homework
will be assigned and graded. The course grade will be based on the
weighted average of the homework (5%), the average of the two exams
(60%), and the final exam (35%). In cases when a student’s calculated
percentage is borderline, the instructor may raise the grade based on
class participation and attendance, or any other evidence of a strong
effort to do the course work.

Grade Scale A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Attendance Class attendance is required. Please arrive on time. If you
happen to miss a class, it is your responsibility to obtain from your
classmates any missed lecture notes and assignments. However, see the
instructor concerning class handouts.

Class Participation In addition to attending class, you are expected to ac-
tively participate in your own learning. In particular, you should come
to class prepared, having studied the assigned readings and problems,
and be ready to ask questions and participate in the class discussion.

Homework Homework due dates will be specified well in advance. Late
papers will not be accepted.

Exam Make-up Policy No make-up exams will be given, unless you have
a medical emergency or death in the family. These emergencies require
valid documentation, and the instructor must be notified within 24
hours of the exam. The grade for a missed exam is zero.
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Academic Dishonesty Academic dishonesty is obtaining or attempting to

=

obtain credit for work by the use of any dishonest, deceptive, fraudu-
lent, or unauthorized means. Academic dishonesty also includes helping
someone commit an act of academic dishonesty. Examples of academic
dishonesty include, but are not limited to:

. Unacceptable examination behavior - communicating with fellow stu-

dents, copying material from another student’s exam or allowing an-
other student to copy from an exam, possessing or using unauthorized
materials, or any behavior that defeats the intent of an exam.

Plagiarism - taking the work of another and offering it as one’s own
without giving credit to that source, whether that material is para-
phrased or copied in verbatim or near-verbatim form.

Unauthorized collaboration on a project, homework or other assign-
ment where an instructor expressly forbids such collaboration.

Documentary falsification including forgery, altering of campus docu-
ments or records, tampering with grading procedures, fabricating lab
assignments, or altering medical excuses.

Students who violate university standards of academic honesty are subject to

disciplinary sanctions, including failure in the course, and suspension from

the university. Since dishonesty in any form harms the individual, other

students, and the university, policies on academic dishonesty are strictly

enforced.

Emergency Information In the event of an emergency such as an earth-

quake or fire:

. Take all your personal belongings and leave the classroom (or lab). Use

the stairways located at the east, west, or center of the building.

Do not use the elevator. They may not be working once the alarm
sounds.
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. Go to the lawn area towards Nutwood Avenue. Stay with class mem-

bers for further instruction.

. For additional information on exits, fire alarms and telephones, Build-

ing Evacuation Maps are located near each elevator.

. Anyone who may have difficulty evacuating the building, please see the

instructor.

Comments

1.

Retain this course description and refer to it as needed during the
semester.

. All personal electronic devices, in particular cell phones, must be turned

off during class.

. Keep in mind that grades are not given, they are earned.

. You are responsible for managing your outside responsibilities (work,

family, and social) in order to allow sufficient time to meet the course
requirements.
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2.1 instructor class notes

We followed mostly the instructor class notes

8
O MATH 504AB
i
- .a B. GEARHART
A
w

California State University, fullerton
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Introduction to
Analysis and Simulation
of
Probability Models

William B. Gearhart
Department of Mathematics
California State University, Fullerton
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Unit 1

Probability Theory

Chapter 1 Basic Probability Theory
Chapter 2 Random Variables
Chapter 3 Conditional Expectation

This unit covers basic topics from probability theory that are needed in the text.
Much of the material is review and the presentation is concise. However, some of the
topics in Chapter 3 may be new, and you will need to read this material more carefully.
Chapter 3 concerns conditional expectation which is especially important in the study of
stochastic processes.
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Chapter 1
Basic Probability Theory

1.1 Introduction Probability models are based on the concept of a statistical
experiment. An experiment is an action by which an observation is made. The individual
observations which can result when the experiment is performed are called outcomes. For
example, the experiment might be: Toss a coin and observe whether heads or tails
appears . The individual outcomes are then heads or tails. A set of outcomes is called an
event. The set of all possible outcomes is called the sample space. In these notes, we will
typically denote the sample space by S.

Example 1.1.1 Suppose the experiment is to toss a coin three times and observe the
sequence of heads and tails. Let H indicate that a head appears on a toss, and let T'
indicate that tails appears on a toss. Then we can describe the sample space as S =
(HHH,HHT, HTH,HTT,THH,THT,TTH,TTT} . If A denotes the event that
exactly one head appears in the sequence, then A = {HTT,THT,TTH}. O

1.2 The probability function For an event A of an experiment, we assign a number
P(A) called the probability of the event. This number is intended to reflect the frequency
interpretation of probability; namely, that if the experiment is performed a large number
of times, then P(A) is the fraction of times that the event A occurs. To form this
function, and stay consistent with the frequency interpretation, we require the following

axioms :
a. P(A)>0.
b. P(S)=1.

c. For mutually exclusive (disjoint) events A and B, P(AU B) = P(A)+ P(B).
A probability model is developed by making assumptions about the experiment. Then,
using the axioms, probabilities of events can be determined.
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Example 1.2.1 For the experiment of tossing a coin, we have the two outcomes H W/
(heads appears) and T (tails appears). Thus S = {H,T}. Suppose we assume the coin is
fair, which means that P(H) = P(T'). Then the axioms tell us that
1= P(S)=P(H)+ P(T) =2P(H),andso P(H) = P(T) =1/2. O
More generally, using the same reasoning as in this example, it can be shown that if a
sample space consists of a finite number of outcomes, each with the same chance of
occurrence, the probability of an event A is simply
n(4)
P(A) = —F=%
where the symbol n( - ) denotes the number of outcomes in the specified event.
Several useful formulas and relationships can be derived from the axioms. These
include
a. If A C B, then P(A) < P(B).
b. Forany events A and B, P(AU B) = P(A) + P(B) — P(AN B).
c. P(A)=1- P(A), where A denotes the set of all outcomes not in A. This set is »
often called the compliment of A. —

d. If A is an event consisting of a finite number of outcomes, then P(A) is the sum
of the probabilities of the outcomes in A.

Example 1.2.2 Consider again the experiment of Example 1.1. Recall that the
sample space is S = {HHH,HHT, HTH,HTT,THH,THT,TTH,TTT}. If we
assume the coin is fair, then we may assume that each of these 8 outcomes has the same
chance of occurring, and so each has a probability of 1 /8. Let A be the event that at least
one heads appears. Then A consists of 7 outcomes, and so by the formula in (d),
P(A) = 7/8. Alternatively, we could observe that A = {TTT}, and so, by the formula
in (c), we conclude that P(A) =1—- P(A) =1-1/8=17/8. 0

1.3 Conditional probability The concept of conditional probability is the
cornerstone of much analysis in probability theory. For events A and B, the conditional
probability of A given B is defined by

(AN B)

P(A|B) = PP(B) , providled P(B)#0.
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We think of P(A | B) as the chance that the event A occurs, given that B has occurred,
and can interpret it as the long-run fraction of times that A occurs among those times that
B occurs. Often, conditional probabilities are found directly without using this formula.
In fact, a common use of the formula is to find P(AN B), as we have P(AN B) =
P(A| B)P(B).

Example 1.3.1 A bag contains 20 apples, of which 4 are rotten. We select one apple
at random from the bag, and then select at random a second apple from the remaining 19
apples. Let A be the event that the second apple is rotten, and let B be the event that the
first apple is rotten. Then we find directly that P(A | B) = 3/19. Indeed, given that B
has occurred (the first apple is rotten), we are faced at the second selection with 19 apples
of which 3 are rotten. To find the probability that both apples are rotten; that is, to find
P(AN B), note first that P(B) = 4/20, and so

P(ANB) = P(A| B)P(B) = (3/19)(4/20) = 3/95. |

Events A and B are said to be statistically independent if P(A | B) = P(A). In
other words, events A and B are independent if the chance of A occurring is the same
whether or not the event B has occurred. When events A and B are independent, it
follows from the definition of conditional probability that P(A N B) = P(A)P(B).
Often, statistical independence can be determined from the nature of the experiment. For
example, in the previous Example 3.1, the events A and B are evidently not independent
since the probability of selecting a rotten apple on the second selection depends on the
outcome of the first selection.

Example 1.3.2 Suppose 60% of registered voters will vote yes on a certain
proposition. Then the probability is 0.6 that a voter selected at random will vote yes for
the proposition. If two voters are selected at random and independently, the probability
that both will vote yes is (0.6)(0.6) = 0.36 . O
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Exercises

1.1 The number of hurricanes reaching the east coast of the United States during a year is
observed to have the following pattern.

number of hurricanes 0 1 2 3 4 5 6 or more
frequency 0.15 0.28 0.27 0.17 0.08 0.03 0.02

What is the probability that the number of hurricanes reaching the east coast of the
United States is (a) at most 2, (b) at least 3, (c) either 0,1, 0r 2.

1.2 Under controlled conditions, a white rat will contract disease A with probability 0.6,
will contract disease B with probability 0.7, and will contract both diseases with
probability 0.5. Suppose a white rat is exposed to both disease A and disease B. (a)
What is the probability of contracting at least one these diseases? (b) What is the
probability of contracting neither?

1.3 A card is drawn at random from an ordinary deck of 52 cards. (a) What is the
probability of selecting a queen or a heart? (b) What is the probability of selecting
neither a queen nor a heart?

1.4 A fair die is rolled twice. (a) What is the probability that at least one die shows four
dots? (b) What is the probability that at least one die shows four dots, or the total
number of dots is ten?

1.5 A system consists of two components. The first component works with probability
0.9 and the second works with probability 0.8. In order for the system to work, both
components must work. Assume the components function independently of each other.
(a) What is the probability the system works? (b) What is the probability the system
fails?

1.6 A system consists of two components, in which the second serves only as a backup
for the first. The first component works with probability 0.9 and the second works with
probability 0.6. Assume the components function independently of each other. (a)
What is the probability the system works? (b) What is the probability the system fails?

1.7 A fair die is rolled twice. Let A be the event that the sum of the dots showing is 7,
and let B be the event that the amount on the first die is even. Are these events
independent?

1.8 Referring to Example 1.1.1, suppose the coin is not fair, and instead shows heads
with probability 0.7.. Assume the three tosses are made independently. (a) What is the
probability of the outcome THT™? (b) What is the probability of the event exactly one
head?
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Chapter 2

Random Variables

2.1 Introduction A random variable is a function defined on a sample space. In

these notes, we will consider only random variables that are real-valued.

Example 2.1.1 Suppose the experiment is toss a coin three times and observe the
sequence of heads and tails. Let X be the random variable equal to the number of heads
in a sequence. Then, for example, X({HTH}) = 2and X({HTT}) = 1. O

Typically, uppercase letters such as X or Y’ are used to denote random variables, and
lower case letters are used to denote the possible values of random variables.

2.2 Discrete random variables A random variable X is said to be discrete if the set
of its possible values is countable. To describe the probabilistic structure a discrete
random variable we use a probability distribution function which is defined for each
possible value z of X by P(X = x).

Example 2.2.1 For the experiment of Example 2.1.1, assume the coin is fair. Define
X as the number of heads in an outcome. Then the possible values of X are 0, 1,2, and
3. The event {X = 2}, for example, consists of the outcomes HHT', HT'H, and THH.
As these outcomes are equally likely, we conclude that P(X = 2) = 3/8. Similarly one
shows that P(X = 0) = 1/8, P(X =1) = 3/8, and P(X = 3) = 1/8. O

Example 2.2.2 For a specified probability p, the Bernoulli random variable is
defined as the random variable X which has value 1 with probability p, and value 0 with
probability ¢ =1—p. Thus, the probability distribution function is given by
P(X =1) =p, and P(X = 0) = g. For example, in the experiment of tossing a fair
coin, if we define the random variable X by X(H) =1 and X(T') =0, then X is
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22 Unit 1: Probability Theory

Bernoulli with p = 1/2. The Bernoulli random variable is a basic building block for
several other random variables, such as the binomial random variable and the geometric
random variable. O

Example 2.2.3 An important example of a discrete random variable is the
binomial random variable, which is based on the Bernoulli random variable mentioned in
Example 2.2.2. For a specified probability p, consider a sequence of n independent
Bernoulli trails, in each of which the value 1 occurs with probability p, and value 0
occurs with probability ¢ = 1 — p. The binomial random variable X is defined as the
number of 1's that appear in the sequence. The possible values of X are 0, 1,2, -+, 7, and
it can be shown that
n!

P(X =zx) - (:;)p“”q"'z , for t=0,1,2,---,n, where (Z) = m .

The term (:) equals the number of subsets, consisting of z items, which can be formed
from a set of n items. O

2.3 Continuous random variables A random variable X is said to be

continuous if there is a function f(z) defined on the entire real line, such that for any
numbers a < b,

Pla< X <b) =/bf(:c)da:.

For example, the experiment might be to select a person at random and measure their
height. The random variable in this case assigns the observed height to the person
selected. This random variable would be viewed as continuous. Another example,
fundamental in the field of life insurance, is to select a person at random, and observe
how long they live. Lifetimes are modeled as continuous random variables.

The function f(x) that is used to describe the random variable is called the density
function of X. A density function is required to satisfy the two conditions:

f(z) >0 forall z, and /oo f(z)dz=1.
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Chapter 2: Random Variables 2.3

Example 2.3.1 Perhaps the most widely used density function in applications is the
normal density. This density is given by

1
f(z) = 5 e~@W127 | for — 0o <z <00.
o/ 2w

The parameters p and o > 0 need to be specified, and can be estimated from sample
values of the random variable. O

Example 2.3.2 Another widely used density function is the gamma density. This
density is given by

f(z) = 5T () 2 le %/ | forz >0.
The density is equal to zero for x < 0. The parameters o > 0 and B8 > 0 need to be
specified, and can be estimated from sample values of the random variable. The term
I'(a) is known as the gamma function. When the argument « is a positive integer, we
have I'(a) = (a — 1)!. An important special case is & = 1. The density is then called the

exponential density, and is given by

f(x)=le'$/ﬂ , forz>0. O

B

To specify a density function, we usually indicate the form of the function only over
the domain on which the density is positive.

2.4 Expected value and variance Distribution functions and densities give a
complete probabilistic description of a random variable. However, it is helpful to
summarize the quantitative nature of a random variable in terms of just a few numbers.
Foremost among such numbers are the expected value and the variance. The expected
value, also called the mean, is defined in the discrete case by

E(X)=) zP(X=1),

T
where the sum is taken over all possible values of X. In the continuous case, it is defined

by

B(X) = /Z:cf(x) dz .
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2.4 Unit 1: Probability Theory

The expected value of a random variable can be interpreted as the long-run average of the
values of the random variable. Indeed, consider the discrete case and suppose the
experiment associated with X is performed a large number of times, say N. Of the N
observations, the fraction P(X = z) of them would be equal to z, and so we would count
NP(X = ) observations with the value z . Thus, when we sum all the observed values

of X and divide by N to get the usual average, we would get approximately,

% Y z(NP(X =z)), whichequals E(X) .

A similar argument can be made in the continuous case. |

The expected value is a measure of location or central tendency. Roughly, we
could view the values of a random variable X as forming a set of points along the real
line. The mean F(X) is then a measure of the location or center of this set of numbers.
On the other hand, to measure how far the values of the random variable deviate away
from the mean, we commonly use the variance. For convenience, denote the mean E(X)
by p. Then the variance of X is defined in the discrete case by

Var(X)=) (z-p)’P(X =2) ,

and in the continuous case by

(o]

Va'r(X)z/ (x—p)if(z)dz .

—00

Note that the variance is the expected value of the random variable (X — p)2, which is
the square of the deviation of X from the mean y. It can be shown that Var(X) =
E(X?) — p?. This formula is often more convenient for calculations.

The variance is usually denoted by 02, and the square root of the variance, or o,
is known as the standard deviation of X. For many random variables, the bounds
p % 20 include most of the possible values of the random variable. For example, this
estimate covers about 95% of the values of a normally distributed random variable. In
fact, for any random variable, these bounds will contain at least 75% of the values.

Example 2.4.1 Consider the experiment of Example 2.2.1, in which a fair coin is
tossed three times, and the sequence of heads and tails observed. As shown in that
example, for the random variable X equal to the number of heads in a sequence, the
probability distribution is P(X =0) =1/8, P(X =1) =3/8, P(X =2) =3/8, and
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Chapter 2: Random Variables 2.5

P(X =3) = 1/8. Thus, the expected value of X is

1 3 3 1 3
E(X)=0-= R i 2=2
()08+18+28+38 5

Since the coin is fair, we would anticipate the expected value to be in the center of the
possible values of X, which are the integers from 0 to 3. To find the variance, we have

1 3 3 1
E(X?)=0%-2+12. 2422 +3%. - =
(x*) gtlgt¥ gt g=3

and so Var(X)=3—(3/2)? =3/4. The standard deviation of X is then 4/3/4.

Finally, using the rule for estimating bounds on the possible values of X, we find the

interval to be % +24/3/4,0r 1.5+ 1.7, which is a fair estimate of the range of this

random variable. G O
\-

It can be shown for the normal distribution that the expected value is equal to the
parameter y, and the variance is equal to the parameter o . For the gamma distribution,
the expected value is 1 = o/f and the variance is 0% = aff?. For the binomial random
variable with parameters n and p (recall Example 2.2.3), the expected value is p = np,

and the variance is 0% = npq, whereg =1 — p.

2.5 Functions of random variables Often in applications, random variables are
formed as functions of other random variables. Given a random variable X and a real-
valued function h, a new random variable Y can be formed as Y = h(X). From the
distribution of X, the distribution of Y can be determined, and then the parameters of Y,
such as the mean and variance, can be found. However, there is a more direct and usually
simpler way to find the parameters of Y. Indeed, it can be shown that

E(Y)=)_ h@)P(X=1),
T
when X is a discrete random variable, and
(o¢]
BY) = [ h@)f(e)de,
—00

when X is a continuous random variable and f(z) is its density function.
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Example 2.5.1 Suppose X isa continuous random variable with exponential density
1
f(z) = Ee"‘/z forz >0 .

Form a new random variable Y asY = X 2 Then

E(Y) =/ z*f(z) dx =/ $2%e_z/2dx =8.
- 0

00

The last integral was evaluated using integration by parts twice. O

Exercises

2.1 For the experiment in Example 1.1, assume the probability of heads is 0.6. (a) What
is the probability distribution of X ? (b) What are the mean and variance of X.

9.9 A fair die is rolled. Let X denote the random variable equal to the number of dots
showing. Find the expected value and the standard deviation of X .

9.3 Find the mean y and the standard deviation ¢ of a random variable X that follows the
exponential distribution with parameter 3. What is the probability that the random
variable lies in the interval p & 20?

9.4 A distribution of fundamental importance is the uniform distribution on the interval
(a,b) . The density function f (z) is equal to 1/(b — a) fora <z < b, and is equal to 0
otherwise. Suppose X is a uniform random variable on (a,b).

(a) Show that for any interval (c,d) which is contained in (a,b), the probability
P(c < X < d)isequalto(d— c)/(b—a).

(b) What are the mean p and variance o2 of X. Compare the interval p & 20 with the
actual range of X.

9.5 Suppose a random variable X follows the gamma distribution with parameters & = 2
and B = 4. What are the expected value and standard deviation of X.

2.6 A sum of k independent and identically distributed exponential random variables
follows the gamma distribution with mean ky and B = p. Write a MATLAB program
which will generate 1000 independent observations of a gamma random variable with
mean 6 and 8 = 2. Tabulate a relative frequency histogram over the range [0, 20] with
intervals of length two. A relative frequency histogram is a table which shows the
fraction of observations that fall in each of the intervals. Print a table listing each
interval midpoint and the relative frequency for that interval.
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N 2.7 For the previous problem, plot the histogram as a bar chart, and compare the shape of
this graph with the graph of the density function. Why would you expect these two
shapes to be similar? To address this question, develop the following line of reasoning.
Suppose X is a continuous random variable with density f(z). Assume a large number
of random and independent observations of X are obtained, and the results summarized
in a relative frequency histogram with intervals (z;_1, ;) fori = 1,2, -+, n.

(a) Find an approximate expression for the fraction of observations that will fall in
the interval (z;_;, z;). Write this expression as an integral of the density function
f(z). Next assume that z;; and z; are very close, and approximate this
expression in terms of z; — ;_1, and the value of the density function f(z) at the
midpoint of the interval.

(b) Use the result of part (b) to argue that the relative frequency histogram and the
density function f(z) of X should be approximately scaled versions of each other,
and estimate the scale factor.

Expand the program written for the previous problem by including a table of the values
of the gamma density at each interval midpoint. Compare this table with the relative
frequency chart to estimate the scale factor, and then compare this estimate with the
value predicted by your analysis above.
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R QUi
Conditional Expectation
——————— 3 IntroductionConditional-expectation is fundamental in probability theory and is

especially useful in the analysis of stochastic processes. Recall that for events A and B,
the conditional probability of A, given that B has occurred, is defined by P(A|B) =
P(ANB)/P(B), whenever P(B) # 0. For a given event B, we can think of the
sample space as being restricted to those outcomes in the event B, with associated
probability function P(-|B). The function P(-|B) has all the properties of a
probability function.

Example 3.1.1 Let X and Y be independent binomial random variables, each with
parameters n and p. Then, with ¢ =1 — p,
PUX = kY. =m k)

P(X+Y =m)

P(X=k|X+Y =m)=

_ (Ot (e () ()
(&g &)

for k = 0,1, ---, m. Note that the hypergeometric distribution is obtained. Since XandY

are independent and identically distributed, this result might be expected. Indeed, we
could view the event X =k, given X +Y =m, as selecting a subset of size m from
the 2n trials for X and Y, and asking for the probability that k of them are among those
belonging to the trials for the X variable. O

3.2 Conditional Expectation For jointly continuous random variables X and Y, the

conditional expectation of Y given X = z is defined by

o0

E(Y|X=:v)=/ yf(ylz)dy

—00
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where f(y|z) is the conditional distribution of Y given X = z. In the discrete case, a
similar formula holds with the integral replaced by a sums.

Example 3.2.1 Let X and Y be jointly continuous random variables with density
f(z,y) = dz(y—z)e @) [ for 0<z<y, 0<y<oo.

Then the marginal distribution of X is
f(z) = / f(z,y)dy = / dz(y — z)e @) dy = 4re™? | for 0 < z < o0,
x T

where the substitution © = y — x and integration by parts were used to find the integral.

Thus,
f(.'z,y) —(y-z)
)=t =(y—x)e V¥ [for y>=z.
flyl=) @) (y — ) Y
It follows that
E(Y|X=a:)=/ yy—z)e ¥ Idy=2+2, for >0. O

A formula of especial importance is E(Y) = E(E(Y | X)). For jointly continuous
random variables, a brief demonstration of this result is obtained by first setting

o) =B | X =2)= [ o2 8ay,

and then noting that

B(E(Y | X)) = B() = [ :( _ooy%ﬂ’aj—)dy)f(w) dz = E(Y) .

Example 3.2.2 Consider a Bernoulli experiment with probability p of success on
each trial. Let X denote the number of trials until the first success occurs. To find E(X),
condition on the outcome of the first toss. Suppose the random variable Y is defined as 1
if the first toss is a success, and defined as 0 if the first toss is a failure. Then we have
E(X|[Y =1)=1, and E(XIY =0) =1+ E(X). Thus,

E(X)=pEX|Y =1)+(1 -p)E(X|Y =0)=p+(1-p)(1+ E(X)).

l

R
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Solving for E(X) gives us E(X) = 1/p. In the same way, one can find the variance of

X, and this calculation is left as an exercise. O
i : TEE S y:\u :
Example 3.2.3\( Consider a Bernoulli experiment with probability p of success on \Y \Lo”‘
each trial. Let X} denote the number of trials until k consecutive successes occur. To find é’;’ﬂ ‘ﬂ w _
E(Xy), we first determine the conditional expectation d(n) = E(Xk|Xk_1 =) By w V\o"'v““
v

conditioning on the result of the next toss, we obtain
¢(n) = E(Xp|Xp-1=n) =p(n+1)+ (1 -p)[(n+ 1) + BE(Xk)]

Thus, ¢(n) = n + 1+ (1 — p)E(X}), and since E(X;) = E(¢(Xk-1)), it follows that
E(Xy) = BE(Xk-1) + 1+ (1 — p)E(X}) . Thus, solving for E(X}) we get

E(Xy) = % + %E(Xk_l), for < =1

These equations can be solved recursively, starting with E(X;) = 1/p, to get

11 1
B(Xp)==+=—+ -+ for k>1.
p p p

Using the formula for the sum of a geometric series, this result can be written a little more
simply as

E(Xk)zé(p"k—l), for k>1. O

The formula E(Y) = E(E(Y | X)) provides not only a convenient way to calculate
expected values, but yields also the law of total probability. Indeed, if A is an event,
define the random variable Y by Y =1 if A occurs, and ¥ =0 otherwise. Then
P(A) = E(Y) and also P(A| X = z) = E(Y | X = z). Hence, again assuming X is a
continuous random variable, we have

0

P(A) = B(Y) = / CEE| K =) f)ds = / POA| X = 2)f(z)dz .

—00 -0

Thus we have a formula for P(A) which is obtained by conditioning on the random

variable X . In the discrete case, the integral is replaced by a sum.
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Example 3.2.4 Suppose the number N of accidents per year at a certain industrial
site follows the Poisson distribution with parameter A. Denote by p the probability that an
accident will result in a claim over $10,000. Let Y denote the number of accidents per
year which result in a claim over $10, 000. Then, setting g =1 — p,

P(Y=k|N=n)=(:)pkq""‘, for n>k ,

andP(Y=k|N=n)=0if’n.<k.ToﬁndP(Y=k), we have

P(Y:k)=i(2)p"qn‘ke"‘£ = = PQY\N) PU\\D

e (Ap)* i (@) _ 00 o _ - O

(n— k)| k! k!

Thus, the unconditional distribution of Y is Poisson with parameter Ap. O

Exercises

3.1 Find E(X | Y = y), for random variables X and Y with joint density

e_z/ye“ﬂ
f(z,y) = ” , 0<z<00,0<y<00

3.2 Let X be a random variable with range 0, 1,2, -+ . Show that

BE(X) = ip(x >n) = f:P(x >n) .

3.3 Let X;, i = 1,2, --- be independent uniform (0, 1) random variables. Define N as the
smallest integer n such that X, < X,_1, where Xo=z. Let f(z) =E(N). (a)
Derive an integral equation for f(z) by conditioning on X;. Solve this equation by
differentiating both sides with respect to z. (b) As a second approach, determine
P(N >n) directly, and then use this result to find E(IN). Help: Note that
P(N>n)= Pz<X1<X3<--< X,,). Find this probability by integration. By
the way, you could find this probability by conditioning on X;, but this way leads to
steps similar to those of part (a).

3.4 Here is another approach to the problem in Example 3.2.3. Let N denote the number
of trials until the first failure occurs. Then N follows that geometric distribution and
P(N =n) =p" g, for n=1,2,--. Argue that E(Xx|N =n) =n+ E(Xx), if
1<n<k, and that E(Xx|N =n) =k, if n> k. Use this result to find F(Xk).
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wab@ Consider a sequence of independent trials, on each of which any one of m outcomes
A is
(&
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Remark: The random variable N gives a handle on the probability distribution of Xj.
Indeed, for j > k, P(Xx =j|N=n)=0, ifn>j—k, andif 1 <n <j—k, then
P(Xy = j| N =n) = P(X; = j—n). Now, conditioning on N yields a formula for
P(X) = j) in terms of P(Xy = j— 1), P(X}, = k). This formula can then be used
to find the values of P(Xj =j), starting with P(Xy =j) =0 for j<k, and
P(Xy = k) = p*.

3.5 Let X;,i=1,2,---, be independent uniform (0,1) random variables. Fix a:
0<a<1, and let N denote the smallest value of n such that X; + Xo +---
+ X, >a. Show that P(N >n)=a"/n!, n=1,2,---, and hence find E(N).
Help : Use induction on n, and then condition on X, in the formula for P(N > n).

equally likely to occur. Let N denote the number of trials until the same outcome
occurs k consecutive times. Show that E(N) = 1+m +m? +--- + mF-1, Help: Let
N; denote the number of trials until the same outcome occurs i consecutive times. Find
E(N; | Ni—1), and then use E(N;) = E(E(N; | Ni-1)) to find a recursive formula for
the B (N,)

3.7 Let X;, i =1,2,--- be independent uniform (0, 1) random variables. Given A > 0,
let N denote the smallest value n such that

n n+l1 0
HXi >e > HXi’ where we define HXi =1.
i=1 i=1 i=1

Show that N follows the Poisson distribution with parameter A . Help: Use induction on
n, and find P(N =n) by conditioning on Xj, keeping in mind that
P(N=n|Xi=z)=0ifz <e™

]3.8’An urn contains w white balls and b black balls. At each trial, a ball is drawn at

andom. If the ball is white, it is returned, while if it is black, it is replaced by a white
ball. Find the expected number of white balls in the urn after n trials. Help: Let N,
denote the number of white balls in the urn after n trials. Find a recurrence formula for
E(N,) by conditioning on Np_;.

3.9 Let X;, X5,--- be a sequence of independent, identically distributed, continuous

Tandom variables. A record is said to occur at time n > 2 if X, > maz{X1, X2,
c++, Xn1}. The value of the first variable X; is considered a record at time n = 1.
Define the random variable I; to be 1 if a record occurs at time %, and to be zero
otherwise. (a) Show that P(I; =1) = 1/i, for i > 1. Help: For i > 2, P(I;=1)is
equal to P(X1 < Xi, X3 < Xiy--+, Xio1 < Xi). Condition on X; to solve this
equation. (b) Let N, equal the number of records that occur up to time n. Find the
expected value and variance of N, . Help: Note that N, = I; + --- + I, , and assume
without proof that the variables I; are independent. (c) Let T be the first time greater
than 1 at which a record occurs. Find the probability distribution of T, and show that



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE

30

3.6 Unit 1: Probability Theory

P(T < 00) =1, while E(T)=oo. Help: Note that P(T >n) = P(Xz < Xy,
X3 < Xi,---Xn < X1), and condition on Xi.

3.10 Recall the multinomial distribution
n!

P(Xl = 1, "'aXn=$H)= |p:lzlp:2':2"'p§1l )
n!

T 'xz' T
for non negative integers 1, 2, ", Tn which sum to n. Find cov(X;, X;) . Help: Write
the covariance in terms of expectations, and condition on one of the variables, say X .
Then recall that X; by itself is a binomial random variable.
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Unit 2

Markov Chains

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Markov Chains

Classification of States

Finite Chains

Random Walks

Markov Chain Monte Carlo Methods

This unit provides an introduction to the fundamental ideas of Markov chains. The
chapters cover standard topics found in most texts. Of particular interest for this course,
however, is the material in Chapter 8 which concerns the recent applications of Markov
chains to problems in statistical mechanics and combinatorial optimization.
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Chapter 4

Markov Chains

4.1 Introduction A stochastic process is a family of random variables
{X(t) | t € T'}. In applications, the elements of the index set T" often relate to time. The
set of possible values the random variables X (¢) is called the state space. In these notes,
the index set 7" and the state space will be a subsets of the real line. A stochastic process
is said to have the Markov property if, whenever ¢y < t; < --- < t, are in T', we have

P(X(ts) < ©n | X(tne1) = Bp=1y >+, X(lo) = za)

= P(X(ts) < Zn | X(tnot) = Tu_y).

In other words, probabilities concerning the chain at time ¢, conditioned on a finite set of

past values, depend only on the latest conditioned state.

Definition 4.1.1 A stochastic process {X, |n = 0,1, -} is called a Markov chain

if (a) the process has the Markov property, (b) the state space is countable, and (c) the
conditional probabilities P(X,1; = j | X, = 1) do not depend on n. V/X’v O
>

In some settings, property (b) is not required, in which case the chain is said to be
non-denumerable. Also, property (c) is sometimes not required, in which case the chain
is said to be non-homogeneous.

4.2 Transition probabilities Let / denote the state space of a Markov chain. For
states ¢, j € I, set p;; = P(X,41 = 7| X, = ©). These probabilities are called transition
probabilities. Observe that

Zje] pij =1, foranystate:ie I .

]

) ] . ) l \.
P(’Xmm{%ﬂ) dives N et A“P%%_OT_” I
— }rbmq@mao

(' e ('Mwé\x)



CH
APTER 2. HANDOUTS GIVEN DURING THE COURSE

33

—ﬂ‘%'agj v (-ﬂu)d( M‘VQ Ffaloab‘(‘fb.

4.2 Unit 2: Markov Chains

For each time n = 0, 1,--- and state ¢, we say the chain is in state ¢ at time n if Xp, =%

set 1" = P(Xn = 1). The probabilities {{"’ | & € I} describe the initial distribution of e’
the chai the states. For any state j € I, I :
) fec ain over y J g @ 0""5)‘7"7{'
eoaw/%w { 20 = P(Xp1 = 3) = D iy Pt =5 Xn =1)
{ vl .
M i PR T I f-[rg]
=S P(Xu1 = 5| Xa =D P(Xn =9 = S e ™ i - J

W@ ab Zw_t_

These equations can be expressed in matrix form. Let P denote the (possibly infinite)
matrix whose (%,7)-th entry is pij, and let # denote the row vector whose i-th

component is 7™ Then the previous equations can be written

i (an \lo\gm <
(4.2.1) 7 t) = g®P | forn=0,1,2,-.
The matrix P is called the probability transition matrix. Using this formula, and
starting with the initial distribution over the states, the state probabilities at any future
time are determined:
7™ =g@pr  forn=0,1,2,"" -
-

Thus, the evolution of 2 Markov chain is completely determined by the initial distribution

and the transition probability matrix.

Example 4.2.1 Consider a Markov chain with state space I = {1, 2}. Suppose the
transition probabilities are py = 0.2, p2 = 0.8, pa1 = 0.6, and pyp =0.4. Then the

0.2 038
P= [0.6 0.4] =

probability transition matrix is

The n-step transition probabilities are defined by

pg”) =P(Xyn=31Xv = i), foreachstate i,j € I and timen > 0.

The 1-step transition probabilities are simply the transition probabilities introduced
above. In general, the multistep transition probabilities are related by the Chapman-

Kolmogorov equations: For any times n and m,

o =3 P B Lo of b ‘wm% -
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Indeed,

P(Xn+m =7, Xo = 71)
P(Xo = 4)

P(Xn+m =j,Xo= iy, Xn = V)

p™ = P(Xnim = 3| Xo =1) =
. 1
B P(Xo= i) vel
I B
= P(Xq = 1) ~vel
- Zuel P(Xntm =3 | Xo =v)P(Xn =V | Xo=1) = ZVGI ng) Pl(/n;) 5

P(Xn+m:j |X0:i7Xn:V)P(X0:i7Xn=V)

For each time n, let P(™ denote the (possibly infinite) matrix whose (i, j)-th entry is

pgl). Then the Chapman-Kolmogorov equation can be written

ptm) — p@ pm  forn,m >0 .

In particular, for any time n > 0, we have pm) = pr,

4.3 Examples of Markov chains This section presents a few well known examples

of Markov chains.

Example 4.3.1 — A random walk model. Let {Si|i=1,2, -} be independent and
identically distributed random variables with possible values {0, =1, =2, -}. Set

X,=)Y 8, forn=12, with Xo=0.
=1

Then {X, | n=0,1,2,---} is a Markov chain. One could think of this chain as modeling
the motion of a particle moving along the z-axis. The motion starts at the origin, and
takes a step of amount Sp4; at time 7. Thus, X,, is the position of the particle at time n.O

Example 4.3.2 7 A simple inventory model. A store sells a certain item for which

the weekly demands are assumed to be independent and identically distributed random
variables with probability distribution {d; | 7> 0} . The inventory is managed using an
(s,S) policy: If at the beginning of the week the amount in inventory is s or higher, then
no order is placed; otherwise, an order is placed to bring the amount in inventory up to S.
It is assumed that orders are placed only at the beginning of each week, and there is no
lag-time, meaning that orders are filled immediately. Also, it is assumed that demand

e e

which cannot be met immediately is lost. Let X,, denote the amount in invento}y at the

énd ch)_ftﬁé n-tﬁm\uxfﬂégg ‘and let D,, denote the demand during the n-th week. Then for
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n=0,1,2,---, we have Xo = S, while Xpy1 = maz{0, X, — Dpta} if Xn 25, and
Xp41 = maz{0, S — Dpn}if Xn<s. The state space is {0, 1, -+, S}. The transition
probabilities are given as follows. For j =0,

[o¢] o0
po= P dy, ifi<s, and po= dy, ifixs.
v=S v=i
Next, forz<sand0<_7<S wehavep”—ds_J,wmleforz>sand0<J<z we
have p;; = di—; . The remaining transition probabilities are equal to zero. O

Example 4.3.3 — The M/G/1 queue. Consider a single server queue in which an
arriving customer is served immediately if the server is idle, and otherwise the customer
joins a line to wait for service. When a customer has completed service, the first person in
line is served next. Assume the service times of successive customers are independent
and identically distributed random variables with common density f(t). Assume further
that customers arrive according to a Poisson process, which means the following. First,
customers arrive at a fixed arrival rate A > 0, so that during any time interval of length ¢,
the number of arriving customers N; follows a Poisson distribution with parameter At .
Thus

)
P(Nt::j)ze-/\t(;) ) forj=0,1,2,-~

Secondly, during disjoint intervals of time, the numbers of arriving customers are
independent random variables. Let X, denote the number of customers in the system at
the end of the n-th service, and let Y, denote the number of customers that arrive during
the service of the (m+1)-st customer. Then, for any n2>1, if X, =0, then
Xp41 = Yy, while if X, > 0, then Xn+1 = X — 1+ Y,. Conditioning on service time
yields

00 J
w]=P(Yn=j)=/0 e"\tg—;—!)—f(t)dt, forj=0,1,2,--- .

The assumption of Poisson arrivals tells us that the Y, are independent random variables,
and therefore {X, | n = 1,2, -} is a Markov chain with transition probabilities:

poj = wj, =05 Pij=Wiit1, j2i—120; and p;; =0, otherwise. [
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Exercises

4.1 Consider Example 4.3.1, and suppose the probability distribution of the step sizes is
{bx | k=0, £1, -, m}. Thus, by is the probability that a step of k units is taken,
and the possible values of k are 0, +1,---, £m. Determine the transition probabilities
in terms of these probabilities.

4.2 Verify the expressions for the transition probabilities in Example 4.3.3.

4.3 [In Example 4.3.3, let p denote the average number of arrivals during a service period.
us,

[e o]
p= ijj .
=0

This average p is a measure of traffic intensity for the system. Let S be a random
variable denoting service time of a customer, and having density f(t). (a) Show that
p = AE(S). (b) Suppose the service time S of a customer has the exponential density

ft) =pe ™ for t>0,

where p1 > 0 is the service rate. Find p, and find also the transition probabilities. (c) JF
p is not too large, the state probability vectors, 7™ converge as n — oo to a
probability distributon 7, which is the same for any choice of initial state probability
distribution 7. Assume this convergence holds, and that the exponential density of
part (b) is in effect. Taking the limit in (4.2.1) as n — oo, it follows that the limiting
distribution 7 satisfies m = wP. Show that when p < 1, a unique solution 7 of this
equation exists and that m; = c(\/ p)i, i=0,1,---, for some constant c. Find the
constant c. Help : Starting with the first equation in the set of equations 7 = ar;
show that any solution must have this form. Then find the constant c.

4.5 (a) Model the experiment in Example 3.2.3 of the last chapter as a Markov chain. (b)
Do the same for the experiment in problem 3.6. (c) Do the same for problem 3.8.
)@Consider a Bernoulli experiment with probability p of success on a trial. We wish to
study the number of independent trials needed until the pattern SFFSFS appears.
Model this problem as a Markov chain, and specify the probability transition matrix.
Help: Let S denote the state that the last trial was a success, with the previous state, if
any, being a success. Define SF to be the state that the last two results were a success
followed by failure, and the third previous result, if any, was a success. Similarly,
define the states SFF, SFFS, SFFSF, and SFFSF'S.

V4"

/4.7 For a Markov chain, define IN; to be the number of time steps that the process, having
just entered state ¢, stays in state 7 before making a jump to another state. (a) Find the
probability distribution of N;. (b) Define gij = P(Xnt1 = J| Xn =1, Xat1 # i).
These probabilities might be called jump probabilities, as they are transitions

&
o %
s‘f@y"\\
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probabilities under the

Determine expressions for the g;; in terms of the one-

condition that a jump to a different state has occurred.
step transition probabilities.
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Chapter 5

Classification of States

5.1 Introduction To study the behavior of a Markov chain, it is important to
understand the nature of the states in the chain. We say a state j is accessible from state 1
if pg’) > 0 for some n. Two states are then said to communicate if each state is
accessible from the other. It can be shown that communication is an equivalence relation,
and this relation partitions the state space into a collection of equivalence classes. In this
chapter we study the properties of the states in these classes.

Rearreit

5.2 Recurrent and transient states Let Tj; denote the first time a chain enters state . 7[

j, given that it starts in state 7. The time T;; is called a first entrance time. Set ’}@?Zgﬂ
fO=PTy=n), n=1,2,, and fi; = i ") = P(T;; < ) . d&éi"f!’”
= “Jern @
State 7 is called recurrent if f; = 1, and is called transient f;; < 1. _A“r J% gnM}? e
meg

Theorem 5.2.1 Suppose a Markov chain starts in a transient state 7. Let N denote the
number of visits to this state. Then N follows a geometric distribution with
P(N =n)= {;-'"1(1 — fii), for n > 1. Hence, the expected number of visits to state 7 is
1/(1 — fi). On the other hand, if state ¢ is recurrent, then the chain returns to this state
infinitely often.

Proof Suppose state i is transient. Define a Bernoulli trial as follows. The random
variable T}; is sampled and if it is finite (with probability f;;), we imagine returning to
state 4, while if it is infinite (with probability 1 — f;;), we imagine leaving state 7 forever.
Define success on a trial to mean Tj; is infinite. Then the event {IN = n} occurs when we
observe a success for the first time on trial . The trials are independent because of the
Markov property, and so it follows that N is a geometric random variable with
probability of success 1 — f;;. Thus, the results for a transient state follow. If the starting
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state 7 is recurrent, however, the chain will necessarily return to that state. When this
happens, the Markov property implies that the process starts over probabilistically, and
the chain will again return to state i. Thus, the process will return to this state infinitely

often. z :
e . 71/6“5 /‘Z Clmf 'h?/"5 '}'7uh5~<~\

%\ / Theorem 5.2.2/ State 17 is oA ey

) }L transient if Z pfln ) < 00, and recurrent if Z p(")
TMM/W n=0 n=0
mwﬁ Proof Define the indicator variable I, to be 1 if X, =4, and to be zero otherwise.

A /0\ N ;(/\ Then the sum Iy + I; + --- equals the number of time periods the chain is in state 1.

However,

Q 1'[) A

\ J he E<§:In | Xo=1) = iE(In | Xo=1)= iP(Xn =i Xo=1i) = S,
n=0 n=0 n=0 n=0

But the expected number of time periods a chain spends in a state is finite for a transient

state, and infinite for a recurrent state, the conclusion of the theorem follows. O

One application of this theorem is to show that states which communicate must be of

the same type.

—
* W f two states communicate, then they are either both transient or both
recurrent.

Proof Suppose states 7 and j communicate. Then there are integers n and m such that

pgl) > 0 and p](-;") > 0. For any integer k£ > 0, we have
n+k+m k n+k+m n) (k
g S MO DI i e s gl

The first inequality holds because the term on the left is the probability of going from
state 7 to state ¢ in n 4+ m + k steps, while the term on the right is the probability of the
same transition, but along a certain path going through state j. A similar argument holds

for the second inequality. These inequalities show that the sums
S () S ()
>_pi and ) p

converge or diverge together. The conclusion of the theorem follows. O
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If a state is transient, then we might expect that as time goes on, visits to this state
would become less likely. Indeed, the following result holds.

+5

Theorem 5.2.4 Assume state j is transient. For any state 4, p( " 0asn—oco. X dQé TL(
w

ij
Proof Use a proof similar to that of Theorem 5.2.2 to show that the sum Q;\‘f"'(jO
q SS 'J

o0

Zpg.’) is convergent .
= io. gl
+ I/Lr*@ U

jdv: in O

5.3 Structure of the state space A set of states S is said to be closed if p;; =0 C/

Sef

) 3 A4 W\
The conclusion of then follows. $.1 ¢ 0 o “ ‘ (

whenever i € S and j € S . By the Chapman-Kolmogorov equations, it follows that for a
closed set S, we have pg“) =0, for any n >0, whenever i € .S and j € S. Indeed,

denote by I the state space,

pU prpv] szl/pl/] 2l prpu] pr O=F Z 0- Pvj = 0.

vel vesS VES ves VES

Continuing by induction completes the proof. It follows now that if a set of states is

- closed, then upon entering that set, it is not possible to leave it.

Theorem 5.3.1 In a Markov chain, the recurrent states can be partitioned uniquely
into a collection of closed sets such that all states in a set communicate with each other.
In addition, the chain may also contain a set of transient states from which it is possible to
reach states in the closed sets, but not vice-versa.

Proof Suppose i is a recurrent state. Let C) be the set of states that communicate
with this state. Then Cj is a closed set of recurrent states which communicate with each
other. Next, suppose state j is recurrent but not in Cy. Let Cy be the set of all states that
communicate with this state. Then C, is a closed set of recurrent states that communicate
with each other, and this set is disjoint from the set C;. Continuing in this fashion yields
the collection of closed sets consisting of recurrent states. Any remaining states will be

transient states. 5|

A Markov chain is said to be irreducible if its state space contains no proper subset

that is closed.

“ |yyeduable
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Theorem 5.3.2 In an irreducible Markov chain, each state can be reached from any
other state. Also, all states are of the same type; that is, either all states are recurrent or all

states are transient.
Proof The set of all states that can be reached from a given state is a closed set. Thus
the first part of theorem holds. The second part follows from Theorem 5.2.3 . ]

Markov chains with a finite number of states are of special interest. In view of

Theorem 5.2.1, we would expect the following result.

Theorem 5.3.3 In a Markov chain with a finite number of states, not all states can be

transient.
Proof Let {1,2,--,m} denote the state space. Then

forany n>1.

S
[
=

J=1

But Theorem 5.2.4 tells us that if j is a transient state, then pgl) — 0, as n — oo. Thus,

not all states can be transient. O

It follows now that in an irreducible Markov chain with a finite number of states, all

states must be recurrent.

5.4 First entrance times In general it is difficult to get a good picture of the
probability distributions for the various first entrance times. However, there are some

formulas which allow us to compute these probabilities. For example, we have
140 2).42) ¢ 1
(5.4.1) P = £ 4 £8P 4 f 0D o+ £

Indeed, the event that a transition from state 1 to state j is made in n steps will occur in
exactly of n ways : either state j is entered for the first time in n steps, and this event
occurs with probability fz] , Or state ] is entered for the first time in n — 1 steps, and this
event occurs with probability f;; o p” , and so on. Starting with f” = p;; for a given
pair of states ¢ and j, formula (5.4.1) can be used to calculate recursively the
probabilities fi(;l) = P(Tiy=n); forn=1,2,--

Consider next the calculation of the probabilities f;; = P(Tj; < 00). Recall that fy; is
the probability that there is finite first entrance time into state 7, given that the process

starts in state 7. Equivalently, we can interpret f;; as the probability that the process
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eventually reaches state j, given that it started in state 4. In the following, let I denote the
state space of the Markov chain, let R denote the set of recurrent states, and let T" denote
the set of transient states. Two cases can be found by direct reasoning. If both < € R and
j € R, then f;; is either 1 or O depending on whether i and j communicate, while if
i€ R and j € T, then fij =0 by Theorem 5.3.1. For the case € T' and j € T, it is

generally of more interest to find the expected number of visits to state j, given that the / }/ X

process started in state <. We will consider this computation later in the next chapter.

For now therefore, we consider only the case 2 € T and j € R. Conditioning on the

next state gives us

,:))‘4,2; £
s é// f‘}jb

fij=P(Ty <o0) =Y. P(Ty <oo|X; =k Xo=1) P(Xy = k| Xo =1).

However, from the Markov property, P(Ti; < oo|X; =k, Xo = 1) = P(T}; < o0).
Therefore, recalling that P(X; = k| Xo = 1) = py, yields

fii = Zke] P(Tk; < oo)pir = de Pikfrj -

Let C(4) denote the set of states which communicate with state j, and denote by B the

set of states which are not in 7" and which also are not in C'(j). Then
fis = ZkeTPik Jri + ZkeC(j) pik frj + EkEB Pik S -

However, when k € B, we have f;; = 0. Indeed, since k is not a transient state, it must
be a recurrent state, and therefore as state k does not communicate with state j, it is not
possible to reach state j from state k. Next observe that when k € C(j), then k is a
recurrent state which communicates with state j, and therefore it is certain that the first
entrance time into state j from state k is finite. Thus, fi; = 1. We have therefore

fij - ZkeT Dik fkj + ZkeC(J') gib

These equations, for each fixed j, listed for each 7 € T', yield a system of equations
which can be solved, in principle at least, for the f;;.

To consider a special case, suppose the state space [ is finite. Let R denote the set of
recurrent states. Assume there are m recurrent states, numbered 1,2,---,m, and that
there are n transient states, numbered m + 1,m + 2,---,m +n. Let Q) be the n x n
matrix consisting of the py, for the transient states, and let F' be the n x m matrix
consisting of the f;;, where ¢ is a transient state, and j is a recurrent state. Finally, let Z
be the n x m matrix whose (i, 7)-th entry is the second sum on the right side of the

equations above. Then these equations can be written in matrix form as F' = QF' + Z, or
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equivalently (I — Q)F = Z. We will show later that the matrix I — @ is invertible.
Thus, we can write F' = (I — Q)~'Z.

Example 5.4.1 Consider the Markov chain with probability transition matrix :
ST = (,iOJ“(\ (Jh‘kﬁ\»

obsed iy
S’L = {l);—%
i (a,53
Y

Then R = {1, 2,3}, T = {4,5}, and
4 4 fa Jae f43]
= F = ;
¢ [-2 -4] ’ [fsl fs2 fs3
To form the matriz Z, note first that C(1) = {1}, C(2) = {2,3}, and C(3) = {2,3}. It
follows that
L Al i
4% [0 4 .4} '

The matrix F' can now be determined, and is given by F' = (I — Q)™ Z. Performing this
calculation yields

0.2143 0.7857 0.7857
0.0714 0.9286 0.9286 |

Note that columns 2 and 3 are identical, as they must be. Indeed, since states 2 and 3 are
recurrent and communicate, the first entrance time into state 2 is finite if and only if the
first entrance time into state 3 is finite. Thus, the probabilities of these two events must be
equal. Note also that in each row, the entry in the first column, and the entry in either the
second or third column, sum to one. Indeed, starting in either transient state 4 or 5, the

process must enter in finite time either the closed set {1}, or the closed set {2,3}:

a4 (

1ot 5.5 Stationary distributions Let 7r§”) = P(X,, = 9): Thus, w§”) is the probability
that a Markov chain is in state ¢ at time n. Write the state space as I = {0,1,2, -t

Then,

o0
7r;."+1) = Z wgn)pij , foranyn >0.
=0



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE 44

Chapter 5: Classification of States 5.7

;{ as%;grj
What can we say about these state probabilities 1r§-") as n — oo ? Suppose it is the case ‘ 3
that for each state j, we have 7r§") — m; as n — oo. Then, taking the limit (at least

formally) in the last equation, we get

o
= Zm Dij -
=0
A vector m = (o, m,---) which satisfies this equation and which has nonnegative
components summing to one, is called a stationary distribution for the chain. Note that
if the initial state probability distribution (¥ = (w(()o), 7r§0), -++) is a stationary
distribution, then all subsequent state probability distributions will be the same as this
initial distribution. Hence the term stationary is used. . {_) 3
It is of interest to know when a Markov chain has a stationary distribution. Toward ?Og ! '
this end, we introduce a few definitions. Recall that a Markov chain returns to a recurrent & e 127 Lhaet

state infinitely often. A recurrent state is called positive recurrent if the expected value

of the time to return to that state is finite, and is called null recurrent if this expected
value is infinite. The period of state i is the greatest common divisor of the integers
n > 1 such that pf," )so.1f pg') = 0 for all n > 1, the period is defined to be 0. A state ﬁe
will be called periodic if its period is at least 2, and it will be called aperiodic if its
period is 1. States that are positive recurrent and aperiodic are called ergodic. - G)Q (;di
To derive conditions under which a Markov chain has a stationary distribution is ,
lengthy and involved. However, we will highlight steps which lead to a central result in Qr@ O‘Q‘C"
the theory. This result (Theorem 5.5.3 below) states that for an irreducible and aperiodic
Markov chain, a stationary distribution exists if and only if the chain is ergodic. We begin
by recording, without proofs, certain fundamental results needed later. 4 by Q'F(v\'j e 1
ber pane Pga: 4 AR
Theorem 5.5.1 For a Markov chain with n-step transition probabilities pg.‘), wehave ~ Vewrm
pg‘) — 0 as m — oo whenever state j is transient or null recurrent, while if state j is
positive recurrent and aperiodic, then p?-l) — fij/u; as m — oo, where f;; is the

probability that the first entrance time into state j from state ¢ is finite, and y; is the
expected time of return to state j (which is finite since j is positive recurrent).

The case in which state j is transient was shown in Section 5.2. The other two cases
have somewhat technical and lengthy proofs. It was shown also in Section 5.2 that for a 2.
irreducible chain, either all states are transient or all states are recurrent. It is possible to
say more, as the next result shows.



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE

45

5.8 Unit 2: Markov Chains

Theorem 5.5.2 In an irreducible Markov chain, either (a) all states are transient, (b)
all states are positive recurrent, or (c) all states are null recurrent. Further, all states have

the same period. @k\‘ 'éggy‘t’v: e &e&e?ﬁi i O

Theorem 5.5.3 Consider an irreducible and aperiodic Markov chain. Then a
stationary distribution exists if and only if all states are positive recurrent. Moreover,
when all states are positive recurrent, the stationary vector is unique, and given by
7 = (mo, 1, ), where m; is the limit of pgl) as n — oo for each j. In addition, the
stationary vector 7 is the limit of the state probability distributions 7™ as n — oo, for
any initial state probability distribution 70,

Proof Suppose first that the chain has a stationary distribution 7. Then

o0
mi= Zmpg.’) , foranyn>1.
=0

Since the chain is irreducible the states must be either all transient, all positive recurrent,
or all null recurrent. But it can not be the case that all states are transient, or that all states
are null recurrent, for then we would have pz(-n) — 0 as n — oo, and taking the limit as
n — oo in this equation would show that each m; is zero, which is not possible. Thus,
each state is positive recurrent.

Conversely, suppose each state is positive recurrent. By assumption each state is also
aperiodic. Let 7r; be the limit of pg?) as n — oo. From Theorem 5.1, each 7; = 1/p; > 0.

Using the Chapman-Kolmogorov equations,

o0
(5.5.1) p,(f;-ﬂ) — Zp,(,?)pij , for any state v .
i=0

Taking the limit as n — oo yields
(e8]
= Zﬂ' iPij -
=0

Hence 7 = (mo, 71, - ) satisfies the stationary equations. The solution is unique, for if

there is another stationary vector, say v, then for each state 7,
o0
vj = Zvipg) , foranyn>1.
=0

But taking the limit as n — oo, the right side converges to m;, showing that v; = ;.

S
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Finally, for an arbitrary initial state probability distributions 7, we have

o0 o0
(5.5.2) n = s - <Z“§O)> Mj =Tj, 88N — 00,
1=0 1=0

which proves that last statement of the theorem. O

Theorem 5.5.3 gives us a way to identify the irreducible and aperiodic chains for
which all states are positive recurrent. Namely, these are the chains for which a stationary
distributions exists. A similar chacterization is possible to identify the irreducible chains
that have all transient states.

Theorem 5.5.4 In an irreducible Markov chain, with state space I = {0, 1,---}, all
states are transient if and only if the system of equations

o0
(5.5.3) T=) pumy, i=1,2,
v=1

has a nonzero, bounded solution.
Proof Suppose first that all states are transient. For each ¢ = 1,2,---, set xg“) =

P(Typ > n), forn=1,2,---. Then

o0 00
(5'5'4) m‘fl) = Zp‘il/ ) and x§n+l) = szyxl(,n) ) n = ]., 2, e
v=1

v=1

These equations follow by conditioning on the next state. For each ¢, the limit
(n)

z; = lim z;7

n—00

exists, and by taking the limit as n — oo in (5.5.4), it follows that the vector
z = (x1, Ty, - --) satisfies (5.5.3). This solution z is bounded. To show that it is nonzero,

note that for each ¢,

L= Jinc}oxf") =P(Tip=00) =1~ fio.

But if all states are transient, then fi < 1 for at least one s € {1,2,---}.
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Conversely, suppose that (5.5.3) has a nonzero bounded solution ¥ = (y1,%2, """

We may assume that each component is bounded by one. Now, for each 1,
N 3 B
< S plnl <3 pw =l
v=1 v=1

Therefore,

o0 (2]
il <3 pulwl < Y puad) =
v=1

v=1

Continuing in this fashion yields |y;| < mgn) for each 4, and any n > 1. Thus, in the limit
as n — oo, we have |y;| <1 — fi, for each i. However, as the solution y is nonzero,
fio < 1 for at least one 1, and therefore state O is transient. But the chain is irreducible,

and so all states are transient.

Example 5.5.1 Consider the Markov chain with state space I={0,1,2,---}, and

transition probabilities

po=1/2,pm=1/2, and piiyn=1/2, pig1=1/2, fori=1

This - chain is irreducible and aperiodic. Attempting to solve the stationary equations
shows that all components of a solution must be equal, which is not possible as the
components must sum to one. Therefore no stationary solution exists, and so by Theorem
5.5.2, either all states are null recurrent, or all states are transient. Applying Theorem
5.5.4 above and attempting to find a solution of (5.5.3), say = = (z1, 22, "), shows that
for each i > 2, we have z; = iz;. Therefore no nonzero, bounded solution exists. It
follows that the chain does not consist of all transient states. The only possibility that

remains is that all states are null recurrent.

Exercises

5.1 (a) Show that communication is an equivalence relation. (b) Show that if the state ¢
is recurrent and does not communicate with state j, then p;; = 0. (c) Suppose state jis

accessible from a recurrent state 4. Show that f; = 1.

5.2 Complete the proof of Theorem 5.2.4.

5.3 (a) Show that the sets constructed in the proof of Theorem 5.3.1 are closed. (b) Show

that the set of all states that can be reached from a given state forms a closed set.
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5.4 Show that for a transient state j, and any initial state z,

Sy L5 ol
;p” (1%= fig) *

Help: For i = j, use the idea of the proof of Theorem 2.2, and the result of Theorem
5.2.1. For i # j, assume the chain starts in state i, and let V' denote the number of
visits to state j. Relate the expected value E(V) to the sum, using the idea in the proof
of Theorem 2.2. Next express E (V') using conditional expectation, conditioning on the
event that the first entrance time from state i to state j is finite. Then use the result of
Theorem 5.2.1.

5.5 Verify the limits in (5.5.1) and (5.5.2) in the proof of Theorem 5.5.3. Help : For
(5.5.1), first bound the sum on the right below by the sum as i ranges from O to an
arbitrary m > 1. Then take the limit to show that each m; is bounded below by
Topoj + T1p1; + -+ - Finally, if strict inequality holds for some j, then summing j yields
a contradiction. For (5.5.2), note that for any fixed j, given € > 0, the sum on the right
can be approximated to within € by a finite sum.

5.6 For an irreducible, ergodic Markov chain, let y; denote the mean time to return to
state 7. Give a heuristic argument that the stationary probabilities satisfy m; = 1 Wiy -

2 / 5% Consider an irreducible Markov chain with a finite number of states {0,1,2, -+, m}.

Let Q; = P(visit state m before state 0 | start in state ¢). Then Qo = 0 and (B
(a) Find a system of m — 1 linear equations that is satisfied by Q1,Q2, -, @m-1-
Help: Condition on the next state. (b) Show that the matrix which arises in part (a) is
nonsingular. Help: Assume this matrix, say A, is singular so that there exists a vector
v # 0 such that Av = 0. Normalize v so that one component is 1, and the rest are < 1.
You will need the irreducible property.

5.8 Consider an r-state Markov chain for which the probability distribution of the states

at time n, 7™, converges to a probability distribution 7 as n — oo. Suppose that
whenever the process enters state i, a reward of amount R(3) is earned. Then the total
reward earned up to time n is 3.7 R(X,), where X, denotes the state at time s.
Show that

E (nL-i-l ;R(XQ) — ;mR(i), as n— 00.

Help: If a sequence {z;}s>0 converges to = as s — 00, then

1
n+1

n
Exs—>a:,asn—>oo.
s=0
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5.9 Consider a Markov chain for which the probability distribution of the states at time
n, w™, converges to a probability distribution 7 = (71,2, -++) as n—co. (a)
Explain why 7;, in addition to being the long run fraction of time the process is in state
i, is also the fraction of transitions into state i, as well as the fraction of transitions
from state i. Help: Suppose you observe the process for a large number of transitions.
Then the number of occasions the process is in state i, the number of transitions into
state 4, and the number of transitions from state i, differ by at most one. (b) Give an
interpretation of m;p;; as the fraction of transitions of a certain type. Use this
interpretation to interpret >, mipij- Finally, use these interpretations, and the result of
part (a) to explain the formula 7; = > mipij. (c) Let A denote a set of states, and let
A denote the compliment of A. Give an interpretation of the quantity

ZieAZjeZ TiPij -

Use this intrepretation to explain the identity

ZieZZjeA Tibij = ZieAZjeZ Tibij -

5.10 For the Markov chain in Example 5.4.1, find f,g‘) for n = 1,2,and 3. It will help to
use computing software, such as MATLAB. Also calculate these probabilities by direct
reasoning. For this part you will not need computing software.

5.11 Consider the Markov chain with probability transition matrix

07 0 0 0 0 03]
01 0 0 04 05 0
0 0 02 0 08 O
0 07 03 0 0 O
0 0 08 0 02 0
04 0 0 0 0 06

Use the graph of the chain to partition the state space into closed sets of communicating
recurrent states, and a set of transient states. Use this partition to re-number the states so
that the probability transition matrix is block diagonal, with blocks also along the lower
part of the matrix. In other words, the matrix has the form

D, 0 0 O
0 D, 0 O
0 o -, 0]’
S, S - Q

where the entries above are themselves matrices.



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE

50

Chapter 5: Classification of States 5.13

5.12 For the Markov chain of the previous problem, find the probabilities f;; for each

transient state ¢ and recurrent state j. As in the previous problem, re-number the states
first.

5.13 Consider the queueing model of Example 4.3.3. (a) Show that if p > 1, then all
states are transient. Help: Use Theorem 5.5.4. Show that when p > 1, the system of
equations has a solution z; = ¢, i = 1,2,-.-, forsomer: 0 <7 < 1. (b) Show that
if p < 1, then all states are positive recurrent. Help: Use Theorem 5.5.3, and apply the
z-transform to show that the stationary equations have a solution. (c) Show that if

p=1, then all states are null recurrent. Help: Recall first that when p=1, a

stationary solution does not exist. Next, use a proof by contradiction to show that when
p = 1, the system of equations in Theorem 5.5.4 has no solution.

5.14 Show that in Markov chain with a finite number of states, there can be no null
recurrent states. Help: First note that for a null recurrent state, the set of a states that
communicate with it form a closed set. Then use Theorem 5.5.1, and an argument
similar to the one used to prove Theorem 5.3.3.
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Chapter 6

Finite Markov Chains

6.1 Introduction A finite Markov chain is a Markov chain with a finite number of
states. This case turns out to be much simpler than that of an infinite state space. There
are a few special types of finite Markov chains which are of interest, and this chapter

concerns two of them. .
Absatbins

pag KoV

6.2 Absorbing Markov chains A state ¢ is said to be absorbing if the transition .

probability p; = 1. A finite Markov chain is called an absorbing chain if there is at least

one absorbing state, and from each state that is not absorbing, it is possible to reach a

state that is absorbing. In other words, if 4 is a state that is not absorbing, then there is an

absorbing state j such that pg‘) > 0 for some n. This definition implies that the absorbing 2 ff” b:i 41‘:
states are the only recurrent states, and all other states are transient. The transition matrix ., ree ron
for an absorbing Markov chain can be written, possibly after reordering the states, in the 3

form

(6.2.1) P= [}I:i g] ,

where I is an identity matrix. The first set of rows correspond to the absorbing states, and
the last set of rows correspond to the transient states. The n-step probability transition

matrix is then

I 0
(622) R Q
for some matrix R,.

Example 6.2.1 Consider a simplified model of a charge account system in which an
account is said to be in state n if its oldest unpaid debt is n months old as of the billing



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE

53

62  Unit 2: Markov Chains

date for that debt. When a payment is made, the dollars go to reduce the oldest debts in
the account. Suppose there are five states {u, b,0, 1,2}, where u designates paid up, and
b desiginates bad debt. States u and b are viewed as absorbing states. Referring to
(6.2.1), suppose the transition matrix, with this ordering of the states, has

3 0 6 .1 0
R=|2 0|, and Q=1]2 5 .1
1 .1 2 2 4

Thus, the first column of the matrix R corresponds to the paid-up state, and the second
column corresponds to the bad debt state. The states {0, 1,2} are transient, and from any
transient state it is possible to reach an absorbing state. a
(n)

Theorem 6.2.1 For each transient state j, we have p,;

;;, — 0 as n— oo, for any

initial state 7.

This result was shown in the previous chapter, and holds for any Markov chain. For
the case at hand, it tells us that Q™ — 0 as n — oo. This property will be needed later.

Theorem 6.2.2 Let A™ = Q"R. Then the (i, ;) element of A™ is equal to the
probability that the process reaches the absorbing state j W in n + 1 steps,
given that the process started in transient state <. Redundest

Proof From the Chapman-Kolmogorov equations, we see that the desired probability,
namely, that the process reaches the absorbing state j for the first time in n + 1 steps,
given that the process started in state ¢, is equal to

Z qg:)Tkj )

keT

where qgn) is the (%,k) element of the matrix Q™, and T denotes the set of transient

states. By matrix multiplication, this sum is seen to be the (%, j) element of the matrix

AWM, (?) O
L

Consider now the matrix R + QR + Q?R + - -- . Using Theorem 6.2.2, it follows that

entry (¢, 7) of this matrix is the probability that the process eventually reaches absorbing

state j, given that it starts in transient state 7. But using Theorem 6.2.1, it can be shown

that the matrix I — @ is invertible, and that the inverse is

N=I-Q)'=1+Q+@*+---.
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Thus
R+QR+QR+--=(I+Q+@*+--)R=NR.

This result is summarized in the next theorem.

Theorem 6.2.3 The probability that the process eventually reaches absorbing state j,
given that it starts in transient state , is given by the (i, ) entry of the matrix N R, where
N=(I-Q)™

Example 6.2.2 Consider the simplified model of a charge account system given in
Example 6.2.1. Then we have
e 199 .01
NR =X1:— Q)—lz‘ﬂf 96 .04
e | 8218
From the second column of this matrix, for instance, we find that 1% of the new debts (0
months old) will eventually become bad debts, about 4% of the one month old debts will

eventually become bad debts, and about 18% of the two month old debts will eventually
become bad debts. a

6.3 Regular Markov chains A finite Markov chain is said to be regular if for some
integer m, all entries in the m-step probability matrix P(™) are positive. Equivalently, a
finite chain is regular if it is irreducible and aperiodic. The inventory model considered
earlier in the introductory notes on Markov chains is an example of a regular chain.

Example 6.3.1 Suppose the probability transition matrix is given by

60 .40
P= [.13 .87] '

The probabilities, by the way, are based on rainfall data in Tel-Aviv over the years 1923
to 1970. The first row and column correspond to the wet-day state, and the second row
and column correspond to the dry-day state. A day is considered wet if total rainfall is at
least 0.1 mm during that day. ‘ O

Theorem 6.3.1 Let P be the probability transition matrix for a regular finite Markov
chain with r states. Let e denote the column r-vector, each of whose components is one.
Then for any column r-vector z, there is a scalar )\, such that P"z — \;e, asn — oo.

¥

v

e
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Proof Assume first that the result is true when P > 0. Suppose then that P™ > 0.

For integer n > m, setn = km + [, for nonnegative integers k and . Then
Pz = P'PFmg = PY(P* g — M) + P'(\ze) = PPz — Ae) + Age.

Note that the last result holds because the sum of the elements in any row of P! is one
(when [ =0, P! is the identity matrix). Now, since the first term on the right converges
to zero as k — oo, the conclusion follows. Thus, we now suppose that P > 0.

Let d be the magnitude the smallest entry in P. Then 0 < d < 1/2. Consider the
sequence {z™} for n=0,1,---, where (¥ =z, and 2t = Pz for n > 0. For
each n, denote by a, and b, the smallest and largest entry in the vector z™ respectively.
Let v be the index of the smallest entry in (™). Then, for each component k,

2 = Zpkingn) i Z#l’pkimgn) < Pryan + (1 — pro)bn .
=1

But the term on the right is equal to b, — p,, (b, — an,) Which is bounded above by
b, — d(b, — ap). It follows that

bpy1 < by — d(bn - an) .

Using analogous reasoning, it can be shown that

(6.3.1) Ung1 > Gy + d(by — ap) .

These two equations give us

bpt1 — Gng1 < [bn — d(bn — an)] — [an + d(bn — an)] < (1 = 2d)(bn — an) .

But 0 < 1 — 2d < 1. Therefore, b, — a, — 0as n — oo, which completes the proof. L[]

Some consequences of this theorem are immediate. Let e; be the r-column vector
with 1 in the i-th component, and zeros elsewhere. Then there is a scalar w; such that
Pme; — w;e as n — oo. Let w be the m-row vector whose i-th component is w;, and let
W be the r x r matrix whose i-th row is the vector w. Then (a) Let v be any row
probability r-vector (the components of v are nonnegative and sum to 1). Then
uP® > w, as n—oo, (b)) PP—>W as n—oo, (c) PW=WP=W, and in
particular wP = w, (d) w > 0, (e) w is the unique solution, up a scalar multiple, of the
equation zP = x, where x is a row r-vector.

Denote the state probability vector at time n by m™. Thus, 7rz(-") = PIX.=1); and
at any time n, 7 = 7@ P where (¥ is the initial state probability vector. For a



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE

56

Chapter 6: Finite Markov Chains 6.5

regular Markov chain, it follows that 7™ — w as n — oco. Hence, we can interpret w as

the long-run state probability vector for the process.

Example 6.3.2 Consider the weather model of Example 6.3.1. Solving the equation
wP = w, subject to the components of w summing to 1, yields the approximate
stationary solution w = (0.25, 0.75). Thus, in the long-run, there is a 25% chance of
having a wet day in Tel-Aviv, and a 75% chance of having a dry day. O

Exercises

a) Verify that the matrix 7 — @ is invertible. Help: Show there is no nonzero vector

such that (I — @)z = 0. (b) Set S, =1+ Q + --- + Q. Show that the limit of S,

as n — oo exists, and that this limit is the inverse of I — (). Help: consider the matrix

(I — @)S,. (c) Find an expression for the matrix R, in the n-step transition matrix
(6.2.2). Show that the limit of R,, as n — oo exists and find an expression the limit.

Consider an absorbing Markov chain with probability transition matrix (2.1) for

which
S 4513
R_[.3 .1] wil/ 8P Q_[.s .1]'

Find the probability that the process will eventually reach absorbing state 1, given that
it started in transient state 4.

\3(3 For an absorbing Markov chain, let V;; denote the number of visits made to transient
state j before absorption, given that the process starts in transient state 7. Let B be the
matrix whose (i, j)-th entry is b;; = E(V;;). (a) Show that B=N = (I — Q).
Help: Condition on the next state X;. Write out the resulting equations for each (%, 7),
and then appeal to matrix multiplication to get the result. For ¢ = j, include this initial
condition as one of the visits to state j, among possibly others before absorption. (b)
Given that the process starts in transient state ¢, give a formula for the expected number

of steps until absorption.

6.4 Regarding the proof of Theorem 6.3.1, derive equation (6.3.1) and show that
0 < d < 1/2. Further, verify the results listed in the paragraph after the statement of
Theorem 6.3.1.

\X“‘\ @Consider a regular Markov chain, and denote by Tj; the first entrance time into state
4, given that the process starts in state ¢. Set m; = E(Tj;). (a) Show that
mij = 1+ ) 44 Pik™u; . Help: Use conditional expectation, and condition on the next

state. (b) Let (w1, wy, ---, w,) be the stationary probability vector for the process. Show
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that m;; = 1/wj, for each state j. Help: Use the result of (a). Multiply the i-th
equation by w;, and then sum over i. (c) Give a heuristic argument to justify the result
of part (b).

@how that a finite chain is regular if and only if it is irreducible and aperiodic. Help:
o0 show the if-part, use Theorem 5.5.1 and Theorem 5.5.2 from Chapter 5.

6.7 Let us say that a finite Markov chain with one-step transition probability matrix P is
asymptotic if the limit of P" as n — oo exists. For irreducible finite Markov chains,
show that a chain is asymptotic if and only if it is regular. Using the result of problem
6.6, what is the only way in which an irreducible finite chain could not be asymptotic?

The Pallet Problem

Several breweries in Canada cooperate in maintaining a collection of pallets for
distribution of their product. Pallets are used for shipment to retail outlets and for the
return of empty bottles. The use of common bottles and pallets by breweries allowed the
return of empties to any brewery. New bottles, when shipped to the breweries from the
glass manufacturers, were shipped on new pallets. The bill for new pallets was included

" with the bill for the new bottles. Also, additional pallets could be ordered by the

individual breweries. Records of purchases were kept, and at the end of the year, the costs
would be split proportionately among the breweries. The portion of the total expenses
paid by a particular brewery was determined by the number of new purchases times the
market share of that brewery. The pallet pool consisted of about 200, 000 pallets.

The policy for maintaining pallets was to repair them as needed. However, increasing
labor costs raised concern that this policy may become too expensive, and so a study of
possible maintanence policies was begun.

Information and data

Records were available which showed the average damage rates for pallets. These are
summarized in the following table. The table indicates the pallets according to condition.
The entries show the percentage of pallets that are damaged for the first time in the

specified year.
Pallet condition yr. one | yr.two | yr. three | yr. four
New pallet 22 45 33 -
Pallet repaired in year one | — 47 48 5
Pallet repaired in year two | — - 83 17

Thus, for example, of the pallets that were damaged and repaired in year one, 47 percent
were next damaged in year two, 48 percent were next damaged in year three, and 5
percent were next damaged four. The third row of the table refers to pallets that were
repaired in year two, but which may also have been repaired in year one.

The foreman in charge of maintanence estimated that approximately 10 percent of
damaged pallets were unrepairable. Further, pallets over two years old were not
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considered worth repairing and thus were scrapped. Pallets last only four years, and then
are scraped. In our analysis we will assume a pallet is damaged only once in a year.

Based on recent records, it was estimated that the average cost of a new pallet was $
4.47, and that the average slavage value was $ 0.55. However, salvage value depended on
condition, and had been as much as $0.75. The foreman thought that a pallet in good
condition could be salvaged for as much as $ 1.50. The average cost of reparing a pallet
was $2.07. Records showed that during the last year, 59,000 new pallets were purchased,
and 32, 000 were sold as scrape.

A Markov Chain Model

To model the effect of the current maintenance policy, the use of a regular Markov
chain is suggested. The discussion below shows how to form such a model. Your task
will be to complete the analysis, and then develop similar models for the other specified
maintenance policies listed below.

The states of the Markov chain model, indicated below, are based on the age and
condition of a pallet.

1. Zero years old.

2. One year old and undamaged

3. Two years old and undamaged

4. One year old, and repaired in year one

5. Two years old and repaired in year two (and possibly in year one)
6. Two years old and repaired in year one only

7. Three years old.

The transition probabilities are estimated using the data in the table above.

Transitions from state 1 : The only possible next states are 1, 2 and 4. A transition
from state 1 to 1 means that a new pallet was damaged in year one and had to be scraped.
Thus, p1; = (0.22)(0.10) = 0.022, since there is a 22 percent chance that a new pallet is
damaged year one, and given that it is damaged, a 10 percent chance that it needs to be
scraped. Next, p12 = 1 — 0.22 = 0.78, since 22 percent of new pallets are damaged in
year one. Finally, p14 = (0.22)(0.90) = 0.198, since there is a 22 percent chance that a
new pallet is damaged in year one, and given that it is damaged, a 90 percent chance that
it is repairable.

Transitions from state 2 : The possible next states are 1, 3 and 5. A transition from
state 2 to 1 means that a new pallet was damaged for the first time in year two, and had to
be scraped. Thus, py; = (0.45/0.78)(0.10) = 0.0577. The first factor is the probability
that a new pallet is damaged in year two given that it was not damaged in year one. The
second factor accounts for the 10 percent of damaged pallets that need to be scraped.
Next, po3 = 1 — (0.45/0.78) = 0.423, since the term in parenthesis is the probability
that a new pallet is damaged in year two, given that it was not damaged in year one.
Finally, pos = (0.45/0.78)(0.90) = 0.519, using the same reasoning as above to justify

Ppa1.
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Transitions from state 3 : The first row of the table above tells that such a pallet
will be damaged in year three, and being over two years old, it will be scraped. Thus, the
only next state is 1, and so ps; = 1.

Transitions from state 4 : The possible next states are 1, 5 and 6. A transition from
state 4 to 1 means that a pallet damaged and repaired in year one, was damaged in year
two and had to be scraped. Thus, pg = (0.47)(0.10) = 0.047, since from the table, a
pallet damaged in year one has a 47 percent chance of being damaged in year two and
there is a 10 percent chance that a damage pallet needs to be scraped. Next, by similar
reasoning, pss = (0.47)(0.90) = 0.423. Finally, pss = 1 — (0.47) = 0.530, since a pallet
is damaged in year one has a 47 percent chance of being damaged in year two.

Transitions from state 5 : The possible next states are land 7. A transition from
state 5 to 1 to mean that a pallet repaired in year two was damaged in year three. Thus,
from the table, ps; = 0.830, where the factor of 10 percent is not used, since damaged
pallets over two years old are scraped. Next, again directly for the table, we have
ps7 = 0.17.

Transitions from state 6 : The possible next states are 1 and 7. A transition from
state 6 to 1 means that a pallet repaired in year one only was damaged in year three. Thus,
from the table, pg; = (0.48)/(0.53) = 0.906, which is the conditional probability that a
pallet, damaged in year, is damage in year three, given that it was not damaged in year
two. Again, the factor of 10 percent is not used, since damaged pallets over two years old
are scraped. Finally, pe7 = (0.05)/(0.53) = 0.094, which is the conditional probability
that a pallet, damaged in year one, is not damage in year three, given that it was not
damaged in year two.

Transitions from state 7 : The only next state is 1. Thus, pi1 = 1.

Problem Analysis

As mentioned earlier, your task is to complete the analysis above, and then develop
similar models for the other specified maintenance policies listed below. Use the
Markov chain model to determine the long-run state probabilities. From these long-run
probabilities, form the following cost function to evaluate the policy :

C =cnfn+crfr—csfs

where fy is the long-run fraction of new pallets per year, fr is the long-run fraction of
pallets repaired per year, and fs is the long-run fraction of pallets that are scraped per
year. Also, cy is the average cost of a new pallet, cp is the average cost to repair a pallet,
and cg is the average salvage value. Use the long-run state probability distribution to
estimate the fractions fx, fr, and fs.

Note that in the Markov chain model, it is assumed that a scraped pallet is replaced by
a new one. The records indicate however that 59,000 new pallets were introduced into
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the system and only 32,000 were salvaged. We shall interpert this to mean that not all
scraped pallets were salvagable. Thus, although we might otherwise take fs = fn, we
can use the data to set fs = afy, where o is a fraction around 32, 000/59, 000.

Possible maintenance policies In your analysis, consider at least the following
policies for maintaining the pallets.

1. Repair as needed. This is the current policy.
2. Repair only once.

3. Repair only in the first year.

4. Do not repair.
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A Random Walk Model

7.1 Introduction Consider a Markov chain with state space the integers, and one-
step transition probabilities given by pii-1 =4¢i, Pii =Ti, Pii+1 = Pis and p;; =0
otherwise. Thus, for each state i, g;, p;, and r; are nonnegative numbers that sum to one.
We shall refer to such a Markov chain as a randoem walk. This chapter considers two

examples in which this type of chain arises.

7.2 A gambler's ruin problem One way to think of the random walk model is to
imagine that the states represent a gambler's fortune, and state 0 represents ruin. Fix a
state n > 1, and for each state 4, 0 < 7 < n, consider the probability of reaching state 0
before reaching state n. Denote this probability by P;. Using a conditional probability
argument, it follows that

(7.2.1) P; = qiPi-y + 1P + piPiy1

with boundary conditions Py =1 and P, = 0. Since 1 —r; = g; + pi, this difference
equation can be written as pid; = ¢;d;—1, where d; = Piy1 — B, fori=1,2,--,n—1.
It follows that d; = a;dy, where
a; = 9igi-1-"" @1 , for i=1,2,--,n—1.
Pipi-1-"" N1
Since dg + dy + + -+ + dn—1 = P, — Py = —1, we can solve for dj to obtain
_ -1
1+a+ay+ - +an1

do

Finally, using P, = 1 +do + dy + --- + d;—1, giveus

_ a;+ -+ ap-1
l4+a;+ay+-+ap

% , for 1=1,2,--,n—1.
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This expression for the probability of ruin is not easily analysed. However, we can see
that it is decreasing with 4, as would be expected. Indeed, the greater our initial funds, the
less chance there is of ruin. Under special assumptions concerning the transition
probabilities, simpler expressions are possible. For example, suppose p and g are positive
numbers such that p + ¢ = 1, and assume that for each state i>1,q=gq, 7i=0, and
p; = p, while go =0, 7o = ¢, and py = p. Setp = q/p. Then, for p # 1, we have

n__ ot
(7.2.2) p=L"F g i=0,1,2-n,

pn_l »
and for p =1,
(7.2.3) P,-:l—%, for i=0,1,2,--,n .

7.3 A queueing model Consider a single server queue that is modeled as follows.
Time as divided into 4ntervals of some specified length h. It is assumed that (a) at most
one customer arrives during a time interval, (b) at most one service completion occurs in
a time interval, (c) arrivals in separate time intervals occur independently, as do service
completions. Also, arrivals and service completions occur independently of each other.
Finally, (d) the probability of a simultaneous arrival and departure is negligible.

For this model, we shall suppose that if a customer arrives and finds there are m
customers in the system, waiting or being served, then that customer does not join the
system. Denote by p the probability of an arrival during an interval of time h, and denote
by  the probability of a service completion, given that service is in progress. Define X,
as the number of customers in the system at the end of the n-th time interval. Then we
have a random walk with states 0,1,2,---,m. The rows of the transition probability

matrix P are
1=0: ro=1-—p, po=p
1<i<m-1: ¢g=Q=p)r, =1-(1-r)p—(1-p)r, pi=(1—71)p
1=m: Qm =T, Tm=1—7

Assuming that 0 <7 <1 and 0<p<1, we have a regular Markov chain. The
stationary vector for this chain is the solution of the system of equations wP = w, where
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w = (wo, w1, ***, Wm). Suppose m > 1. Starting with the first equation, and working
with each successive equation, one can show that

wy, w;=swi_1, for 2<i<m—1, and wp=5(1—-p)wn-1,

s
e
where s = (1 —7)p/(1 — p)r. In the following, we will consider only the case s # 1.

Since the components of w must sum to one, it follows that

1-p
(1-r)—(1~-pps™’

w=k (1 —r,88%,,s™ (1 —p)sm), where k =

and where p = p/r. This parameter p can be viewed as a measure of traffic intensity. The
expression for w does not lend itself easily to analysis, but some observations are
possible. For example, if p < 1 and m is very large, then k =~ (1 — p)/(1 —r), and so
wp ~ 1 — p. Thus, when traffic intensity is not too large (p < 1), and arriving customers
stay even though many customers are there already (m large), the fraction of time the
system is empty is approximately 1 — p. On the other hand, if p > 1 and m is large, then
wm = 1 — (1/p). Thus, when the system tends to grow (p > 1), and arriving customers
will stay even though many customers are there already (m large), the fraction of time
the system attains maximum capacity is approximately 1 — (1/p).

An approximate expression for w is obtained if we assume that the length of the time
interval h is very small, and that p = Ak + o(h) and 7 = ph + o(h), for some fixed
parameters A and p. Then s and p are each approximately A /p, andif p # 1,

1-p

wzk(l,p,pz,m,pm), where k = T—_—W .

This expression is more tractable. For example, denoting by N the number of customers
in the system, then we can find

E(N)~k(0-1+1-p+2p>+---+mp™),

which can be evaluated in closed form. Using this expression, it can be shown, as
indicated in an exercise below, that for large m, E(N) = p/(1 — p) when p < 1.

Exercises

7.1 Determine the probability of ruin for the model in Section 2 when p; = g; for each
i=1,2, -yn—1
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7.2 Verify the basic recurrence formula (7.2.1) for the probability of ruin. Also, verify
formulas (7.2.2) and (7.2.3) for the probability of ruin in the special case considered.

7.3 Let Q; denote the probability that state n is reached before state 0, given that we start
in state 4. Use the conditional probability argument of Example 7.1 to form a recurrence
formula for Q;, and thus find expressions for these quantities. Verify that P, + Q; =1
for each 4.

7.4 For the single server queue model of Section 7.3, take p # 1, and use the simplifying
assumption of a small time interval h, as indicated at the end of the section. (a) Verify
the given approximate expression for E(N) when m is large, and p < 1. (b) Let L
denote the number of waiting customers. Find a formula for E(L), the expected value
of L, under the steady state conditions. Help: For both parts (a) and (b), form the
derivative of f(z) =1+ z+---+z™ to get an expression for the sum involved. For
part (b), note that E(L) =1-wy +2- w3+ + (m—1)wn .

7.5 Consider the special case of the gamblers ruin model presented at the end of Section
7.2. The states are 0,1,2, -+, and for positive numbers p and ¢ such that p+q =1,
the transition probabilities are : fori>1, ¢i =g, 7 =0, and p; = p, while go =0,
ro = q, and pp = p. Set p = q/p. Following the steps below, show that this Markov
chain consists of all transient states if p < 1, but consists of all recurrent states when
p>1. (a) Recall that T;; denotes the first entrance time into state j, given that the
process starts in state 4. Suppose the process starts in state 0. Condition on the next state
to show that

P(Too <OO)=(]+PP(T10 <00) .

(b) The probability F; defined in Secton 2 is equal to P(Tj < Tin). But Tin 2 n — i,
and so it is reasonable to take P(Tj < 0o) as the limit of P; as n — oo. Assume this
result and find P(Tjp < o0). (c) Combine the results of parts (a) and (b) to determine
when P(Tgo < 00) is less than 1, and when it is equal to 1. Thus find the conditions
under which state 0 is transient and under which it is recurrent. Finally, note that the
chain is irreducible, and so the states are either all transient or all recurrent.
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8.1 Introduction This chapter introduces some of the basic ideas used in Markov
chain Monte Carlo methods. These techniques provide a way to generate random
observations from a specified probability distribution function. The idea is to construct a
Markov chain whose limiting distribution is the specified distribution, and then to
simulate the Markov chain to obtain the random observations. In these notes, we consider
only finite chains. However, finite chains occur in many applications of Markov chain
Monte Carlo methods.

8.2 Time reversible Markov chains An important role is played in Markov chain
Monte Carlo methods by time reversible Markov chains, and so we begin with a review
of this topic. Consider an irreducible, positive recurrent Markov chain {X, |
n=0,1,---}, with transition probabilities p(z,y) and stationary probabilities m(z).
Following notation that is common in the literature, we will denotes states by letters such
as z and y, and drop the subscript notation for the transition probabilities and state
distributions.

Suppose the chain has been in operation a long time, so that the stationary distribution
describes the state probabilities. Suppose we follow the states backward in time; that is,
we consider the process---- X,, X1, Xn-2, -~ . This sequence of states forms a
Markov chain with transition probabilities 7(z, y) given by
P(Xm =Yy, Xm+1 = :L')

T(IE,y)z.P(Xm=y|Xm+1=.’E)= P(X +1'—"$)

_ P(Xm=9) PXmn = 2| Xn =y) _ m(¥)p(y,z)
P(X"—H.] = x) TI'(IL') .

1) r(xiy) = 7T0) Ply,x)
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)Z To show that the reverse chain has the Markov property, let B denote any event involving <’

states Xpm42, Xn+3, - . Then we must show that

P(Xm =9y | Xm+1 ==, B) =P(Xm=9y|Xnn =2) .
)Q'ZO & However,

/ P(Xp =Y, Xmy1 =z, B
P(Xm=lem+l=$aB)= (P(Xy+1=+; B) ) .

In the numerator we have

P(Xm = Y Xm+1 = 7, B) = P(B| X = y, Xmt1 = 2) P(Xm = ¢, X1 = 7).

But the forward chain has the Markov property, and so
: -
P(Xm =9y, Xmt+1 = 2, B) = Piggmikzﬁp(xm = yJ Xmt+1 = x)P(Xm+1 = :L‘)

Next, in the denominator we have )
P(Xmi1 =, B) = P(B| Xns1 = 2) P(Xnsi = 2) -

Returning to the ratio with the last two expressions gives the desired result.
The reverse chain is therefore a Markov chain with transition probabilities r(z, y). If
r(z,y) = p(z,y), then the chain is said to be time reversible with respect to the
\? distribution 7. Thus, from the formula above for r(z,y), the requirement for time
reversibility can be expressed as m(z)p(z, y) = 7(y)p(y, x), for all z,y. These equations
g are sometimes called the balance equations. Indeed, they say that for a time reversible
%‘ chain, the rate at which the process moves from state x to state y is the same as the rate at
§ 8\: which the process moves from state y to z.
Q %Q\\* To find the stationary distribution of a time reversible chain, the following result is
/\Q ¥ useful. Suppose we can find nonnegative numbers u(z) which sum to one, and satisfy the
\& equations{u(z)p(z, y) = u(y)p(y, ) | for all z, y. Then summing over z, we find that

> u(@)p(z,y) = uly Zp Y

T

.~ Therefore, by uniqueness of the solution to the statlonary equatlons it follows that

87 u(z) = 7(z) for all z. Solving the system of equatlonsl u( )p(:c y) = u(y)p(y, ), ?for
a all z and y, is often a convenient way to determine the stationary solution.
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Suppose the transition matrix of an irreducible and aperiodic chain is symmetric.
Then the stationary distribution is the uniform distribution (see Exercise 8.2), and it then
follows that the chain is time reversible. The next example uses this observation.

Example 8.2.1 Let S denote the set of all N x N matrices with entries 0 or 1. For a
given matrix, define the nearest neighbors of entry (3,7) as the entries in positions
(G,j—1), (4,5 +1), (i—1,5) and (i + 1, 7). Denote by T the subset of S consisting of
matrices such that if an entry is 1, then the nearest neighbors are each 0. Suppose we
wish to select a matrix in T at random, or, equivalently, we wish to place a uniform
distribution on T. If we could conveniently list the elements of T, this task would not
pose a problem. But for even moderate values of N, an enumeration of T is not easy. It is
not even known in general how many elements are in T'. However, use of a Markov chain
Monte Carlo method allows us to do the selection without having to know this number.
The Markov chain, and the simulation of the chain, are implemented as follows. We start
with an element M € T. Next, an entry of M is chosen at random, and we consider
changing that entry. Thus, an entry of 0 would be changed to 1, and vice-versa. If the
resulting matrix is still in 7', then we accept the new matrix¥ Otherwise, we do not
change the matrix' In this way, we are simulating a Markov chain with state space T'. The
entries in the probability transition matrix are as following : If M and L are in T, and
differ in exactly one entry, then p(M,L) = N2, and if they differ b3; more than one
entry, then p(M, L) = 0. Finally, p(M, M) is determined so that the row sum is one. It
is evident that the transition matrix is symmetric. Further, the chain is irreducible since all
states communicate. Also, since p(M, M) > 0 for some M € T, the chain is aperiodic.
Finally, since the chain is finite, all states are positive recurrent. It follows that the chain
is time reversible and the stationary distribution is the uniform distribution on 7. O

8.3 Markov chain Monte Carlo methods Let X be a discrete random variable,
perhaps vector-valued, and let S denote the set of possible values of X. We are
concerned with situations in which the probability distribution m(z) = P(X = z), for
z € S, is difficult to use analytically, and a direct simulation of the random random
variable X is not practical. It is assumed however that the probability distribution 7 is
known up to the normalizing constant that is needed so that the probabilities sum to one.
One general formulation of Markov chain Monte Carlo methods is the Hastings-

Metropolis algorithm. This algorithm constructs a Markov chain whose stationary

distribution is the probability distribution 7. A key feature of the construction is that it is
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done without having to know the normalizing constant for m(z), which may be difficult
to find in practice. ~

The algorithm begins with selection of an irreducible Markov chalg whose state space

is S. In practice, and as the examples below indicate, the choice of this chain is usually

motivated by the particular application. Let q(z,y) denote the transition probabilities for

A U/L& this Markov chain. &F hen a time reversible Markov chain {X,|n =0, 1, -} s

y '™\ constructed as follows. Suppose the process is in state . Generate a random observation,

\L7 say y, from the probability distribution {q(z, z) | z € S}. Then, with a certain probability
\‘%% B(z,y), move to state y, and otherwise stay at state z. The probabilities §(z,y) are
determined so that Markov chain {X, [n = 0,1, ...} is time reversible with respect to 7.

To find them, note first that the transition probabilities for the chain 1 =015

() e -amBey, oryte, md s =1- 3,00,

Thus, we need (z) p(z,y) = 7(y) p(y,z), fory # z, or equivalently
(z) q(z,) Bz, y) = 7(v) a(y,2) Bly,z), for y#<T.

When g(z,y) =0, we do not specify B(z,y) as p(z,y) will be zero anyway. Since
m(z) > 0 forall z € 5, we can set 7(z,y) = m(y) q(y, z)/m(z) q(z,y) . Then f(z,y) =
7(z,y) By, ). Now, if 7(z,y) <1, then a solution is to take B(y,z) =1 and
B(z,y) = T(z,y). Otherwise, take Bly,z) =1/7(z,y) and f(z,y) = 1. In summary,

(2“) B(z,y) = min{l,r(m,y)} = min{l, %} .

% With this choice of 3, if the chain {Xn|n=0,1,--} is irreducible and aperiodic, or in
other words regular, then it also time-reversible, and its stationary distribution is 7. Thus,
in this case, this stationary distribution will be the limiting distribution.

e In general, one needs to check that the final chain is irreducible and aperiodic. A

(\9)7"’;!?\\\"' . e . R : .

VU sufficient condition for irreducibility is that q(y, z) > 0 whenever q(z,y) >-0. In this

Xd . «" case, B(z,y) > 0 whenever q(z,y) > 0, and hence p(z,y) > 0 whenever q(z,y) > 0.
N A (. Therefore, the irreduciblity of the original chain implies the same for the final chain. That
o Y the new chain will be aperiodic is likely, since it may well be that p(z, z) > 0 for some z.
>\/\

—~  Moreover, if the original chain is regular, and (3(z,y) > 0 whenever q(z,y) > 0, then

the new chain will also be regular.
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S—
!Example 8.3.1.} Here, we consider first a simple example, just to illustrate the

algorithm. Suppose we wish to generate a random observation from the distribution
7 = {1/6, 1/3, 1/2}. Introduce the irreducible Markov chain with state space {1, 2, 3},
and probability transition matrix

g=[1/2 0 1/2

0 1/2 1/2 seigind q )
172 172 0 |

Then the probabilities 5(z,y), for z # y, are determined from the formula

o )
Bla,y) {1’w<m>q(z,y)}'

el

For example, —_—

[ m(2)(1/2) [, /3
1,2) = —_— ) = — =1,
B(1,2) mzn{l, T(D/2) miny 1, 1/6 1
In the same way, we find that §(1,3) =1, 8(2,1) =1/2, £(2,3) =1, p(3,1) =1/3,
B(3,2) = 2/3. Thus, the probability transition matrix for the Markov chain used in the

simulation is

0 1/2 1/2
p=|1/4 174 12| . Conshrchs p(x)
1/6 1/3 1/2

This chain is irreducible, time reversible, and has stationary distribution 7. Further,
because the chain is regular, the stationary distribution is also a limiting distribution, and
thus simulation can be used to generate a random observation from 7. Note, by the way,
that had we started the algorithm with the irreducible chain whose probability transition
matrix 1s

_ 8 (1) (1) cabniole oK W‘”‘"JM{,
T 10 of wtint ot Yegnl N

PN 8o
‘%‘.‘H&-

the algorithm would fail. The resulting Markov chain would have a probability transition
matrix equal to the identity, and thus the chain would not be irreducible as required. [

A more interesting application of the Hasting-Metropolis method is the following.
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\&b 6&{ ) 2 '\3‘)'\
/ -
§ N /

r\ -l .‘ . . .
6)3?"’; Example 8.3.2 — The Ising model Let S be the set of N x N matrices with entries
& 1 or —1. Recall that matrix entries at (4, j) and (s,t) are nearest neighbors if li—s| +

li—tl= 1. Define the energy of M € S by o n ot .
o — 437}1 nraasedt naesh bop
S E(M) = ) M) M(s,1) , " |
«\<-' @wﬁfw‘w.o prodndt 6 s Ins gr\uvw'f neghb .
. \s‘l«“."\\o( where the sum is taken over all nearest neighbors. Zlfhe value M (4, j) is called the spin at g L
W

Q- o
LS

N site (4,7) and the energy is minimized when all spins are the same. The Ising model
W specifies the following probability distribution on S which weighs matrices of lowest
energy highest. Givenr > 0, define for M € S, - ( N\) = QXP(—\‘ E(N‘})
5@‘})" "‘Mw' exp(—rE(M Maxﬂtw‘:-“" :
ay g p(— rE(M)) ool e

(M) = . .
. ( ) ZBES exp( —TEE?)/)/ o i u‘;‘fw

\
o X =
/ - Note that calculation of the denominator in this expression requires some effort.
G However, this calculation is unnecessary with the Markov chain Monte Carlo approach.
v T The Markov chain is traversed as follows. Start with M € S, select an entry at random
75" ] and consider reversing its value. Thus, the underlying irreducible Markov chain is E

specified by the transitions robabilities ;

6{"/‘\/‘\0”3 o(R, L) = 7\,-1—2 for R A/,? Aky ) ot t) </

and q(R,L) =0 otherwise,-except-for-the-diagenal-entry. The notation R ~ L means that
the matrices differ in exactly one entry. Now let B denote the matrix which would result

if the randomly chosen value of M is reversed. Then we accept B with probability

L m(B)(1/N)\ _ . - (B)
B(M,B) = mm{l, _——_—WT(M)(l/Nz)} = mm{l, WT(M)} .

Thus, the transition probabilities for the Markov chain are defined by

p(M,B) = %min{l, ::((ﬁ))} , M~B,

and P(M, M) is defined so that the row sum is one.

The original chain in this case is irreducible, but it is periodic with period two.
However, we have (M, B) > 0 whenever q(M, B) > 0. Hence, the final ‘chain is also
irreducible. Further, for at least one M € S, we will have 0 < B(M,B) < 1 for some B
such that M ~ B. Therefore, P(M,M) >0 for this M, and hence the final chain is
aperiodic. Thus, the final Markov chain is regular, and so it is time-reversible with

stationary distribution 7, . The simulation is intuitively reasonable. It encourages a move
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from matrix M to a matrix B which has lower energy than M, or equivalently, for which
m-(B) is larger than 7.(M). O

8.4 Gibbs sampling A setting for Gibbs sampling is the following. Assume X is a
vector-valued random variable, X = (X1, Xy, -+, X,), with probability distribution
f(x) which may be specified only up to a constant multiplier. Let A denote a given
subset of the possible values of X. Then we wish to generate a random vector whose
distribution is the conditional distribution of X, given that X € A. This conditional
distribution is

f(=z)
mz)=PX=z|X€eA) ===, for z€A.
(@ =PX=z|Xed)=pren
The approach is to form a Markov chain with state space .A, which is time reversible

with respect to distribution m(z). It is assumed that we are able to generate observations
from the conditional distribution

ci(z)=P(X,~=z|Xj=xj,forj7éi) .

The transitions are determined as follows. Suppose we are in state z. First,-a coordinate
index 7 is chosen at random from among the indices 1,2,---,m. Next, a random
observation is generated from this conditional distribution ¢;(2) = P(X; = z| X; = z;,
for j # ). Suppose the observed value is u. Then the candidate for the next state is taken
tobey= (Z1, " Ti-1,U Tit1,  *, ZTn). If y € A, then y is accepted as the next state.
Otherwise the process stays in state z.

The transition probabilities for the resulting Markov chain are

1 ] f()
=—-P(X;=u|X;=z;j, fi = -
p(m7y) n ( 1 'LLl J z]’ Or]#l) nP(ijx], for]#l) )
when z and y belong to A and differ in only the ¢-th component. Otherwise, p(z,y) = 0,
while p(z, ) is determined so that the row sum is one. To verify the balance equations,
consider states z and y in A which differ only in the i-th component, and have common

components 1, T3, -, Ti—1, Ti+l," "y Tn. Then

1 f(z)f(y)
m(z)p(z,y) = n P(X; = x;, forj # i)P(A)
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However, because z and y have in common the components 1, T2, ***, Ti-1, Titly ~*"
Z,, it follows that

_1 f(z)
P(y:z) = n P(X; = z;, forj #1i)

Therefore

B f@)i (@)
WP %) = L P(X, = 0;, forj # §)P(A)

Hence the balance equations hold. For the chain to be irreducible, however, the set A
must be connected in the sense that it is possible to travel from any one element in A to
any other by making changes in only one component at a time.

There is another version of Gibbs sampling which is perhaps simpler. Suppose we
have n variables, each of which can take on values {v1, v, **+ vm}. Let G denote the set
of m™ possible n-tuples of values that the n variables can achieve. Let g be a positive
function defined on G and suppose we wish to sample from the distribution

g(mla T2, "y xn)
2€G 9(21,22,"',%)

(8.4.1) (1, T2, s Tn) = 5

Starting in state T = (z1,%2," ", Tn), the algorithm selects at random an index
ie{1,2,--,n}, and the component z; is then changed to a value u generated from the

conditional distribution

x ce e m_ z x . .o x
(842) hi(Z) — n.?( 1 y Li—1y 2y Lit+ly ) n) )
Zs=1 g(zl, coy Li—1y Usy Titls " xn)
The transition matrix for the Markov chain is therefore

1 g(m1>"')zi—lau?xi+la"',xn)
p(z,y) =
, n ZT:lg(xh"',x‘i—lavs’mi-f-li"'3mn) ’

when z = (x1,-+,Zn), and y = (xl,"',xi_l,u,xi+1,“',xn), and u # z;. Showing
that the balance equations hold follows the same steps shown in the previous version of
Gibbs sampling. Also, we see that the chain is irreducible since it is possible to travel
from any one n-tuple in G to another by changing only one component at a time.

The Ising model considered earlier in Example 8.3.2 can be treated using this Gibbs
sampling approach. For G we take the set of N x N matrices with entries 1 or —1. This
set was previously denoted by S in Example 8.3.2. Thus, the variables refer to the N2
entries in an N x N matrix, so that n = N2. The v-values are 1 and —1, so that m = 2.
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Finally, g is taken to be g(M) = ezp(—rE(M)), for M € G. This Gibbs sampling
approach, however, yields a different Markov chain than the one obtained in Example
8.3.2. Here we get instead the transition probabilities

_ 1 g(B) N
p(M’B)_Nz———g(M)+g(B)’ when M ~ B.

where the matrices M and B differ in at most one entry.

8.5 Simulated annealing We consider now the application of Markov chain Monte
Carlo methods to optimization. Let S be a finite set, and let f be positive function
defined on S. The elements of S are viewed as states of the system. Each state z € S has
specified a set of adjacent or neighbor states, denoted by S(z). We can imagine a graph
in which the states are nodes and an edge connects each state to its neighbors. Assume
this graph is strongly connected in the sense that it is possible to travel from any one
state to anotlier, and if y € S(z) then z € S(y), for any two states z and y.

We seek a point in S at which f achieves its minimum value. Define a probability

distribution on S by et . -
Ma‘jbe ) fXP(’V\L(Xiz

n(z) = gezp(~rf(@), where C=3 ceap(-rf(z)) . "= ool i)
YesS

and where r > 0 is a constant. The basic idea is to form a regular Markov chain whose
stationary distribution is 7.

The Markov chain The Markov chain is traversed as follows. Given that the process
is in state z, a state y in S(z) is selected at random. Then, this state y is accepted as the
next state with probability B(z,y), where the probability B(z,y) is determined by the
Hastings-Metropolis criterion :

B(z,y) = mz'n{l, 7r(?/)(1/|S(y)|)} . 7(v)|S(z)]|

@ 1/5@) | "””{1’ (@)5®)] } '

The symbol |S(z)| denotes the number of elements in the set S(z). The one-step
transition probabilities for the resulting Markov chain are then

ple) = iy o), foryeS(e), and plos) =130, pE ).
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Note that in the special case in which each neighborhood set S(z) has the same number

of elements, then

Ba.) = min 1, - min{ 1, p(rlf @) - s} -

The process will then move from state to y if f(z) > f(y), and otherwise will accept y
as the next point with probability

exp (r{f(z) - F®)]) -

Observe that in this case, if the function f is not constant on S, the resulting Markov
chain is irreducible and aperiodic.

In general now, assuming that the Markov chain is regular, or equivalently,
irreducible and aperiodic, it follows that for large n,

P(X,=z)=7(z)= —é—exp(—rf(x)), where C = Zzes exp(—rf(z)) -

Suppose the function f achieves its minimum value on S, say v, on a set of points
O c S. In other words, v < f(z) for all z ¢ 0, and v = f(z) for all z € O. Then for

large n,

= (14 o goeep ) -

But for a large value of 7 >0, the sum on the right will be small. Therefore, the

P(X, € 0) ~ eroe‘”’é”"f (=)

algorithm has a good chance of converging to the optimal solution in this case.

The optimization algorithm In theory, one would now simulate the Markov chain,
and after a suitably large number of steps, accept the current state as the optimal solution.
Thus, considering the special case in which all adjacent states have the same number of

elements, the algorithm would have the form

Initialize: xstart, r
k := 0;
x := xstart;
do until stopping criterion:
generate: y from S (x)
if f(y) < £(x), then x:=y
else
if rand < exp (r (£(x)-£(y)), then x:=Yy
end
end
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In this code, "rand" denotes a uniform (0, 1) random variable.

In practice however, the implementation takes on a modified form, designed to
improve convergence. The modification concerns the parameter r. In principle, a large
value of r is desirable, but may slow convergence in the initial stages. Therefore, a

sequence of r-values is used. The following ideas seem to work well.

1. Initially, 7 = 7o is chosen small enough so that the acceptance criterion holds for

most of the transitions generated.

2. Then a sequence of r-values is generated, often using a simple method such as
Tes1 = QTk, for k =0,1,2,---, where the factor o is around 1.01to 1.25. It seems
however that these 7-values can not increase too rapidly, and that a bound of the
form 7, < 7log(k + 2), for constant r, is needed.

3. For each rj, value, the above simulation is carried out for N steps. The value of Ny
is required to be long enough so that a certain minimum number of accepted
transitions is achieved, but it is also bounded above so that extremely long chains

are not generated.

4. A stopping criterion is based on the number of consecutive steps for which no

improvement in the objective is obtained. Also, an upper bound for the r-values is

specified.
Using these ideas the code above would then be expanded as follows. (2055 ¢ L
TP
Initialize: xstart, r(0), N(0)
k 3= 0;
¥ »= Xorarrj

do until stopping criterion:

generate: y from S(x)
if f(y) < f£(x), then x:=y
[ else
if rand < exp(r(f(x)-£f(y)), then x:=y
end
-end

[for n = 1 to N(k)

k := k+1;
calculate length N (k)
calculate control r (k)

end



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE

8.12 Unit 2: Markov Chains

In general, it is difficult to offer more specific rules for the implementation of these
special steps. Procedures need to be worked out on a case by case basis.

Example 8.5.1 The traveling salesperson problem Suppose we are given an
n x n matrix D = (d;;) of positive numbers, where d;; represents the distance between
city i and city j. A tour is a closed path that passes through each city exactly once. We
can represent a tour as a permutation p of the integers {1,2,---,n}, where p(1) is the city
visited immediately after city 7. There are (n — 1)! tours. However, if we are concerned
only the length of a tour, then we have only (n — 1)!/2 tours to consider, since a given
tour can be traversed in either of two directions. We shall refer to these tours, when the
order of traversal is ignored, as routes. The traveling salesperson problem is to find a
route that has least distance.

In terms of the formalism above, take the set S to consist of all possible routes. Thus,
S consists of (n — 1)!/2 elements. Each route then is a state of the system. For the
neighborhood structure, take S(z) to be the set of routes that can be obtained from the
route by altering exactly 2 edges. The function to be minimized assigns to each route in
S its total distance. Thus, f is defined by

n
f(z) = Zdi,p(i) )
i=1

where the route z € S is defined by the permutation p.

Exercises

W 8.1 Consider the Markov chain with transition matrix

P=

o 3
_No o
Q Q O

where 0 < p < 1. (a) Determine the transition matrix of the reverse chain. (b) Is

this process time reversible? Explain.

W 8.2 A key result that was needed in Example 8.2.1 was that if the transition matrix of an
irreducible and aperiodic chain is symmetric, then the stationary distribution is the
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uniform distribution. Show this result. Help: Show directly that the row vector e with
all ones satisfies e = e P, where P is the one-step transition matrix.

Verify the calculations of Example 8.3.1. Also verify that the matrix mentioned at the
end of the example fails to work.

is connected to at most 7 vertices. Let f be a positive function defined on V, and let 7

denote the probability distribution et
(z) = _&g)_
Ever (’U)
If (z,y) € E, define the transition probability . M ‘

o o
L in{1 {®) “’“;, R

(.’II, ) =-mingyl, =5 ¢ » ) +
ey { } /J”nMSO e

(=)

with p(z,y) = 0 otherwise, except that p(z, ) is determined so that the rows sum to
one. (i) Show that the Markov chain determined by p is irreducible. (i) Determine
conditions under which the chain is regular. (i) Show the chain is time reversible with

respect to 7. w s
/wn[mw !

.,‘L

H @Suppose G = (V, E) is an undirected, connected graph. For each vertex v € V, let

edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V, and let 7 denote the probability distribution

f(z)
ZvGVf(v) N

(a) Implement the Hastings-Metropolis method to find a regular Markov chain whose
limiting distribution is 7. Start with the initial irreducible chain defined by

_1
edge(z) ’

n(z) =

q(z,y) = whenever (z,y) € E .

Note that the Markov chain with this one-step transition matrix is traversed by selecting
at random one of the edges connected to z, and then making the transition to the
corresponding node. (al) Show the Markov chain is irreducible. (a2) Determine
conditions under which the chain is regular. (a3) Show the chain is time reversible with
respect to 7. (b) Write a MATLAB program that determines the one-step probability
matrix resulting from this method. The input to this program is the function f, and the
graph, represented by an adjacency matrix. An adjacency matrix is an n X n matrix,
where 7 is the number of nodes in the graph, and where entry (i, j) is one if there is an
edge connecting nodes ¢ and j, and is zero otherwise. Use this adjacency matrix to
compute the function edge(v) at each node. Apply your program to the graph
G = (V,E), where V ={1,2,3,4}, and E = {(1,2), (1,3), (2,3), (2,4), (3,4)},
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and where f(1) = 2, f(2) =8, f(3) =6, and f(4) = 4. Verify (using MATLAB) that
the resulting chain is regular and has the required limiting state probability distribution.

8.6 Verify that the Markov chain constructed in Example 8.3.2 of the Ising model is
irreducible and that the balance equations hold with respect to the stationary
distribution 7.

8.7 Verify that the function k(z) given in equation (8.4.2) is a conditional probability,
and in fact that

h(z) = P(X; =2z | X1 =21, ", Xic1 = Tic1, Xig1 = Tig1-+, Xn = Tn) .

where X7, Xa, ---, X, denote the n variables, and the underlying probability function
onGis, as given by (8.4.1).

8.8 Show that any two-state regular Markov chain is time reversible with respect to its
stationary distribution.

8.9 Referring to the method of simulated annealing, verify that if f is not a constant
function, and each neighborhood set S(z) has the same number of elements, then the
Markov chain is irreducible and aperiodic. In other words, the chain is regular in this
case.

8.10 For the traveling salesperson problem, verify that for a given route z, if two edges
are removed, and they do not have node in common, then only one new route can be
formed. How many new routes can be formed if the two removed edges are adjacent;
that is, they have a node in common. For a given route 2, how many elements are in the

. neighborhood structrue S(z)?
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Unit 3

Continuous-Time Markov Chains

Chapter 9 The Poisson Process
Chapter 10  Continuous-Time Markov Chains

The notion of a Markov chain is extended in this unit to the case in which time is
treated as a continuous variable. This extension permits us to model a number of discrete-

event systems. In particular, we will consider waiting line models.
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Chapter 9

The Poisson Process

9.1 Introduction A stochastic process {N(t) |t > 0} which counts the number of
events that have occurred up to time ¢ is called a counting process. For example, a
counting process might count the number of customers that arrive at a service facility, or
the number of machine break-downs at a repair shop. Observe that for times s < ¢, the
random variable IV (t) — N(s) is equal to the number of events that have occurred in the
interval (s,t]. A counting process is said to have independent increments if the number
of events in disjoint intervals of time are independent random variables. The process is
said to have stationary increments if the probability distribution of the number of events
that occur in an interval of time depends only on the length of the interval. Thus, the
probability distribution of N (s + t) — N(s) depends only on ¢.

9.2 The Poisson process A counting process { N () |t > 0} is said to be a Poisson

— process with rate constant A >0 if (a) N(0) =0, (b) the process has independent.

increments, and (c) the probability distribution of the number of events in an interval of
length ¢ is Poisson with parameter At. In other words, for s,¢ > 0, o
P(N(s+t)—N(s) = )= g g)_;lt')_" = ?C;;i”
Note that E(N(t)) = At. The parameter A can be interpreted as the average rate per unit

time, at which events occur.

3y  There is an equivalent definition of the Poisson process that can be helpful when
property (c) is not evident. Under this definition, a counting process {N(t) |t > 0} is
said to be a Poisson process with rate constant A > 0 if (a) N(0) =0, (b) the process
has independent and stationary increments, (c) P(N(h) =1) = Ah +o(h) as h — 0%
and (d) P(N(h) > 2) = o(h) as h — 0*. To see that this definition implies the previous

one, suppose the interval (0, ¢] is divided into a large number of intervals, say m, each of
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length h > 0. Thus mh = t, and we have

1%Nuy=m=%Tb(:)Qh+4mwu—xh+4mybn.

It follows that

Puwn=n)7ﬁT0”“m’lyém"”+‘)uh+om»w1—xh+omnwm

] [mh][(m — 1)h)---[(m —n+ )R] (A +O(R))"
h10 n! (1= Ah+o(h))"

(1= AR+ o(R))™.

Using t = mh, this expression is approximately, for small A > 0,

(\) e ™M, ash—0".

tn
i A" (1 — AR)Y" . which converges to

9.3 Interarrival times and waiting times For a Poisson process, let T; denote the
time between the occurrence of the (i — 1)-st and the i-th events. Then we have

Hﬂ>ﬂ=HN@=®=€“.¢/

Thus, T} follows the exponential distribution with mean 1/X. Next, by conditioning on

Ty, we can write
o0
P(T2 > t) = / P(T2 > t‘Tl = s)()\e—’\s)ds .
0

But the term P(Ty >t | Ty = s) is the probability that no events occur in the interval of
time (s,s +t), and is thus equal to e—>._ Tt follows that T is independent of T}, and
performing the integration gives us P(T > t) = e, so that Tj is seen to follow the
exponential distribution with mean 1/\. Continuing by induction, suppose that T1, T2,
..+, Ty, are independent and each follow the exponential distribution with mean 1/X. By

conditioning, we can write P(Tp41 > t) as
o0 o0
/ / P(Tn+1>t|T1=51,T2=82,---,Tn=Sn)fn(s)d51“-dsn,
0 0

where f, denotes the joint probability density of {Th, T3, ..., T} . Using the induction
hypothesis, this joint density is

fn(sl,32,~--,sn) =\, where s=s1+8s+ + 8 -
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Further, the term P(T41 >t |11 = 81,15 = s9,++, T, = sy is the probability that no
events occur in the interval of time (s,s +t), and is thus equal to e, It follows that
Tn41 is independent of Ti, Tb,---,T;,, and performing the integration gives us
Pl isil) = e, so that T}, is seen to follow the exponential distribution with
mean 1/), completing the induction argument.
Consider next the waiting time until the occurrence of the m-th event, which is
S,=T1+Ty+--+T, To find its probability distribution, note that the event X
{S, <t} occurs if and only if {N(t) > n}. Thus, denoting by G, and g,, the cdf and //n/&,/ LVL‘7L
density of S,, respectively, we have

Gl =Plo = ty= PNl >m)= ie"’\t ()\Vt!)” .

Since gn(t) = GL(t), we find by differentiating this expression with respect to ¢, and
doing some algebra, that

gn(t) = —(71—:\—1—)—' () terat,

Thus, S, follows the gamma distribution with parameters & = n and f = 1/,

9.4 The G/ M /1 Queue Consider the single server queue in which customers arrive
and are served immediately if the server is idle, but otherwise they join the end of a single
line to wait for service. When a service is completed, the next waiting customer is served.
It will be assumed that service times of customers are independent and identically
distributed random variables with common exponential density ue™# for ¢ > 0, where 4
is a fixed parameter. It will be assumed further that customer arrive according to a general
renewal process, which means that the times between successive arrivals are viewed as
independent and identically distributed random variables with common density f(t).

Let X, denote the number of customers in the system after the n-th arrival, and let
W,, denote the number of customers served during the time between the arrival of the n-
th and the (n + 1)-st customers. Then the sequence {X, | n=1,2,---} is a stochastic
process with state space {1, 2, ---}. To see that it is also a Markov chain, note first that for
eachn > 1,

(9.4.1) Xpp1=Xn+1-W, .

Let A denote the interarrival time between two successive customers (so, as indicated

above, A is a random variable with density f ). Given A = ¢, and X,, = ¢, and given any
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history of the states previous to time n, it follows from the memoryless property of the w/
exponential distribution that the probability distribution of W, depends only on the
values of ¢ and i. Indeed, consider the event {W,, = k}, conditioned on this information.
When k < i, this event is equivalent to the occurrence of k Poisson events (with
parameter ) in the interval (0,t), and when k =4, this event is equivalent to the
occurrence of at least i Poisson events in the interval (0,t). For k > i, the event
{W,, = k} is not possible. Thus, the probability P(W, =k | A =t, Xy =14, Xn1, =+
Xo) is given by
k o) v
) . e ) .
e o for k<1, and Ze 0 for k=1,
V=1
and equals 0 otherwise. Thus, conditioning on A, we can write for k < ¢
00 t k
P =kl Xa=i)= [ e Bl ryar,
0 .
while
o0 (o] t v
PW,=1i|X,=1)= Z/ e-#t@f(t)dt,
v JO v y
-’
and P(W, = k | X, = 4) = 0 for k > i. It follows from this reasoning and from formula
(9.4.1), that {X,} is a Markov chain. The transition probabilities are
. . . - o —ut (/J‘t)y
pin=P(Xp = 1| Xu =) = PWa=i| Xa=0) = D | ™ f(t)dt
v=i Y0 :
andforl<j<i+1,
pij = P(Xns1 = J | Xn =1)
00 t)i+l—j
CPWamit1—i|Xomi) = [ e T ey gt
Wo=it1-5] Xa=i) = [ e o 1)
with p;; = 0 otherwise.
Exercises
9.1 (a) Suppose the waiting time for an event follows that exponential distribution with
parameter \. Show that if the event has not yet occurred up to some time ¢ > 0, then -
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equal to Ak + o(h) as h — 0T. (b) Suppose an event I occurs randomly according to
the following properties: (i) There is a constant A such that the probability £ occurs
during a time interval of length h is Ak + o(h), (i7) the probability that £ occurs two
or more times during an interval of length h is o(h), and (i) the occurrences of £
during disjoint time intervals are independent events. Let 7" be the waiting time for this
event E to occur. Show that T follows the exponential distribution with parameter A.

9.2 Consider two independent Poisson processes, type 1 having rate A;, and type 2
having rate Ag. Show that the combined process, where events are observed without
regard to type, is again Poisson and that the rate is A; + As.

ﬁ_/gronsider a Poisson process such that each time an event occurs, it is of type 1 with
probability p > 0, or it is type 2 with probability ¢ =1 —p > 0. Assume these two
types appear independently from event to event. Show that these two processes each are
Poisson processes and that they are independent of each other. Help: Let Ni(t) and
Ny (t) be the counting processes for each type of event. Find the joint distribution by
conditioning on N (t), where N (t) = Ny (t) + No(t).

9.4 Let N(t) be a Poisson counting process with rate constant A. Let X; be independent
and identically distributed random variables, with common mean . Fix times ¢ and s,
with t > s, and define the random variable

N(t)

Y = H X .

i=N(s)+1

Assume the product equals one if N(s) = N(t). Show that E(Y) = g ARGl
//\
L‘i@ vehicle-controlled traffic light will stay green for 7 seconds after a car passes
through the intersection, and if no cars arrive during a period of time 7, then it turns red.
Let X denote the number of cars that pass through the intersection following
dissapation of the initial queue and until the light next turns red. Assume cars arrive
according to a Poisson process with rate A. Find the probability distribution of X and
find the expected value of X. Help: Note that the event {X > n} occurs if the
interarrival times of the next n arriving cars are each no more than 7.

9.6 An investor must decide on just one investment to make during a fixed period of time
T. The opportunities are of two types : those of profit L and those of profit H, where
L < H. Opportunities appear at random according to a Poisson process of rate A. Each
time an opportunity appears it is worth L with probability p, and worth H with
independent probability ¢ = 1 — p. Consider the following strategy : For a given time
7 < T, we invest only if an opportunity of profit A occurs. After this time, we invest in
the next opportunity that appears, if any.
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(a) Show that the expected profit is

G(r)=H( —e™) + (pL + gH) (e —eT) .

(b) Find the optimal value of 7. Further, what is the probability under the optimal rule
that the profit is zero. How might we modify 7, so as to increase the probability
of some profit.

9.7 Consider the G/M /1 model.

(a) Is the chain irreducible? Is the chain aperiodic? Help: Write the transition
probability matrix with a +, say, for each entry that is positive, and a 0
otherwise.

(b) Find the transition probabilities when the interarrival time distribution 1is
exponential with parameter .

(c) Under the assumption of part (b), find the stationary distribution?
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Continuous-Time Markov Chains g‘ffj’;j ﬁ?ﬁm

1 heo ko g0 b o
adpt S

10.1 Introduction A stochastic process {X(t) | t > 0} is called a continuous-time

Markov chain if the state space is the nonnegative integers, and if the process has the we sl hare

property that ' a &+ 4
st

P(X(s+1t) =j| X(s) =1, X(u) specified for any u < s)
=P(X(s+t)=j]| X(s) =1).

The process is said to be homogeneous or stationary if the transition probabilities

P(X(s+t) = j| X(s) = i) depend only on t. In this case, define )
pii(t) = P(X(s +4) = §| X(s) = 1) . Py = P, (¥

A continuous-time stochastic process, with discrete state space, can be visualized as a
process that moves from state to state over time, and once having entered a particular
state, it stays there for a random amount of time, and then moves to another state. For a
stationary continuous-time Markov process, however, the length of time spent in a state
must follow the exponential distribution. To see this property, let T; be a random variable
denoting the amount of time the process stays in state ¢ before making a transition to
another state. Consider the probability P(T; > s +t | T; > s), in which it is given that
the process has been in state ¢ for a peridd of time s By the Markov property and _\4me Gﬁs

stationarity, the possible evolution of the process after this time, depends only on this Co
remavs W

Same P
rocess stays in state 7 for another ¢ units of time is the same as if the process had just . J
P Y P just v di i

entered state i. In other words, P(T; > s+t | T; > s) = P(T; > t). Therefore, T; has
the memoryless property, and hence follows the exponential distribution. Using similar

state 4, and not how long the process has been there. Thus, the probability that the

reasoning, one can show that the time the process spends in a given state, and the time it

spends in the next state, are independent random variables.
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To determine the probability distributions that govern jumps to the next state, we will
assume that the transition probabilities can be written

pi(h) =1 —vih +o(h), andfor j#i, pij(h) = qijh +o(h), ash — ot

for some constants v; and g;; for i # j. A stationary continuous-time Markov chain
satisfying these assumptions is sometimes called a pure jump process. The first of these
equations implies that once the process enters state 4, it will stay in that state for a length
of time that is exponentially distributed with rate v;. At the end of that time, the process
jumps to a different state j, according to certain jump probabilities, say Qij, for j # 1.
These jump probabilities are specified by the requirement that asymptotically as h — 0,

P(X(t)=3j|X(t) #1, X(t—h) =1) = Qi+ O(h).
For j # 1,

P(X(t) = j, X(8) # i, X(t—h)=1)
P(X(t) #14, X(t—h) =1)

P(X(t) =_7|X(t) # 1, X(t—h) =1) =

_ P(X(t) =4, X(t—h) =1)
T P(X(t) #4, X(t—h)=1)

_ P(X(t)=4| X(t—h) =) P(X(t—h) = 1)
P(X(2) £1| X(t—h) =) P(X(t—h) =1)

_P(X(®) =] X(t=h) =)
P(X(t) #1| X(t—h) = 1)

_ gijh + o(h) _ gih+ o(h) L, %

= = h — 0t
1-— pii(h) vih + O(h) Vi » 88 -

Thus, the jump transition probabilities are given by
Q=2 forj#i.

Another way to obtain these transition probabilities is to imagine a large number of
entities which move through the states according to the stochastic process. During a small
time interval of length h, of those entities that now are in state i, the fraction 1 — pi(h)
will leave the state 3, and of these, the fraction Qi; will go to state j. Thus, the fraction
leaving state ¢ and entering state j is Qij(1 — pii(h)). However, this fraction is also equal
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to pyj(h). Thus, for small h, we have approximately Q;;(1 — pii(k)) ~ pi;(h), and in the

limit as h — O, we get Qi]"l}i = (¢ij, Or Qij = Qij /Ui .

10.2 A differential equation for the pure jump process Consider a stationary

Markov process. During a time interval of length h, we can write

pij(t + k) = pij(t)psi(R) + Z Piv(t)pyi(h) -
V]

For the pure jump process, this equation becomes

pii(t +h) = P (W)L = vih) + D piv()(uih) + o(h) -
Vi

The quantities lumped into the o(h) term depend in general on v, however, we will
assume the resulting sums are such that the limits, taken below, as h — 0 are allowable.

Such limits would be allowable, for example, if the state space is finite. Now, dividing

through by h, we get

pij(t + h}z =mll) ., . pii(t)v; + D pu(t)guj +o(h) /1,

v#i

and taking the limit as h — 0 gives us

_d—pij(t) =~ Pt + Zin(t)(M : 93»5’[%« vb N

dt il
v#j oot a0y

Let P(t) be the matrix whose (i, j)-th entry is p;;(t), and let B be the matrix whose
(i, §)-th entry is gi; for i # j, and along the diagonal are —vy, —vg, --. In matrix form,

the last equation is

For t = 0, we have P(0) = I. When the state space is finite, we can write the solution of

this initial value problem as
P(t)=¢3 .

In principle, the analysis of the long-run behavior of the process can be done using this
solution. However, the analysis involves the eigenvalues and eigenvectors of B.
Suppose now that z(t) is the row vector representing the probability distribution of

the states at time t. Thus, the i-th component of z(¢) is the probability
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~(4)= 2l P

/
g =

10.4 Unit 3: Continuous-Time Markov Chains s _(9) )
T - s

= [
z(t) = P(X(t) = ¢). In particular, z(0) is the row vector representing the initial
probability distribution of the states. Then z(t) = z(0)P(t), and so

Z'(t) = 2(0)P'(t) = 2(0)P(t)B = 2(t)B .

Suppose that as t — oo, 2(t) — 7 and P'(t) — 0. Then 7B =0, and so 7 is a left
eigenvector of B with eigenvalue 0. Writing out the equations mB = 0 componentwise,
we find that

"SI | SR,

v#j € )(,‘\\j ”\v[ O
Note that these equations could be interpreted as balance equations, in the sense that the
term on the left represents flow of the process out of state j, and the term on the right

represents flow into state j from the other states.

10.3 The birth-and-death process An important example of a pure jump process is
the birth-and-death process. A stationary continuous-time Markov chain is called a birth-
and-death process if for i > 1: piip1(h) = Aih + o(h), pii-1(h) = pih +o(h), and
pii(h) =1— (A + pi)h + o(h), and for i =0: pp1(h) = Aoh + o(h), and poo(h)

= 1— X\oh + o(h). For all other (4, 7), pij(h) = o(h). The parameters {\i | i >0} are -
called the arrival rates, and the parameters {y; | ¢ > 1} are called the departure rates.
Thus, when a birth-and-death process enters state i 2> 1, it will stay in that state for a
period of time that is exponentially distributed with rate A; + ;. At the end of that period
of time, it will jump to state ¢ + 1 with probability Qi1 = i/ (Ni + pi), or it will jump
to state 7 — 1 with probability Qi -1 = pi/(Ai + 14;). When the process enters state 0, it
will stay there for a period of time that s exponentially distributed with rate Ao, and then

will necessarily jump to state 1, as Qo1 = 1.

Example 10.3.1 — The M /M /s queue. Consider a queueing model with s > 1
servers, Poisson arrivals at rate )\, independent and exponentially distributed services
times with rate x, and a single line for which arriving customers join the end of the line
and the first customer in line is served by the next available server. Let X (t) denote the
number of customers in the system at time ¢. Then we have a birth-and-death model. For

1> 8,

piis1(h) = (Ah+o(h)) (1 — ph+ o(h))’ + o(h) = Ah +o(h), and
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piic1(h) = (1= Ah+ o(h)) (sph + o(h)) + o(h) = sph +o(h) .
Forl <1 <s,

piisn(h) = (Ah+0(R)) (1 = ph +o(h))" + o(h) = Ah +o(R) , and

piic1(h) = (1= A+ o(h)) (iph + o(h)) + o(h) = iph + o(h)

Finally, for i = 0, po1(h) = Ah -+ o(h). Thus, the departure rates are ; = sy for i > s,
and p; = ip for 1 < i < s, while the arrival rates are A; = Afors > 0.

Balance equations for the birth-and-death process For a birth and death process in
which arrivals occur at a slower rate than departures, one might expect that a steady-state
probability distribution for the states would exist. If such is the case, denote this long-run
probability distribution by {7; [ i =0,1,2,-- -}. We interpret ; as the fraction of time in
the long-run that the process spends in state 7. These probabilities can be calculated by

appealing to the balance equations:

\iTti = Mip17i+1, foreachstate 1=20,1,2,---.

These balance equations can be derived from the balance equations developed earlier in
Section 10.2. Alternatively, a justification for these equations is seen by starting with
state 0, and reasoning for each successive pair of states, that over a long period of time T,
the average number of transitions from state i to state ¢ + 1 is Ai(mT), while the average
number of transitions from state ¢ 4+ 1 to state 7 is pi1(miy17"). These flows must be
equal in the steady-state situation.

From the balance equations we get

Ai—1Ai—2"**Ag
M= "

= 0o, fori=1,2,---,
Mg fi—1 - 1

and using Ty + 71 + -+ = 1, allows us to solve for all the 7; .

Example 10.3.2 — The M /M /s queue. Recalling Example 10.3.1, the departure i

rates are p1; = sy for i > s, and p; = ip forl < <s, while the arrival rates are A; = A

for ¢ > 0. It follows that V /
M p)t A ) .
i = ( ilu) g, fori=1,2,--,s—1, and m= (Sléf—)s Mg, forii>s,
4;) i AN
/ %v)
L{L‘—i 6 R
w\j«".n‘(,x 6\‘
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and provided p = A/sp < 1,

1 S0 /w)
_=z§/m

10.4 First entrance times for a birth-and-death process Let T;; denote the first
entrance time into state j, after the process has just entered state i. For a birth-and-death
process, consider the calculation of the expected value of T;i+1. We shall find this
expected value by conditioning on the next state. Thus, let S denote the event that the
next state is ¢ + 1. Then

E(Tyin1) = E(Tin1 | S)P(S) + E(Tin | S)P(S)

Note that S is the event that the next state is 7 — 1, since it is understood that a jump has
been made. Using the jump probabilities for the birth- and-death process, we have

» G Hi
i +E(Tz,z+1 | S)Ai"‘,ufi )

i
E(Tiin1) = B(Tiin | S)3—

where we set o = 0. Now, E(T;i41 | S) = 1/(Ai + pi), because the expected time to
reach state i + 1, given that the next state is i + 1, is simply the expected time spent in
state 4, which is 1/(A; + ;). Next,

1
Ai + s

E(Tin|S)= + [B(Ti-14) + E(Tii)]

for if the next state is ¢ — 1, then the ’process must spend the expected time in state i,
which is 1/(\; + ), then spend E(T;_1;) to get back to state 4, and then spend time
E(T; ;4+1) to get from state 4 to state ¢ + 1. Substituting these results, and then solving for
E(Ti41), yields

1 i
+E BTy .

E(Tiin) = + 1

Starting with boundary condition E(Tp1) = 1/Xo, the remaining expected first entrance
times are determined. Having found these times, it follows that for j > 1,

E(Tij) = E(T;i+1) + BE(Tirie2) + - + E(Tj-1,5) -

In a similar fashion, the expected first entrance times F(T;;) for j < i can be found.
However, in the case j < i, it is generally best to determine the boundary conditions

separately in each application.
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Exercises

10.1 Find the expected first entrance times T} 41, ¢ > 0, for the birth-and-death process
in which )\; = X for each i > 0, and p; = p for each ¢ > 1; that is, the m/m/1 queue.

10.2 Find the recurrence formula for the expected values of the first entrance times T; ;—;
for the birth-and-death process. Remark: To use such a recurrence formula to find the
expected values E(Tj;-1), it is necessary to specify additional conditions. Generally,
however, these additional conditions can only be determined on a case by case basis.

10.3 For the M /M /1 queue, find the expected first entrance time E(T7 ). This time can
be interpreted as the busy time for the queue. Assume A < . For the M /M /3 queue,
find the expected values E(T;;_1) for all i > 1. Help: Use the recurrence formula
obtained in previous problem above. Argue that for ¢ > s, where s is the number of
servers, all the values FE(T; ;1) are the same.

—> 10.4 Consider a set of m machines that are in continuous operation, and which fail
independently of each other at an exponential rate A. Assume there are 5, 1 < s < m,
repair persons that service the machines independently and each at exponential rate p.
Let X(t) denote the number of machines at time ¢ that are not operational; that is, they
are in the repair shop. Determine the arrival and departure rates for the birth-and-death
model.

—>10.5 Consider a set of m + n machines which fail independently of each other at an
exponential rate . It is intended that m machines are to be in operation at any time.
The remaining machines serve as spares and are called into operation when an operating
machine fails. If more than n machine are in a state of failure, then all the operational
machines will be in service. Suppose there are s, 1 < s < m, repair persons that
service the machines independently and each at exponential rate y. Let X (t) denote the
number of machines at time ¢ that are not operational; that is, they are in the repair
shop. Determine the arrival and departure rates for the birth-and-death model.

—, 10.6 Consider a sign that contains N light bulbs, each with a lifetime that follows an
exponential distribution with parameter A. Assume that the bulbs function
independently of each other. Suppose it is the policy to allow bulbs to burn out until the
moment the r-th bulb expires, and to then replace all burned out bulbs at that time.
Define the state of the system X (t) to be the number of burned out bulbs at time t.
Argue that this stochastic process (a) has the Markov property, (b) is stationary, and (¢)
can be represented as a pure jump process. Determine the parameters v; and g;; of the
jump process. (d) Determine the balance equations for this system, and find the long-
run probability distribution for the states.
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10.7 For the previous light bulb problem : (a) What is the expected time between
replacements? (b) Suppose for each replacement, it costs o + B dollars to replace the
r bulbs, where « and 3 are constants. Develop a formula that would be a reasonable
estimate of the expected cost per unit time.

10.8 Verify that the matrix B in Section 10.2 is such that the sum of the elements in any
Tow is zero.

10.9 Consider a two-state continuous-time Markov chain in which the expected time in
state 1 is a, and the expected time in state 2 is b. (a) Determine the parameters of the
associated pure jump process. (b) Determine the matrix B in the differential equations
for the transition probabilities. Show that this matrix has two eigenvalues, one of which
is zero, and the other is negative. (c) Thus conclude that an asymptotic or steady state
distribution exists, and find the limiting probability distribution.

10.10 Verify the calculations in Example 10.3.1.

10.11 For the M /M /1 queue, find the long-run probability distribution for the states.

Use these probabilities to find E(X), the expected number of customers in the system
in the long-run. Help: Let p = A/u. Then E(X) = p/(1 — p).

10.12 For the M /M /2 queue, find the long-run probability distribution for the states.
Use these probabilities to find E(X), the expected number of customers in the system
in the long-run. Help: Let p = A/2u. Then E(X) = 2p/(1 — p?).

10.13 Compare the following queueing system in terms of the expected number in the
system. (1) The M /M /1 queue with poisson arrivals at rate A, and service rate u, (2)
A system consisting of two servers, each with service rate 11/2, where the arrival rate is
)\, however there is a separate line for each server, and customers pick a line at random,
(3) The M /M /2 queue with poisson arrivals at rate A, and service rate y/2. For each
model, assume A < L.

10.14 A military repair facility has a permanent staff of c¢ repair-persons. However, if
more than c jobs are in the system, then additional staff is brought in to handle the extra
work. Thus, the facility can be modeled as if there were an infinite number of servers.
Assume that the amount of time for a server to complete a job follows the exponential
distribution with mean of 4 days, and that jobs arrive according to a Poisson process at
rate of 1 every 2 days. Let X (t) denote the number of jobs in the facility at time ¢t. (a)
Find the long-run state probability distribution. (b) Find a closed form expression for
the long-run probability that more than c jobs are in the system (and thus extra staff is
needed).

10.15 Consider the M /M /1 queue model, with the modification that when a customer
finishes being served, there is a probability p that the customer will be returned to the
queue to repeat the required service. (a) Assume this process follows a birth-and-death
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model, and find the arrival and departure rates. (b) Find the long-run state probability
distribution.

10.16 For the M /M /s queueing model, assume that when a customer arrives and finds
servers idle, the customer selects a server at random from those available. Consider a
particular server, say server number 1. Show that the probability, in the long-run, that

this server is idle is 1 — p, where p = A/su. Help: Condition on the number in the
system in the long-run.

10.17 Write a simulation model of following queueing network. The customer requests a
server for work which lasts a random amount of time following the gamma distribution
with mean y and standard deviation o. Upon completion of service, the customer leaves
the system with probability p, or returns to repeat the service with probability g.
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Unit 4

Simulation Modeling

Chapter 11 Static Simulation Models

Chapter 12 Simulation of Discrete-Event Systems
Chapter 13 Preparation of Simulation Model Inputs
Chapter 14 ~ Random Number Generation

Chapter 15  Analysis of Simulation Model Outputs

Chapters 11 and 12 of this unit introduce the idea of simulation modeling of
stochastic systems. This approach is widely used today as many practical problems are far
too complex to yield to mathematical analysis. Earlier chapters presented some of the
mathematical techniques that are used to model stochastic systems. However,
mathematical methods, at least those developed to date, often require stringent
assumptions that may limit their applicability. The simulation approach is usually not
limited by restrictive assumptions, but on the other hand, may not offer the power and
insight generally found in an analytical model.

Developing and implementing a simulation model hinges on the application of a
number statistical methods. First, the random variables that appear in the model must be
identified and their distributions determined. Next, the simulation program requires the
generation of random samples from these distributions. Finally, statistical analysis of the
model outputs is needed to draw conclusions properly. Chapters 13-15 provide an

introduction to these topics.
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Static Simulation Models

11.1 Introduction The term static simulation refers to a simulation model which
does not involve a natural or explicit notion of time. Typically, however, static models do
involve the repetition of an action or experiment, and one can associate with each
repetition the passage of one unit of time. Indeed, static models in Extend have this
feature, as the examples in Section 11.2 indicate. This chapter presents several examples
of static simulation models, using both MATLAB and Extend.

11.2 Static simulation models We begin with a few simple examples of static
simulation models. The models are presented using MATLAB.

Example 11.2.1 A coin comes up heads with probability p. This program simulates
the repeated tossing of the coin until a specified number of heads, called numheads,
appear in succession. Each toss is independent of the others. The variable record keeps
track of the current number of heads that have appeared in a row. The outputs are the
mean and standard deviation of the random variable n, which equals the number of
tosses until the required streak of heads appears. In the code, the function rand generates
a random value from the uniform distribution on (0, 1).

3 Simulates the trials until a specified number

¢ of heads appear in a row.

$ Inputs: numheads (specified number of heads),

$ p (probability of heads on a toss), sample (sample size)

meansum = 0; squaresum = 0;
for i=1l:sample
record = 0; k = 0;
while record < numheads
if rand < p
record = record+l;
else
record = 0;
end
k = k+1;
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end

meansum = meansum + k; squaresum = squaresum + k*k;
end
mean = meansum/sample
var = (squaresum - (meansum*meansum/sample))/(sample—l)
std = sqrt(var)

Example 11.2.2 The program below represents a highly simplified model of a
neutron passing through a shield of thickness d. The shield is assumed infinite in the
vertical or y-direction, and is assumed to extend a distance d in the z-direction. A neutron
enters perpendicular to the shield, and after colliding with an atom in the shield, will be
reflected at an angle theta. The neutron then travels another unit length. It is assumed
that after 6 collisions, the neutron has lost all its energy. The reflection angle theta is
assumed to be uniformly distributed. However, since the shield is infinite in the y-
direction, we can take this reflection angle to be uniform over the interval (0,7), by
reasons of symmetry.

¢ Neutron shield model
g Input: d (thickness of shield), sample (sample size)

count = 0;
for i=l:sample
n=1;, x =1;
while (x>0 & x<d & n<7)
theta = pi*rand;
X = x + cos(theta);
n = n+l;
end
if x>d
count = count+l;
end
end
fraction_thru = count/sample

Example 11.2.3 A certain component in a system (a battery for example) has a
lifetime which is viewed as a random variable. The program below estimates the average
number of times the component has to be replaced during a specified period of time,
called period. The lifetime of the component, denoted by lifetime, is assumed to follow
an Erlang distribution, consisting of k =2 exponentials, each with mean beta. The
program output a 95% confidence interval for the mean number of renewals.

¢ Renewal of a system component.

$ Inputs: beta (failure rate, Erlang distribution),
% period, sample (sample size)

meansum = 0; squaresum = 0;
for i=1l:sample
n=0; sum = 0;
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while sum < period
x = rand(1,2);
1lifetime = -beta* (log(x(1l))+log(x(2)));
sum = sum + lifetime;

n = n+l;

end

meansum = meansum + N; squaresum = squaresum + n*n;
end
mean = meansum/sample
var = (squaresum - (meansum*meansum/sample))/(sample—l)
std = sqgrt(var)
lowercfd = mean - 2*std/sqrt(sample)

uppercfd = mean + 2*std/sqrt (sample)

11.3 Static simulation models in Extend This section introduces some of the basic
ideas behind the icon-driven models of Extend. In class, further time will be taken to
discuss how Extend works, and how to construct models in Extend. For now, we consider
just a few simple examples. In particular, this section considers static simulation models.

The Extend program below simulates a game of tossing a coin in which the player
wins a dollar with heads and loses a dollar with tails..

Figure 11.3.1: An Extend model for tossing a coin. With each toss, the
player wins a dollar with a heads, and loses a dollar with tails.

In Extend. to run this model, one must select the option "continuous simulation" under
"simulation setup” on the pull-down menu. For so-called continuous simulations, time is
actually represented in the discrete units 0, 1, 2, ---. Each block generates values which
are transmitted over the connecting line to the next block. A succeeding block takes the
input value, processes it and generates an output value.

For the model above, the first block, labeled Rand, generates eithera 1 ora —1, each
with probability 0.5. By clicking on a block, a dialog box appears that allows the user to
select these parameters. The next block, which looks like a tank, is called a holding tank.
This block accumulates or sums the values that are sent to it. Thus, for the experiment
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above, the value in the tank at any time in the simulation is the total winnings in the
game. The third block over is a plotter which plots as function of time, the values sent to
it. The circular block in the lower part of the figure just generates a constant value, in this
case the value 0, which is then plotted also. The only purpose of this action is specify the

zero level in the plotter output, in order to better compare the value of the winnings with

Z€10.

As a more complex example, consider the one in Figure 11.3.2 which is a model of
the renewal problem in Example 11.2.3. There are two holding tanks. The one at the top
accumulates the successive lifetimes of the components. These lifetimes are generated by
the block labeled Rand. The bottom

Sum of lifetimes

renewals

period over

Number of renewals

period over

Figure 11.3.2 The renewal model of Example 11.2.3.

tank is sent the value 1 with each change in time. This lower tank, therefore, is simply
holding the number of renewals at time proceeds.

When the sum of the lifetimes exceeds the period, this condition is detected by the
diamond-shaped box labeled "a > =b". At this point, the text-block, entitled "period
over", is sent the value 1. This action causes both holding tanks to reset there sums to
zero, as done by the input to the R-connector at the bottom of each tank. Further, at the
select box in the upper right corner, the value in the text-box called "renewal" is sent to
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the statistics block on the far right for processing. This block compute the mean, variance,
and standard deviation.

11.4 The newsstand problem The following problem, which is an introductory
example from inventory theory, can be well handled using static simulation. A newsstand
sells a certain newspaper each day. The number of customers who request a copy varies
from day to day, and so is modeled as a random variable. Let Y denote this daily demand
for the newspaper. We will assume that Y is a continuous random variable with density
f(y) and associated cdf F(y). The question is: How many copies of the newspaper
should be stocked each day?

Denote this amount to be stocked by z. Suppose the newsstand buys the newspapers
for ¢ dollars apiece, and sells each for s dollars, where s > c. Assume that at the end of
the day, any unsold papers are discarded and have no salvage value. The daily profit Z is

therefore

Z =smin(Y,z) —cz .

The optimal value of z will be determined so that the expected daily profit is maximized.
To find this value, note first that

E(Z) = / [s min(y, z) — calf(y) dy = s / " min(y, @) f(y) dy — cz .
0 0
For the integral term, we have
/0 min(y, z) f(y) dy = /0 V) dy+a / ) dy.

The second integral is equal to 1 — F'(z). For the first integral, using integration by parts
yields

T T
/0 yf (y)dy = zF(z) - /0 F(y)dy .
Substituting into the formula for E(Z), and simplifying, we get
B(2)=G@)= =5 [ F@dy+(s—c)z -
0

The expression on the right is a function of z, and we have denoted it by G(x). Since

G'(z) = —sF(z)+(s—c), and G"(z)= —sf(z) <0,
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it follows that G is concave downward, has a positive slope and is equal to zero at the
origin, and goes to —oo as £ — 0. Therefore, the optimal value of z, say Z,p, satisfies
the equation G'(z) = 0. Thus

F(zop) = (s —c)/s, O Zopt= F((s=¢)/s)) -

We shall assume the cdf F is monotonically increasing so that the inverse exists. An
explicit expression for oy is possible only for simple distributions F'. For example, the
inverse can be found for the exponential distribution and for the Weibull distribution.
However, for many reasonable choices of the demand distribution, finding the inverse
explicitly is awkward at best, and usually impossible.

Further, it is not unusual in modeling stochastic systems that for certain random
variables in the model, little is known about the distribution. For example, at the start of
the analysis for the newspaper problem, the distribution of daily demand Y may be
known only roughly. One may be able, however, to specify a range for the values of Y
and perhaps a most likely value. In this case, a reasonable model for the density of Y
might be the triangular distribution, which is specified by a lower bound a, an upper
bound b, and a most likely value d. The shape of the density is a triangle with base on the
interval [a,b], and height h=2/(b—a). The density is expressed as
fly) =h(y—a)/(d—a), for a<y<d, and f(y)=h(b-y)/(b-d), for
d < y < b. For y outside the interval [a, b], the density is zero. Note that the peak of the
triangle is located at y = d. To find the cdf F, integration gives us

h 9
F - —_— —_ < <
(v) 2(d a)(y a)*, for a<y<d,

and

h 9
=1- — <y<b.
F(y)=1 2(b_d)(b y)?, for d<y<b

Of course, F(y) = 0 fory < a, and F(y) = 1 for y > b. Note that finding an expression
for F-! is reasonable in this simple case.

For cases in which it is difficult or even impossible find F'~*, one could use graphing
software to plot the graph of G(z) and find the optimal value z,,: visually. Still, this
approach may be inconvenient if we wish to perform a sensitivity analysis, particularly
with regard to the choice of distribution for the demand. A simulation approach, although
less accurate than an analytical solution, may be more convenient for sensitivity analyses.
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Assignment Write a simulation model for the newspaper problem. Use this model to
estimate Z,p, the optimal number of papers to be stocked each day. Take s = 1.50 and
¢ = 0.20, and use the triangular distribution with range a = 50 to b = 100, and most
likely value d = 70. Use a sample size of n = 100 days.

(a) Explain how you arrived at your estimate of Zopt. Corresponding to the amount you
determine, find a confidence interval for the resulting mean profit £ (Z). Determine
also a prediction interval for the daily profit, and compare this interval with the
observed variations in the daily profit shown in the simulation model. State the
interpretations of the confidence interval and the prediction interval you obtain.

(b)) Compare the initial stock level z = 75 with the initial stock level z = 85. Based on
your simulation model, which yields a larger expected daily profit? Justify your
answer statistically.

(c) As a sensitivity analysis, use also for the demand distributions (i) the Poisson
distribution with average A = 70, and (i) the gamma distribution with mean 70
and standard deviation 10.

Exercises

11.1 What does the following section of MATLAB code do to the entries in the array
{N(1), N(2), ---, N(n)}? Justify your conclusion.

k = 2;
while k <= n
j = ceil (randxk);

N(k) = N(3);
N(j) = k;

k =k + 1;

end

11.2 In the simulation model of a neutron passing through a shield, what is the role of the
while-loop? What is the purpose of the variable count?

11.3 In the neutron shield model, the shield was assumed infinite in the y-direction.
Suppose instead the shield has a floor at level y = 0, but no ceiling. How could the
program be modified to handle this situation?
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11.4 Consider a best of seven match between two teams. Assume Team 1 wins a game
with probability p. Write a simulation model of the best of seven series to estimate the
probability Team 1 wins the series. Use p as an input to the program.

11.5 Modify the component renewal simulation model to include estimation of the
standard deviation of the number of renewals, and to include a histogram of the renewal
variable.

11.6 The following exercises concern the newsstand problem of Section 1 1.4 above.

(a)

Verify the integration by parts in the derivation of the formula for the expected
profit G(z). Also verify the stated properties of this expected profit function
G(z).

Suppose the distribution for demand follows the exponential density with
parameter (3. Find the formula for the optimal amount Z.p to be stocked.
Determine this value z,,; when 3, the mean of the distribution, is 70. ,

Verify the formula for the cdf of the triangular distribution.

For the triangular distribution considered in the section, one might guess that a
reasonable choice for z,,; would be the most likely demand d. Show however that
T <d when (s—c)/s<(d—a)/(b—a), and that z,p, >d Wwhen
(s—¢)/s> (d—a)/(b—a). Show also that the value zo, can range over the
whole interval (a,b) depending on the relative magnitudes of (s — c)/s and

(d—a)/(b—a).
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12.1 Introduction A discrete-event system is characterized by the property that the
state of the system changes only at discrete points in time. These points in time are
typically random, and the actions which result in these changes of state are called events.
The state of the system is specified by variables which are functions of time and are
called the state variables. For example, the system discussed below models the arrival
and service of customers who enter a service facility and form a single line to await
service from the next available server. Such a system is called a single-line, multi-server
queue. We considered this model in the previous chapter, but only under the special
assumptions that customer interarrival times were exponentially distributed, and that
customer service times were exponentially distributed. In this chapter, these assumptions
will not be required. A state variable for this model could be the number of customers in
the system at any given time. This state variable takes on the values 0,1,2,---, and
changes only at discrete points in time. There are two events for this system: a customer
arrival and a service completion.

12.2 Discrete event simulation models in Extend An Extend model of a discrete
event system consists of a collection blocks connected by heavy lines, as compared with
the thin lines for the static or continuous simulation models discussed in a previous
chapter. Each model must include the Executive block, and this block must be located to
the left of the model blocks. In Figure 12.2.1 below, the Executive block is the one with
the word "count" below it.

Consider for example the model below of a single-line, multi-server queue. While for
continuous or static simulations, the flow along lines were values, they are now entities,
such such a customers in a service system or jobs in a manufacturing system. The heavy
lines indicate the flow of entities from one block to the next. As before, the thin lines
represent flow of values.
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customers

servers

nt

Figure 12.2.1 A single-line, multi-server queue. Each server has the
same service time distribution, as specified in the Rand-block.

Most of the blocks in this model appear only in discrete-event simulation, and must
be selected from the Discrete-Event Library. The block representing the server is called a
"multiple activity" block. This block can represent any specified number of servers.
Clicking on this block brings up a dialog box in which one specifies the number of
servers. The Rand-block connected to the D-connector generates the random service time
of each server.

The queue-block holds entities that are waiting for a server to become free. Note that
the plotter is connected to the L-connector of the queue-block. This connector outputs the
the length of the line at each point in time.

The block labeled "customers" is called a generator block, and produces the entities
that flow through the system. By clicking on this block, a dialogue box appears that
allows the user to specify the interarrival-time distribution.

Instead of using a multiple activity block, one could instead use several delay-blocks
to model the individual servers, each with its own Rand-block to simulate the service
times. This type of arrangement is shown below in Figure 7.2.2. Here, each server is
represented by a separate delay-block. A Rand-block connected to the D-connector is
used to simulate the service times. Thus each server has its own service-time distribution.
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server 1

customers

nt

Figure 12.2.2 A two-server queue. Each server has its own service time
distribution, specified by Rand-blocks connected to the D-connector of each.

The systems modeled above are examples of open-loop systems. The customers, or
the entities, that move through the system are generated from the outside, and then enter
the system. Generally these entities then leave the system after period of time. For such
systems, if the entities enter the system faster than they leave, the values for the state
variables could become arbitrary large. Thus, we need to be concerned about stability of
open-loop systems, or in other words, whether the state variables become unbounded in
time. In contrast, a closed-loop system is one in which the number of entities that move
through the system stay fixed. In closed loop system, the values of the state variables
generally reach limiting values in time.

12.3 Examples of closed-loop systems This section gives two examples of closed-
loop systems. Each example involves a fixed number of entities which circulate through
the system over time. To model such situations in Extend, a useful block is the Resource
block which is used to start the simulation. Initially, this block contains all the entities
that flow through the system.
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12.3.1 The delivery van problem This problem concerns an actual study conducted
for a large transportation company based in Stuttgart, Germany. The project was
undertaken to investigate the efficiency of certain aspects of their operations. At the end
of this sub-section, you are asked to write a simulation model of the operations under
study, and apply the model to develop recommendations.

ExpressO is an integrated transportation company. An important part of their business
is the delivery van service. In each center of operation, the company runs a fleet of vans
which make home deliveries for many of the large department stores and also deliver
goods brought to warehouses by trucking firms. At one of their major centers, the
manager was concerned that too much time was spent waiting for the drivers to report in
and to receive new instructions from dispatchers. For each delivery, the driver received
instructions from the dispatcher regarding particular details of the assignment, and upon
return to the office, the driver reported to the dispatcher regarding the successful
completion of the assignment, or reported any difficults that may have occurred. At the
completion of the report, the driver would receive a new assignment. The office currently
had two dispatchers, and the manager speculated that the addition of two more
dispatchers would sufficiently reduce the waiting time. The following data and
information is available : o

1. At the time of the study, the company had 30 vans and 2 dispatchers. Delivery
times averaged about 2 hours, and were estimated to follow a gamma distribution with
standard deviation of 1 hour. Time with dispatchers averaged about 10 minutes, and was
estimated to follow a gamma distribution with standard deviation of 3 minutes.

2. The hourly wage rate for dispatchers is 15 dollars per hour, and for drivers is 12
dollars per hour. The billing rate to customers is 30 dollars per hour for the van and
driver.

3. Possible cost functions : Let s denote the number of dispatchers. Then we could
seek to minimize the total cost C(s) = 15s +wL,, where the cost w is either the wage
of the drivers (12 dollars per hour), or the billing rate (30 dollars per hour) for van and
driver. Use each of these costs and compare the results.

A remark about the cost functions By the way, given more information about
operating costs we could consider a profit maximization function as the criterion for
determining the optimal number of dispatchers. For example, if we also allow the number
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of vans to be a variable of interest, we might use the profit function of the form

P(z,s) = (30 — d)(z — Lg) — (155 + [12 +c]z) ,

where : = = number of vans, d = operating cost of a van, and ¢ = capital cost per hour
of a van. However, as values for d and c are not made available, we will use the cost
functions above.

Assignment Develop a simulation model of the delivery operations. Assume there is
sufficient supply of assignments received by the company, so that the only delay is that of
a van waiting for the dispatcher. A more complete study would model also the flow of
assignments received by the company, the repair and maintenance of the vans, and might
include the possiblity of purchasing additional vans. Run the simulation for a period of 12
hours and compute the resulting values of the cost functions. Make a number of
independent runs of the simulation to analyse the cost values and to estimate the average
cost during the 12 hour period.

Show in your report how you determined the number of dispatchers which results in
least cost. Develop a table which shows for a given number of dispatchers, the
corresponding prediction intervals for the cost values, and the confidence intervals for
means, for both cost functions. The reader can then scan your table to see which number
of dispatchers yields to least cost. Determine the number of dispatchers that results in the
least costs, and explain how you arrived at your conclusion.

12.3.2 The machine-repair problem with spares Consider a set of m + n machines
which fail independently of each other. It is intended that m machines are to be in
operation at any time. The remaining machines serve as spares and are called into
operation when an operating machine fails. If more than n machine are in a state of
failure, then all the operational machines will be in service. Suppose there are s,
1 < s < m, repair persons who service the machines independently.

Assignment Write an Extend model of this machine-repair problem with spares.
Consider the case of two servers (s = 2), six machines (m = 6), and two spares
(n = 2). Take the service-time distribution to be gamma with a mean and standard
deviation of 8 and 2.5 days respectively. Take the mean time between breakdowns to
follow an exponential distribution with a mean of 4 days. Program inputs would
include : Number of machines, number of repair stations, mean time between break
downs, mean repair time, and duration of the simulation. Program outputs would
include : Average number of machine that are not operational.
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Problem Suppose it is desired that 80% of the time there should be at least 4

machines in operation. Determine how many spares are needed in this case.

Exercises

12.1 In a queueing system, customers arrive with interarrival times that are independent
and uniformly distributed on the interval 0.5 to 3 hours. Customers begin by first going
to server A, and then with probability p (given) go to server B, or with probability
1— p go to server C, and then leave the system. Assume the work times with each
server are independent and exponentially distributed with mean 2 hours. Write an
Extend model for this system.

12.2 In a queueing system, customers first go to server A, and then with probability p
return to server A, or with probability 1 — p go to server B, and then leave the system.
Assume the work times with each server are independent and exponentially distributed
with mean 2 hours. Write an Extend model for this system.

12.3 Consider again the machine-repair problem of Section 12.3.2. Recall that there is a
set of m + n machines which fail independently of each other, and assume now that
they fail at an exponential rate \. Recall that m machines are to be in operation at any
time, while the remaining machines serve as spares and are called into operation when
an operating machine fails. If more than n machine are in a state of failure, then all the
operational machines will be in service. Suppose there are s, 1 < s<m, repair
persons who service the machines independently and each at exponential rate p. Let
X(t) denote the number of machines at time ¢ that are not operational; that is, they are
in the repair shop. Derive the arrival and departure rates for the birth-and-death model
of the machine-repair problem with spares. Use these rates to develop a formula for the
average number of machines that are not operational. Write a program, in MATLAB
say, which computes the long-run state probabilities and implements your formula for
the average number of machine that are not operational. Use the model developed in the
assignment above to compare your results with theory. In particular, consider the
following cases: (a) two servers, six machines, and two spares, and (b) three servers,
six machines and two spares. For each case, take the mean service times to be 8 days,
and the mean time between breakdowns to be 4 days for each run. Study also how the
computed averages change with increasing duration of the simulation.
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Chapter 13

Preparation of Simulation Model Inputs

13.1 Introduction A simulation model will typically include a number of random
variables such as interarrival times and the service times in a queuing network, or
customer demand and re-order times in an inventory model. To implement a simulation
model, therefore, it is necessary to determine the distributions of the random variables
that comprise the model. The analysis leading to the description of such random variables
generally consists three phases. These are (1) Data collection and summary, (2) Fitting
distributions to the data, and finally (3) Testing for goodness-of-fit.

13.2 Data collection and summary We begin by noting that in developing
simulation models, it is common to encounter random variables for which very little data
is available. Often, at best, one may be able to obtain only estimates of extreme values
(smallest and/or largest values), the mode (most frequent value), and perhaps the mean. In
these situations, the triangular distribution, or the beta distribution, are often used.

Example 13.2.1 — The traingular density Suppose for a certain random variable it
is known only that the distribution has support on the interval [a, b] and has a mode (most
frequent value) equal to . The triangular density f(z) is the continuous function which
is linear on the interval [a,m] with f(a) = 0, linear on the interval [m, b] with f(b) =0,
and which is zero elsewhere. The height h of the density at z =m must satisfy
1h(b—a) =1, so that the total area bounded by the graph of f and the z-axis will be
one. O

When it is possible to obtain a reasonable number of independent observations of a
random variable, one should first form a histogram, or frequency chart, for the data. By
examining the shape of this graph, one can then make a choice for a type of distribution
that may fit the data well. Indeed, a histogram can be viewed as a scaled version of the
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density function. The histogram is formed by dividing the range of observed values into
subintervals [bg, b1), [b1,b2), ", [bi-1,b1), usually of equal length A =b; —b;_;. The
number of observations n; that lie in the interval [b;_;, b;) is estimated by

n; ~ " f(z)dz =~ A - f(m;), wherem; issome pointin [b;_1,b;) .
bi—1

Thus, when A is small and there are a sufficiently large number of observations, the
shape of the histrogram will resemble the graph of the density f. There is some art in
choosing of the number of intervals so that the shape of the density can be discerned. If
too many or too few intervals are used, then the histogram will not have a shape similar to
that of the density. Empirical studies have suggested that using about ! =1+ logan
intervals will often work well. _

In selecting the type of distribution, it is sometimes helpful to estimate quantiles of
the data, such as the octiles, in order to study the symmetry or skewness of the data. A
histogram is helpful in this regard. Indeed, from the histogram one can form the empirical
cdf F(z) of the data, which is defined by F'(z) = the fraction of data values which
are < z. Then, for example, the third quartile g3 is estimated by the equation
0.75 = F(q3).

13.3 Fitting the data Once the type of distribution has been selected, we can then fit
the distribution to the data. Fitting a distribution is commonly done by estimating the
parameters of the distribution using a method of parameter estimation, such as the method
of moments (M M E) or the method of maximum likelihood (M LE).

Example 13.3.1 Suppose we wish to fit a gamma distribution to sample data from
which it has been calculated that the sample mean is Z and the sample variance is s2.
The gamma density has the form Kz® le~%/8, for an appropriate constant K . Recall
that the mean of this density is u = o3 and the variance is 02 = a3%. The method of
moments determines the parameter a and 8 by requiring that T = o and s = af?.
These equation can now be solved for the parameters « and 3. a

Example 13.3.2 Suppose we wish to fit the exponential distribution to data
x1, 9, -, Zn. The exponential density is f(z) = -};e‘z/ 8 for x > 0. Using the method
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of maximum likelihood, we form the likelihood function
L(B) = ﬂ l e %ilB = _1_e—nf/ﬂ
i=1 p g ,

and then determine the value of 8 which maximizes this expression. Taking the logarithm
of both sides and using calculus, one finds that the optimal choice of Bis 3 =T . O

13.4 Testing goodness-of-fit Suppose finally that we have determined a distribution
to represent a certain random variable, and we wish to see how well this distribution
models the data. For this purpose, the so-called x? test is often used. The stated null
hypothesis specifies that the random variable follows the specified distribution. To form
the test, one divides the range of the n data values into k subintervals. Let n; denote the
number of data values in the i-th interval. Corresponding to the distribution specified in
the null hypothesis, let p; be the theoretical fraction of observations that belong to the i-th
interval. Then the test statistic is given by

g Zk:(ni — np;)? .

i=1 np;

A large value of this statistic would be evidence for rejection of the null hypothesis since,
under the null hypothesis, n; and np; should be close to each other.

In forming this test of hypothesis, there are two cases to consider. First, suppose the
distribution specified in the null hypothesis is determined independently of the data. For
example, we may have data which is assumed to be uniform on the interval [0, 1], and we
want to test whether there is evidence to reject this hypothesis. For cases such as this, it
has been shown that for large sample sizes n, the distribution of the test statistic S under
the null hypothesis is approximately x> with k — 1 degrees of freedom. Thus, using a
level of significance a, we would reject the null hypothesis if S > xi_lya , Where x%_l’a
is the critical value of the x? distribution with k — 1 degrees of freedom. Recall that by
definition, a random variable which follows the x? distribution with k — 1 degrees of
freedom will exceed x}_, , With probability a.

The second case to consider is that in which the distribution in the null hypothesis
depends on the data. For example, the parameters of the distribution might have been
computed from the data using, say, the method of maximum likelihood. Under these
circumstances, it is known that for large sample sizes, the distribution of the test statistic
S under the null hypothesis is approximately x? with k — 1 — m degrees of freedom,
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where m is the number of parameters which were estimated using the data. Thus, in this
case, we would reject the null hypothesis if S > xi_l_m, o

Another important test for goodness-of-fit is the Kolmogorov-Smirnov test. Suppose
we have obtained a random sample of values z1,Z2," ") Tn of the random variable X.
Assume the data is written in increasing order. Suppose a cd f F(z) is given (assumed to
not depend on the data), and we wish to test whether the distribution of this random
variable follows this cdf . The test begins by forming the empirical cdf of X, which is
defined by

F.(z) = % [ number of z; values which are < z] .

Thus, F,(z) = i/n for ; < ¢ < ziy1, While F.(z)=0forz <z and Fy,(z) =1 for

z > T, . Define

Dn:sgp an(a’)-F(wH .

Note that D,, is a measure of how close F, is to F'. The computation of Dn, is made easier
by noting that because F,(z) has the constant value i/n on the interval [z;, Ti+1) , and

because F' is monotonic, we can write

(13.4.1) D,, = maz Dn(i) ,
1

where
i—1
n

Do) = maa { |Fa) — =21, [F@) - =1} -

Now, to test the null hypothesis that X follows the distribution F', we reject at the level of
significance o if D, > dp1-o Where dpi-a is @ critical value determined so that the
probability of rejection is o when the null hypothesis is true. These d-values have been
tabulated. What is remarkable about them is that they do not depend on the distribution
from which the data was drawn.

The foregoing test of hypothesis assumes that the distribution in the null hypothesis
does not depend on the observed data values of the random variable X. It is also possible
to use the Kolmogorov-Smirnov test for certain cases in which the cd f F depends on the
data. Critical points have been determined for the normal distribution, the exponential
and Weibull distributions, for example. A detailed discussion of the Kolmogorov-
Smimnov test can be found in the text by Law and Kelton, Simulation Modeling and
Analysis, 2™ edition, McGraw-Hill, 1991.
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Exercises

13.1 Find the mean of the triangular density over the interval [a, b] with mode m.

13.2 Find MM E and the M LE for the parameter {3 in the density f(z) = Kze™/# for
z > 0.

13.3 Test the following data for uniformity over the integers from 1 to 5.
Data: 343221113344533212243.

13.4 Verify formula (13.4.1) for the Kolmogorov-Smirnov test.

13.5 Test the following data for uniformity on the interval [0, 1].

358 997 205 587 254 563 984
408 258 429 801 838 934 356
543 817 923 248 710 410 197

Use the x? goodness-of-fit test.
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Chapter 14

Random Number Generation

14.1 Introduction This chapter provides a brief introduction to methods for
generating random samples from specified probability distributions. Two general
methods are presented, along with some special techniques for the normal distribution.

142 Generation of uniformily distributed random numbers The ability to
generate random samples from the uniform distribution on (0, 1) is the cornerstone of all
methods for generating random samplés from specified distributions. Insight into the need
for this ability can be seen from the following result. Suppose F' is an arbitrary cdf and
U is a uniformily distributed random variable on (0, 1). Assume F has an inverse which
is defined on (0,1). Denoted the inverse by F'~! and set X = F~Y(U). Then X is a
random variable with cdf F. Indeed,

P(X<z)=P (F—I(U) < :1:) =P (U < F(a:)) = F(z) .

Thus, to generate a random sample from X, it suffices to generate a random sample from
the uniform distribution of U, say uy, ug, -, Un, and then the random sample from X is
F1(uy), F~Y(ug),++, F~!(uy). This technique is well defined in general, but to be
practical, the inverse cd f needs to be easily obtained.

Example 14.2.1 The exponential with mean § has cdf F(z)=1- e~%/F. The
inverse is F~1(z) = —fin(l—z). Thus, if U is uniform (0,1), then X =
—pin(1 —U) follows the exponential distribution with mean 8. Since 1 - U is also
uniform (0, 1), we usually take X = —gln(U), to save arithmetic. a

Another example in which the inverse transform is easily obtained is the Weibull
distribution for which the cdf is F(z) = 1 — e~*"/#, for z > 0, where v > 0, 8 > 0. For
many important distributions, such as the gamma, beta, and normal, the inverse cdf
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method is not easily implemented. Methods that apply to these distributions will be
introduced in later sections.

However, whether the method used is the inverse cd f method or any another, a key
ingredient is the generation of numbers that are uniformily distributed on (0, 1). For this
task, the technique commonly used today is based on a linear congruential iteration of the
form

Zis1 = (@Z; + c)mod(m) , for given integers a, ¢, and m,

and some initial integer value Zo, called the seed. The operation mod(m) means that the
number aZ; + ¢ is divided by m, and the remainder is set equal to Z;11. The Z; are thus
all integers and satisfy 0 < Z; < m — 1. The uniform random number stream on (0, 1),
uy, Ug, -+, is formed by setting u; = Z;/m. In considering the effectiveness of such a
method, there are two basic questions. One concerns the range of integers Z; that are
produced. This question seems to be well understood, and results are known that
characterize the iterations of full cycle (every integer between 0 and m — 1 is produced),
and those iterations that 'produce large sets of Z; values. The second question concerns
the uniformity and independence of the supposed random stream wui,ug,-"-- This
question is not as well understood as the former, but many results are known. For
example, there are estimates of the correlation between u; and ;4 in terms of the -/
constants a, ¢, and m.

143 The inverse cd f method in the discrete case Suppose X isa discrete random
variable with values z1, Zo, -+, and pdf P(X = z;) = p; fori =1, 2,+--. Let U denote a
uniform random variable on (0, 1). To generate a random observation of X using the cd f
method, note that the event

i-1 i

Ai: Z Pn <U S Z Dn
n=1 n=1

occurs with probability p;. Thus, the method is to generate a random value of U,

determine the index 4 for which the event A; occurs, and then select the value z; for X.

Example 14.3.1 Let X be a Bernoulli random variable with P(X =1) = p, and
P(X=0)=1-p. Then a random observation from X is obtained by generating a
random observation from the uniform (0, 1) distribution, say u, and then selecting the
value for 1 for X if u < p, and selecting 0 otherwise. O
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This inverse cdf method can applied in principle to any discrete distribution. In
special cases, particularly when the discrete variable has an infinite number of possible
values, it is helpful to seek simplifications.

Example 14.3.2 Consider the geometric distribution : P(X =14) = p(1 - p) L,
for i = 1,2,---. In the inequalities defining the event A;, the sums in this case can be
written in closed form. Setting 8 = 1/In(1 — p), it turns out that the event A; occurs for
i =1+ [BIn(1 — U)), where [z] is the largest integer less than or equal to z. Thus, we
conclude that the random variable 1 + [ln(U)] follows the geometric distribution with
probability p of success on a trial, where U is uniform (0,1). Note that 1 — U has been
replaced by U to save arithmetic.

14.4 The rejection method One of the more intriguing methods for generating
random samples is the so-called rejection method of J. Von Neumann (Various
techniques used in connection with random digits, U.S. National Bureau of Standards
Applied Mathematics Series, No. 12, pages 36-38, 1951). Suppose f is a density function
from which we wish to generate random observations, and suppose g is another density
for which we have a method to generate random samples. Assume there is a constant c
such that f(z) < cg(z) for all z. This density g is sometimes called a majorizing density
for f. The method proceeds as follows.

Step 1 Generate a random observation, say u, from the uniform (0, 1) distribution,
and independently generate a random observation, say y, from the density g.

Step 2 If u < f(y)/cg(y), then take y as the observation from the density f(z).
Otherwise, return to Step 1 and continue.

The proof that this method works is instructive, and helps estimate the number of times
these steps will be repeated until an observation is accepted. Let X denote the random
variable whose values are generated by this method. We need to show that density of X is
f. Let Y be a random variable whose density is g. For a uniform (0, 1) random variable
U that is independent of Y, we have

P(X <z)=P(Y <z|U < f(Y)/cq(Y)) = }DP(Y <z,U< f(V)/eq(Y)) ,
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where p= P(U < f(Y)/cg(Y)). Notice that p is the probability that the method o
terminates on a given trial, so this number is of interest to us. Conditioning on Y, we get
1 o0
Px<a) =1 [P <o, U< )/eqV) 1Y = )o(e)dy
—00
1 T
=1 [ P < f)/eats) st dy
PJ-
L[ st stdn= o [ 1@dy=oF@)
= - = — = — x
2 ) gygyypc_ooyypc )
where F is the cdf corresponding to the density f. Now, allowing £ — oo, we see that
pc = 1. Thus, P(X < z) = F(z), and so it follows that X has the density f, which
completes the proof.
This argument shows that ¢ = 1/p, and recalling that for the geometric distribution,
the expected number of trials until the first success is 1/p, we see that the constant ¢ is
the average number of times the steps will be repeated until a value is accepted. Thus, it
is best to take c as small as possible.
Example 14.4.1 Consider the beta distribution -/
1
f(z) = 2 1—-z)f1, for0<z<1.
@=Bapn® 77

where a > 1 and 8 > 1. The rejection method can be implemented in this case by taking
g to be the uniform density on (0, 1). The constant ¢ is then the maximum of f on (0,1).
This maximum can be computed using calculus.

Example 14.4.2 Consider the gamma(c, 1) distribution

f(z) = F(la—) *le™®, forz >0

where 0 < a < 1. The rejection method can be implemented in this case with
g(z) = Kh(z), where h(z) equals ! for 0 < z < 1, and equals e~ for z > 1. The
constant K is ae/(a + €), so that g is a density. Sampling from g can be done with the
inverse cdf method. Because 2 le=® < h(z) for z > 0, with equality at z = 1, it
follows that the best constant c in the rejection method is 1/ KT () . For example, when
a=1/2, c=134. O
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If X is a random variable with gamma(c, 1) distribution as in Example 9.4.2, then
BX has the gamma(a,/) density. Thus, we can generate observations from the
gamma(a, 3) distribution when 0 <a <1 and @ > 0. Finally, recall that a sum
X; + Xo + -+ + Xn of independent random variables, where X; is gamma(cy, B), is
itself gamma(a, ) with @ = a3 + az + -+ + Q. Thus, for the gamma(c, 3) distribution
when a > 1, we can write a =n + ¢, where n is an integer and 0 < g < 1. This
distribution can then be simulated with a sum of n exponential variables with mean f3,
and a gamma(q, () variable.

14.5 The standard normal distribution There are a number of methods available
for this case. One is based on the result that if a random variable X has density

f(z) = T/zz—;e"z/z , forz>0,

then the variable Z defined by Z = X with probability 1/2, and Z = —X with
probability 1/2, follows the standard normal distribution. Random observations from the
density f can be generated with the rejection method, using the majorizing density
g(z) = e~*. The constant c turns out to be V/2e/m~ 1.32.

Another approach is based on the central limit theorem. Suppose Uj, Uy, ---, are
independent uniform (0,1) random variables. Set X=U+Uy+---+U,. Then
E(X) = n/2 and var(X) = n/12. For large n, the random variable

Z = —X—_M is approximately standard normal .

V/n/12
A common choice is n = 12, as then Z is simply X — 6.

The last method we mention was probably motivated by studies of the bivariate
normal distribution. Suppose X and Y are independent standard normal variables. Let
(R, ®) denote the polar coordinates of the point with cartesian coordinates (X,Y’). Set
D = R2. The transformation relating values (z,y) of (X,Y) and values (d, ¢) of (D, @)
is specified by z = d'/?cos¢ and y = d'/2sin¢. Forming the Jacobian we get

g% g% _ % —\/Esinab
& % %’% \/Ecosqﬁ

)

N | =

ad 9



CHAPTER 2. HANDOUTS GIVEN DURING THE COURSE 120

14.6 Unit 4: Statistical Methods in Simulation Modeling

and so the joint density of (D, @) is found to be

1 1 1 1
d = .—:—_d/2=__._ —d/Z
fpa(d,¢) = fxy(z,v) 5= n ¢ 5r 2%

where d > 0 and 0 < ¢ < 2. It follows that D and @ are independent, and that @ is
uniform on [0, 27), while D follows the exponential distribution with mean 2. These
results tell us that if U; and U, are independent uniform (0, 1) variables, then the random
variables Z; and Z; defined by

7, = (=2InU;)Y?cos(2nly), and Zp = (- 2, )2 sin(2nUs) |

are independent and each follow the standard normal distribution.

Exercises

14.1 Develop the inverse cdf method for generating random observations from the
Weibull distribution.

14.2 Verify the results in Example 14.3.2.

14.3 Use the result of Example 14.3.1 to determine a method for generating random
observations from the binomial distribution.

14.4 Verify the results in Example 14.4.2.

14.5 Use the rejection method to develop an algorithm for generating random
observations from the beta distribution 60z2(1 — z)® on (0,1). Use the majorizing
density g(z) = 1. What is the expected number of trials until acceptance of a generated
value?

14.6 Determine the inverse cdf method for generating random observations from the
triangular distribution on (1,4) with mode at 3.

14.7 Suppose the random variable X has density f(z)= (2/v/2m) e =2, z>0.
Define the random variable Y by Y = X with probability 1 /2,and Y = —X otherwise.
Show that Y follows the standard normal distribution.

14.8 Let U, and U, be independent uniform (0, 1) random variables. Set X =2U; — 1
and Y = 2U, — 1. Show that the distribution of (X,Y) is uniform on the square of side
9 and center at the origin. Show that the distribution of (X,Y’), conditioned on the
event X2 + Y2 < 1, is uniform on the unit circle with center at the origin. Explain how
this result could be used to generate random points in the unit circle.
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14.9 Let (X,Y) be uniformily distributed on the unit circle with center at the origin. Let
R > 0 be defined by R? = X? + Y2, and let (R, ®), where 0 < & < 2, denote the
polar coordinates the point (X,Y’). Show that R? and ® are independent, that R? is
uniformily distributed on (0, 1), and that @ is uniformily distributed on [0, 2).

14.10 For a piecewise continuous function f (z) on [0, 1], the integral

1 n
. 1
I= /0 f(z)dz canbe estimated by - E fus)

i=1

where u,ug, -, Un are N independent random numbers generated from the uniform
(0,1) distribution. This method is an example of Monte Carlo integration. Show that
the expected value of the estimates equals the integral, and that with probability about
95%, the error of estimation is at most 20 / \/ﬁ , Where

o= /Ol[f(:z)]2 dz — I*.

By the way, this method is not very efficient in one dimension, but its performance
becomes increasingly better as the dimension of the integral goes up.
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Analysis of Simulation Model Outputs

15.1 Introduction There are basically two types of simulation models : terminating
and nonterminating. A terminating simulation model is one in which either (1) there is
a specified time at which the simulated activities end, in which case we say the simulation
is time-controlled, or (2) there is some event that causes the simulation to end, in which
case we say the simulation is event-controlled. For example, a simulation model of a
business which is open only during specified hours each day, and for which the activities
can be considered independent from day to day, would be a time-controlled simulation.
On the other hand, consider a simulation model of a queueing system with a waiting room
of limited capacity. Suppose it is desired to estimate the first time at which the room
becomes full. The simulation would end when the waiting room becomes full, and thus
the model is a terminating simulation which is event-controlled. A nonterminating
simulation model is one that has no natural end to the activities being simulated. For
example, a simulation model of a maintance facility for military weapons, or a simulation
model of an emergency medical service, would be examples of nonterminating simulation
models. For these types of simulation, modeling is often done to determine the behavior
of the system under steady state conditions. Sometimes, however, such systems do not
have a steady state, in which case it is necessary to specify a way to terminate the

simulation.

15.2 Statistical methods for terminating simulation models The main approach for
these models is to simply make a number of independent runs of the simulation, and thus
obtain a random sample of observations for each measure of performance. One can then
apply standard statistical methods to estimate means and variances. Specifically, suppose
we obtain n independent observations Y;,Y5, -+, Y;, of a certain measure of performance.
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Then a 100(1 — &)% confidence interval for the mean is
Y (n) £+ c(n,0) Sn
) \/ﬁ 1)

where

1
Y (n)= EZY.,, and sz—n——z

Typically, the validity of this confidence interval is based on the central limit theorem, in
which case the coefficient c¢(n,a) would be z,/s, the critical point for the normal
distribution. However, if we find that the data is normal or nearly so, then for c(n, o) we
could use t,_1 /2, the critical point for the ¢-distribution with n — 1 degrees of freedom.

One concern is the choice of sample size n. A common idea is to make several initial
runs of the simulation model, and then use these to obtain a rough estimate the sample
variance. Denoting this estimate by S, we then choose the sample size n so that

na)\/_<ﬂ,

where £ is either a prescribed absolute error, or an error that is expressed relative to the \wj
magnitude of the mean. In the latter case, one does need to have some idea of the
magnitude of the mean, which is the quantity being measured in the first place.

15.3 Statistical methods for nonterminating simulation models Consider a single
run of the model which yields observations of random variables Y7, Y3, - -, that represent
a certain measure of system performance. For example, the measure of performance
might be customer waiting time, where Y; is the waiting time of the i-th customer. To
estimate the average of the performance measure, one can simply use the sample mean of
the Y; . However, to estimate the error in the sample mean, we must keep in mind that the
Y; are typically correlated, as they are in the example of waiting times. For such cases, we
can not use the formula for sample variance to estimate variance. One way to deal with
this difficulty is provided by the method of batch means.

We shall assume the process {Y;} is covariance stationary which means there are
constants p and o such that E(Y;) = p and Var(Y;) = o? for each i, and cov(Y;, Yivs)
depends only on j. For random variables X and Y, the covariance is defined by

cov(X,Y) = E[(X — X) (Y -Y)] .
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The covariance is important in the measurement of correlation between random variables.
The assumption of covariance stationarity implies that the correlation between Y; and
Y;+; depends only on the amount of time between the observations, but not on how long
the simulation has been running. In applications, the covariance between Y; and Y;,; is
expected to diminish substantially as j increases.

The method of batch means divides the observations into batches of length [, say
(Y1, Ys, - Yi}s {Yis1,Yisa,Ya}, {Yasr,+Yai}, and so on. Suppose that we
have n batches, giving us a total of m = nl observations. For each batch we determine
the sample mean

X)=73%

where the sum for this k** batch extends over the range of indices kI — I + 1 to kl. The
overall mean for a set of n batches is then

We can now argue that if [ is large enough, then the random variables
{Xx(l) | k=1,2,---,n} are nearly independent. We can also argue, by appealing to the
central limit theorem, that for { large enough, and under certain assumptions concerning
the correlations between the Y;, each batch mean X (1) is approximately normal. Finally,
because of the covariance stationarity, we have E(Xk(l)) = p for each k, and also
Var(Xy(1)) does not depend on k (although it does depend on l). Thus, it can be argued
that the random variables X;(1), X2(l),- -, Xn(l) are nearly independent, identically
distributed normal random variables. It follows that a 100(1 — )% confidence interval
for the mean p is

n
X (m) £ tygaz o2 where 82,= —— 3 (Xu() — X (m) 2.
Vn n—1 3
To implement this scheme, it is generally necessary to run the simulation for an initial
warmup period so that during the remainder of the simulation run, the assumption of
covariance stationarity will be reasonable. It is important that [ be chosen large enough so
that the batch means will be independent. Without this independence, the validity of the
confidence interval is in doubt. Also, the variance estimator S,; will be biased, and will
likely under estimate the true variance. The normality of the batch means is not so
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15.4 Unit 4: Statistical Methods in Simulation Modeling

critical, because the central limit can be applied when the sample size n is large enough, :
often n > 30 or 40 is sufficient. N/

As independence of the batch means is the most critical part of this method, a
statistical test could be included to check for this condition. One convenient test is the
following. Assume that a sequence of n observations is given. For example, consider
5,8, 9,2,—1,—4, 0, and 3. Scanning from left to right, we determine for each successive
pair of numbers, whether the change is an increase, in which case we recorda +,o0ra
decrease, in which case we record a —. For the sequence at hand, we get
+ 4+ — — — + +. We next count the number of runs in the sequence of +'s and
—'s. In this example, there are 3 runs, the initial + + is the first run, followed by
— — —, and finally + + at the end. In general it can be shown that for a random
sequence of n numbers, the number R of runs satisfies

2n—1

pr=E(R)=——, and a§=var(R)=16—“_—29

90 ’

and for large n, the statistic W = (R — pg)/0r is approximately standard normal. Using
this result, we can test for evidence of non-randomness in a sequence by checking
whether value of W lies in the anticipated range of, say, —2to 2, as would be expected
under the null hypothesis of randomness.

Exercises

15.1 Suppose X1, Xa, -+ is a covariance stationary process with mean and variance 02,
and let p, denote the correlation of X; and X;,,. Let X, denote the mean of
X1, X2, -+, Xn . Show that

_ 0_2 n—1
var(Xn) = — (1 +2)  (1-v/n) p,,) :

v=1

Hence argue that in the method of batch means, the variance var(Xj(l)) does not
depend on k.

15.2 Suppose Xi, X3,---isa covariance stationary process with mean y and variance 02,
and let p, denote the correlation of X; and X, . Denote by Sy the sample variance of

X1, X3, -+ Xn . Show that

n—1
E(Sy) = o (1 ~ 2> a-v/n) pu) .

v=1
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Chapter 15: Analysis of Simulation Model Outputs  15.5

Hence argue that for positively correlated processes, the sample variance will tend to
underestimate the actual variance o2. Thus explain why the sample variance Sy in the

method of batch means may tend to underestimate the true variance when the batch
means are not independent.

15.3 Apply the runs up and down test to the following data : 22, 14, 24, 19, 16, 21, 23,
18, 20, 22, 17, 15, 21, 12, 11, 14, 25, 23, 22, 19, 16, 23, 25, 20, 21. Is there any
evidence of nonrandomness at the 95% level of significance?
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SPRING SEMESTER 2008

i

January 17 Thursday Semester begins

January 19 Saturday First day of classes

January 21 Monday Martin Luther King, Jr. Day - CAMPUS
CLOSED

February 12 Tuesday Lincoln’s Birthday - Campus open

February 18 Monday Presidents’ Day - CAMPUS CLOSED

March 31-April 6 Monday-Sunday Spring recess - No classes; Campus

open, EXCEPT on Monday, March 31
due to Cesar Chavez Day

March 31 Monday Cesar Chavez Day - CAMPUS CLOSED
April 7 Monday Classes resume

May 9 Friday Last day of classes

May 10-16 Saturday-Friday Semester examinations

May 17-18 Saturday-Sunday Commencement Exercises

May 28 Friday Semester ends; Grade reports due
May 26 Monday Memorial Day -- CAMPUS CLOSED

* This calendar is subject to change without notice.

am Copyco

—Pnint & Bindery
WWW.eCOPYCO.COM
Back to School Rush Hours 2436 E CHAPMAN AVE FULLERTON, CA 92831
(JAN.22 TO FEB.2)
Mon.—Thurs. 9 AM—9 PM Phone: 714.680.9800
Fri.—Sat 9 AM—6 PM Fax:714.680.9878 THANK YOU
SUNDAYS ARE CLOSED Email: copyco@yahoo.com
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2.2 Monday 1/22/2008 notes

/‘/z‘/M/‘”'f //22/2¢u')7.

Math 504: Simulation Modelling and Analysis

Text The course is based on notes written by the instructor. However, M4,
many of the course topics are covered in the text entitled Introduction 52-?2?
to Probability Models, by S. Ross and published by Academic Press. E b,

This text is an excellent reference in applied probability.

Instructor W. B. Gearhart

Office MH 182F

Phone 714-278-3184

Email wgearhart@fullerton.edu

Office Hours MW 4-5 pm, MWThF 2-3 pm. If you wish to see me any
other time, just let me know, and we will arrange a meeting.

Course Description The course concerns the development and analysis
of models of stochastic systems. There are three phases to the course.
The first provides an introduction to the theory of stochastic processes.
The second concerns modelling discrete event systems using simulation.
The software Extend will be used to provide an introduction to the
structure and use of a simulation environment. The third and last
phase is devoted to further topics in stochastic modelling, and may
include statistical aspects of simulation modelling, Brownian motion,

signal processing, and Kalman filtering.

v T
xams  €4¢7] 5= toreef o Dac
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Grading There will be two exams, scheduled approximately every five to
six weeks. Also, there will be a comprehensive final exam. Homework
will be assigned and graded. The course grade will be based on the
weighted average of the homework (5%), the average of the two exams
(60%), and the final exam (35%). In cases when a student’s calculated
percentage is borderline, the instructor may raise the grade based on
class participation and attendance, or any other evidence of a strong
effort to do the course work.

Grade Scale A: 90-100 B: 80-89 C: 70-79 D: 60-69 F: 0-59

Attendance Class attendance is required. Please arrive on time. If you
happen to miss a class, it is your responsibility to obtain from your
classmates any missed lecture notes and assignments. However, see the
instructor concerning class handouts.

Class Participation In addition to attending class, you are expected to ac-
tively participate in your own learning. In particular, you should come
to class prepared, having studied the assigned readings and problems,
and be ready to ask questions and participate in the class discussion.

Homework Homework due dates will be specified well in advance. Late
papers will not be accepted.

Exam Make-up Policy No make-up exams will be given, unless you have
a medical emergency or death in the family. These emergencies require
valid documentation, and the instructor must be notified within 24
hours of the exam. The grade for a missed exam is zero.
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Academic Dishonesty Academic dishonesty is obtaining or attempting to

obtain credit for work by the use of any dishonest, deceptive, fraudu-
lent, or unauthorized means. Academic dishonesty also includes helping
someone commit an act of academic dishonesty. Examples of academic
dishonesty include, but are not limited to:

. Unacceptable examination behavior - communicating with fellow stu-

dents, copying material from another student’s exam or allowing an-
other student to copy from an exam, possessing or using unauthorized
materials, or any behavior that defeats the intent of an exam.

Plagiarism - taking the work of another and offering it as one’s own
without giving credit to that source, whether that material is para-
phrased or copied in verbatim or near-verbatim form.

Unauthorized collaboration on a project, homework or other assign-
ment where an instructor expressly forbids such collaboration.

Documentary falsification including forgery, altering of campus docu-
ments or records, tampering with grading procedures, fabricating lab
assignments, or altering medical excuses.

Students who violate university standards of academic honesty are subject to

disciplinary sanctions, including failure in the course, and suspension from

the university. Since dishonesty in any form harms the individual, other

students, and the university, policies on academic dishonesty are strictly

enforced.

Emergency Information In the event of an emergency such as an earth-

quake or fire:

. Take all your personal belongings and leave the classroom (or lab). Use

the stairways located at the east, west, or center of the building.

Do not use the elevator. They may not be working once the alarm
sounds.
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3. Go to the lawn area towards Nutwood Avenue. Stay with class mem-
bers for further instruction.

4. For additional information on exits, fire alarms and telephones, Build-
ing Evacuation Maps are located near each elevator.

5. Anyone who may have difficulty evacuating the building, please see the
instructor.

Comments

1. Retain this course description and refer to it as needed during the
semester.

2. All personal electronic devices, in particular cell phones, must be turned
off during class.

3. Keep in mind that grades are not given, they are earned.

4. You are responsible for managing your outside responsibilities (work,
family, and social) in order to allow sufficient time to meet the course
requirements.

A problem in conditional probability (the first simulation HW, confidence interval, histogram
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A Problem in Conditional Probability

A number is chosen at random from the interval [0,1]. This value is placed in a
box, and twice this value is placed in a second box. One of these boxes is selected at
random and opened to reveal the number inside. Given this observed value, what is the

probability that this number is the smaller of the two.

1. A Solution Let the random variable X denote the observed number, and let S
denote the event that the selected box contains the smaller number. We seek P(S|X = z)

for 0 < z < 2. The quantity P(S|X = x) is undefined for other values of z. We will apply

Bayes Theorem which gives us UL dJ -1/7,
AT A
P(SIX —a) — IEESP(S)

fx(2)

where fy(z) is the density function of the random variable X, and fx(z|S) is the condi-
tional density of X given the event S. If 1 < z < 2, then evidently we have the larger of
the two numbers, and so P(S|X = z) =0 when 1 < & < 2. Thus, we need consider only
the case 0 < z < 1. Since a box is selected at random, P(S) = 1/2. Next, the conditional
density of X given the event S is just the uniform density on [0,1]. Thus, fx(z|S) =1

for 0 <z <1, and fx(z]S) = 0 otherwise. Finally, to determine the density function of

the random variable X, we use L,[c;/\ [ vlo2] 1 Lo ey e
B N TN fmﬁ,{: 2 Laad
fx (@) = fx (@] S)P(S) + fx(|S)P(S5) . Uled *#7 — vle2]

The conditional density of X given the event S, is the uniform density on [0,2]. Thus,
fx(@|S) =1/2 for 0 <z <2, and fx(z|S) = 0 otherwise. Hence, for 0 < z < 1,

1 11 3
+ =

Ix(@) = fx(@]S)P(S) + fx(x|S)P(S) =1- 3°5-1°
while for 1 < z < 2,

11 1
FAEIE

and otherwise, fx(z) = 0. Returning now to the formula for P(S|X = z) we have for

Fx(@) = Fx(1S)P(S) + Fx(al8)P(3) =0+ 5 +

<< 1,

P(SIX =) = (1)3(/112) " ; .
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&

This result shows that when we select a box at random, and observe a value between 0

and 1, there is a 2/3 chance that the observed value is the smaller of the two.

. TFr~ ol
Exercise S s

,JZ 1. Suppose that when we select a box, and observe the value, we have an opportunity

\< 'V" f%’p//,/ to switch to the other box. The result above suggests that if we observe a value

between 0 and 1, then we should switch, and otherwise, hold the value we have.

Let the random variable Y denote the reward using such a strategy. Write a

simulation program (in MATLAB, say) to estimate the expected value of Y. Use a

—

95% confidence interval, and determine the sample size so that the relative accuracy
_SPatolliceniog M es vas

_of your estimate is about one percent. In your report, explain how you determined

your sample size. Also, compare theory and practise; that is, did your confidence

t‘“
interval include the true leue s enymle S 1 ;CL
,,,,, e é // x —-(2-)‘&-:1

\{ —;-< " iﬂc\ls_,Tl (/5_/:/ < neeel EKW

E R P £ heel

2. Expected Value of Y Suppose now the strategy is to switch if the observed {/«n

value is less than or equal to 1, and otherwise to hold. Let Y be the reward using this

strategy. Then
EY)=EY | X<1H)PX<1)+EY |X>1)P(X>1).

Consider first the events {X < 1} and {X > 1}. In order for the event {X > 1} to
occur, we must select the box with the larger value, which occurs with probability 1 /2, and
also the original value must be in the interval (1/2,1), which occurs with probability 1/2.
Since these two events are independent, it follows that P(X > 1) = (1/2)(1/2) = 1/4,
and further, P(X <1)=1-1/4=3/4.

Next consider the expected value of Y given that the event {X > 1} has occurred.
Then Y is the observed value X. Given that the event {X > 1} has occurred, the random

variable X is uniformly distributed over the interval (1,2). Hence, E(Y | X > 1) = 3/2.
i censiin At et ==
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Consider now the expected value of Y given that the event {X < 1} has occurred.
Here, we will switch to the value in the other box. However, we will either («) switch to
the larger value, which occurs with probability 2/3, or (3) switch to the smaller value,
which occurs with probability 1 — 2/3 = 1/3. In case (a), Y is the larger value, which
is uniformly distributed over the interval (0,2). Hence its expected value is 1, and so
E(Y|a) = 1. In case (f), Y is the smaller value, which now, because the event {X < 1}
has taken place, is uniformly distributed over the interval (0,1/2). Hence, the expected

value is 1/4, and so E(Y|f) = 1/4. Thus,
E(Y | X < 1) = E(Y|a)P(a) + E(Y|8)P(8) = 1- g +

We are ready finally to compute the expected value E(Y'). From the formula above,

we get

_E(Y)=E(Y|X <1)P(X <1)+EY|X >1)P(X >1) = % .

Exercise

\ 1. Find the density function of the random variable Y.

\

\ brade o DU %(:s} o('y(v/s) P(s) -ff\f(d}f) P(3)
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2.3 Monday 1/28/08 notes

Computing project guideline

F

Computing Projects

A. Format of reports Submit a typed or legibly written report, outlined
as follows,

a. Purpose and design of project Describe briefly the nature of
vour project and state precisely the questions you are investigating.
Explain how your experiments and analysis are designed to address
these questions. A few words about your computer program might be
appropriate, but typically the annotated listing in the appendix will be
enough.

b. Summary of numerical results Usually tables will do, with
possibly additional observations about the numerical methods. However,
be sure to present the summary of vour results so that the reader is able
to see clearly how they support your conclusions.

c. Discussion of numerical results Summarize in words your
main results and conclusions. When appropriate, and if possible, provide
explanations for your results,

d. Program listing In an appendix, provide a listing of your
computer program. Include annotations which help to show clearly the
content and logic of vour program.

B. Grading The grade will be based on the following.

a. Technical content and completeness Have a clearly defined
purpose, and design your experiments so that you can answer the
questions you intended to study. The analysis and discussion of the
results should be accurate and complete. Cover all topics requested in
the assignment. Your program should be correct.

b. Organization of the report Organize the report so the reader
can casily get a summary of the main results of your experiments, and
thus see how you came to your conclusions.

¢. Clarity and style of exposition Write to communicate. Get to
the point and say what you want to say. Use complete sentences and
acceptable grammar. BE CONCISE.

2.4 Monday 1/28/08 notes

Continuous approximation to random walks
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Hoand rn? Math 504
A/?and’/l;_ //25}/,;00?

Continuous Approximations To Random Walks

1. A Simple Random Walk Consider a particle that moves along the real line
in such a way that, at each point in time, it makes one step to the right with probability
p, and one step to the left with probability ¢ = 1 — p. Assume that distance is measured
in multiples of an amount Az, and that time is measured in multiples of At. Let X,
denote the position of the particle after n steps. We shall assume the particle starts at
the origin.

Let ﬂ'j”) = P(X,, = jAz). Thus, 77](”) is the probability that the particle is located

at jAz at time nAt. Conditioning on the next state, we can write
P(Xpy1=jAz) = P(Xpy1=jAzr| Xy =(j —1)Az)P(X, = (j — 1)Az)
+ P(Xpp1=jAz | X,=(j+1)Az)P(X, = (j+1)Az),
or equivalently
n;-"“) = p7r§'i)l < q7r§'f1 ;
for j = 0,£1,£2,---, and n = 0,1,---. Consider now a fixed position x and time ¢,
subject to © = jAz and t = nAt. Suppose that when Az and At are small, we have the
approximation
7r§") = f(z,t)Az,
where f is some function of z and ¢. Note that for each fixed ¢, the function f is a density
function that describes probabilistically the location of the particle. From the recurrence
formula above, we see that for such an approximation to hold, we need approximately

[, t+ At) Zpf(z — Az, t) + ¢f (z + Az, t).

Assuming f is twice continuously differentiable, the Taylor series expansion yields

: o L o2 = »li@s —ac2 + Liae?s
flz,t) + Ata +O0(AY)? = p [f(z,t) Axar + Q(Al) 922
) OF L 0P 33
+ q [f(z,t) + Axax + Q(Al) 92 +O(Az)?
which, upon simplification, gives us

of Az df 1(Ax)?28%f O(Ax)?
2= p—g) === =Ll At) .
o~ P 0% T3 ar a2 T Aar T O

In order to obtain a limiting equation, assume that for small Az and At, there are
constants 3 and D such that approximately,

Az

i 1(Az
(p— (1)5 =/f and T A
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Recalling that ¢ = 1 — p, these approximations tell us that in the limit we need

1 BAzx 1 BAzx
p—2<1+ QD) and q—Q(l— 2D>'

Going to the limit then, we arrive at the partial differential equation

of  of D’ f
ot = Par T Po

Using the Fourier transform, this equation can be solved to get

1 — u\ 2
f(z,t) = —=exp i <x ,u) , where p=pt, and o= vV2Dt. (1)
oV2m 2 o

The steps of this method are outlined in Problem 3 below.

There is an alternative way to reach this conclusion. After n steps, the particle will
have made a certain number of steps to the right, say R,,, and a certain number of steps
to the left, say L,. Then R,+L,, = n and X,, = (R,—L,)Az. Hence, X,, = (2R,, —n)Ax.
Note that R, is a binomial random variable with parameters n and p. Thus, the central
limit, theorem tells us that the distribution of R,, and hence of X, is approximately
normal. Further, the mean of position is

B(Ax)*
2D’

E(X,) = (2E(R,) — n)Az = (2(np) — n)Az =nAz(2p—1)=n

where we have used the formula for p above. Hence, the mean of position is

(nﬂAJj) A= (nAt)ﬂ(Am2 .

2D 2DAt

However, in the limit as n gets larger, we have t = nAt and (Az)?/At = 2D. Thus, the
mean of position is simply p = ft.

Next, continuing this line of reasoning, we argue that the variance of position is

Var(X,) = Var((2R, — n))Az) = Var(2R,Az) = 4(Az)*Var(R,) .

| BAx ’
2D ’

where we have used the formulas for p and ¢ above. Finally, going to the limit, and noting

But the variance of R, is npq. Hence, the variance of position is

. , 1 BAz\ 1 BAz _ (Ax)?
AATN2nma = A(AT)2n = ! — -~ = nAatv
4(Az) npq = 4(Azx) ng (1 + 5D ) 5 (1 5D ) At (nAt)

again that ¢t = nAt and 2D = (Ax)%/At, we conclude that the variance of position is
0? = 2Dt. Thus, in the limit, the distribution of position is approximately normal with

2
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mean p = [t and variance 0 = /2Dt. This result is the same as the one we obtained
earlier through use of the partial differential equation.

A stochastic process is a family of random variables X (¢), where X (¢) represents
the state of the process at time t. In our case, the state of the process is the position of
the particle along the real line. A process is said to have stationary increments if for
any t, the distribution of the increment X (s +¢) — X (s) depends only on ¢, the length
of the time interval. Further, if the increments are independent for any set of disjoint
intervals, the process is said to have independent increments.

Since the continuous process above, with transition distribution function (1), was
derived as the limit of a discrete process that has stationary and independent increments,
it is reasonable to expect that the limiting process would also have these two properties.
A continuous process with transition distribution function (1), is called an Einstein-
Wiener process. The parameter [ is called the drift coefficient, and the parameter D
is called the diffusion coefficient.

2. The Ornstein-Ehrenfest Model For a positive integer a, consider a random
walk in which, at each point in time, if the process is at position jAz, it moves one
step to the right with probability (a — j)/2a and one step to the left with probability
(a+ 7)/2a, when —a < j < a. If j = a then it moves to the left with probability 1, and
if 7 = —a it moves to the right with probability one.

Denote by 7rJ(~") the probability that the process is at point jAz at time nAt. Then,
by conditioning on the next state, we can write

me)) _6—J+1 @) at+j+1 (n
i = Mt T,
2a 2a

foreach j =1,2,---,and n =0, 1, - - -. Consider this process in the limit when the bound
a is large, and the Az and At are small. For a fixed position = and time ¢, subject to
x = jAx and t = nAt, suppose we have the approximation

7r](~") ~ f(z,t)Az,

where f is some function of z and ¢. From the recurrence formula above, we see that for

such an approximation to hold, we need approximately

=71
2a

at+j+1

flw,t+ At) = -

flz — Az, t) + f(z + Az, t) .
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Assuming f is twice continuously differentiable, the Taylor series expansion yields

g _ a=g=41 / Of Ozj
a+j+1 Bf L0 f
T[f( )+AI6 (A)az]—F()(A)
which, upon simplification, gives
1 i 292
af (2,1) + r df a+1(Ax) af+O(A.L) +O(AY) .

ot aAt aAt Ox a 2At O0z? At

In order to obtain a limiting equation, assume that for small Az and At, and large a, we
have approximately,

1 (Ax)?
aAt=c! and = = D,
2 At
for some constants ¢ and D. Going to the limit then, we arrive at the partial differential
equation
0 T
of =c— zf) +D—= o'f .
ot ox Ox?
This equation is not so easily solved as in the previous case. However, under the boundary
conditions
: of (z,t)
zf(z,t) =0, —0 as z — oo,
ox

and using the Fourier transform, the equation can be transformed into a first order,
variable coefficient hyperbolic equation. This hyperbolic equation can then be solved
using the method of characteristics. This method of solution is outlined in Problem 4
below.

Suppose the particle starts at a point xy. Thus, the initial density of position is a
dirac-delta function centered at the point xo. Then the solution is found to be

ot = e |5 (54) ]

o = ? (1 - e—QCt) .

¢t

where j = xge”“ and

A continuous process with stationary and independent increments, and having this tran-
sitional distribution function, is called an Ornstein-Ehrenfest process.
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Exercises

1. Derive the Einstein-Wiener process by noting that the position of the particle is
x = jAxz, where j = X + Xy +--- X, with t = nAt, and the X; are independent
and identically distributed random variables which have value +1 with probability
p, and value —1 with probability ¢ =1 — p. Take p = ¢ = 1/2.

2. (a) Use the formulation in the previous exercise to simulate the random walk for
p = q = 1/2, and a specified diffusion coefficient D. Restrict Az and At so that
D = (Az)?/2At. (b) Use the simulation model to test that in the limit as Az — 0
and At — 0, subject to D = (Ax)?/2At, the distribution of position, for fixed time
t and given D, is normal with mean 0 and variance o2 = 2Dt.

3. Solve the partial differential equation

0 0 0?

o _ g3l o7t

ot ox oz
for the Einstein-Wiener process. Use the Fourier transform, and the following steps.
(a) The Fourier transform of an absolutely integrable, and piecewise continuous

function g on (—oo, ), is defined by
Flol) = —= [ g(a)e d
= T T .
gy 5 _OO!/

Multiply the differential equation through by e~®* and integrate with respect to
x over the interval (—oo,00). Then use integration by parts twice to obtain the
equation

% = (~ify — Dy?) 6(y, 1) ,

where

i o0 :
y,t :—/ z,t)e"Ydx .
s 1) = 7= [ f@)
In doing the integrations by parts, assume that

flz,t) =0, %Z’t)—)O as * — £00.

(b) Solve the differential equation for ¢ to get
6(y, 1) = ¢y, 0) exp (—ifty — Dty®) .

Note that ¢(y,0) is the Fourier transform of f(z,0), the density of the location of
the particle at time ¢ = 0.

ot
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(¢) Now make use of the following two properties of the Fourier transform:

(1) For f(z)=e™*, F[f](y):%eﬂ/z//l’

and
2) For g(w)=fla+b), a#0, Floly) = e F{fl(u/a).
Thus conclude that
For g(z) =e @’ a0, Flg(y) = ! e(b/a)g=y? /40>

V2|

(d) Set b/a = — Bt and 1/4a* = Dt, and use the previous results to conclude that
(y,1) = 6(y,0) exp [(—=iBy — Dy?) t] = 6(y, 0)FIh(-,1)](y) ,

where

(%, %) = ﬁexp {—% (x;(—f:)(t)> l ; i) =p8t, o(t)=v2D¢t.

(e) Finally, the Fourier transform has the property that

F[f xg]= \/i?F[f]F[g] , where fxg(z)= /oo fw)g(z — u)du .

—00

Use this property to show that

1 o0
21 J-o0

In particular, if the particle starts that the origin, then we can view the initial

density of position, f(z,0), as a dirac delta function and thus deduce that in this

case

e, 8 = \/LQ_WJL(.I:J) ,

which is the expression (1) above.

@ Solve the partial differential equation

v

af  Ozf) in
5t oz +D8$2 ’

for the Ornstein-Ehrenfest process. Use the Fourier transform (see definition in
previous problem), and the following steps. (a) Multiply the differential equation

6
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through by e~ and integrate with respect to z over the interval (—oo, 00). Then
use integration by parts three times to obtain the equation

9 09,

where : N
By t) = o= /_ Sty vda

In doing the integrations by parts, assume that

and aféz’ Z)

xf(z,t) =0, —0, as * — £00.

(b) Introduce the integrating factor

D .
Hg)=exp | — 2)
(y) = exp <2cy
and show that u(y,t) = I(y)¢(y,t) satisfies the hyperbolic equation
ou ou

at+cy5§—0,

subject to the initial condition u(y,0) = ue(y) = I(y)¢(y,0) for —oo < y < 0.
Note that ¢(y,0) is the Fourier transform of f(z,0), the density of the location of
the particle at time ¢t = 0.

(¢) Use the method of characteristics to solve the previous hyperbolic equation and
conclude that

u(y,t) = ug (ye‘”t) , for —co<y<oo and t>0.

Then, using the definitions of u(y,t) and wug(y), deduce that

o(y,t) = exp (—%az(t)yz) o (ye_“,O) , where o?(t) = 124 (1 - P*M) .

C

(d) To simplify the analysis, assume that the particle starts at a point xy. Thus,
the initial density of position is a dirac-delta function centered at the point xq. It

follows that
e—iyx:g )

o(y,0) = \/%7

In this case, use the previous result to conclude that

1 1,y B
oy, t) = \/—9—71' exp <—§az(t)y2 - zyu(t)) , where pu(t) = zoe™".

-~
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(e) Set b/a = —pu(t) and 1/4a* = (1/2)0?(t), and use the result of part (c), Problem
3, to conclude that

o(y,t) = Flr(-,t)|(y) ,
where

o A} = 1 ) _l <.1:—;L(1‘))2
r{z,t) = ——O(t)mexp 5 70(0 5

Thus, f(x,t) = r(x,t), which is the solution given above for the Ornstein-Ehrenfest

model.
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2.5 Monday 2/25/08 notes

Problems to practice solving first order pde using the characteristics method.

i_ Method of Characteristics - Practice Problems

Use the method of characteristics to solve the following initial value problems for

t>0and —oo <z < 0.
1. u+4u, =0, and u(z,0) = e,
2. u+ (zt)uy =0, and u(z,0) = 2z.
3. us+ (zsint)u, = 0, and u(z,0) = 1/(1 + z?).
4. wu— (tr*)uy =0, and u(z,0) =1+ 2.

5. u; — uy = zu, and u(z,0) = 2z.

2.6 Monday notes

Craps game and inventory problem. Markov chain computing assignment.
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Cor—7
Math 504 Assignment %

% g vek T e

onad
Morch 2/2/%9

1. Consider the game of “craps™: Two die are tossed. The plaver wins
if a sum of 7 or 11 appears, and loses if a sum of 2.3, or 12 appears.
Otherwise, the sum on the first toss is designated the player’s point
score. The player then continues to toss the two die until a sum of 7
appears, in which case the player loses, or a sum equal to the point
score appears, in which case the player wins. Model this game as an
absorbing Markov chain. Determine the one-step transition matrix P,

2. Write a program to form the one-step transition matrix I for the in-
ventory problem in Example 4.3.2. For the demand, use a function of
the form

dz)=¢(x+1), for =0,1,2,---,5,
and
d(x) =6e(13—a)/8, for 2 =6,7,---,13.
Choose the constant ¢ so that the function d is a probability distribu-
tion. Inputs to your program are the values of s and 5. Output is the
one-step transition matrix P,

Experiment with each of these processes, and investigate what can be said
about the long-run behavior. In particular, consider the following questions.
(a) Do the powers P converge as n — oc? If s0, what can you say about
the limit matrix? (b)) Is there a limiting state probability distribution in 972
all eases? If so, does this limiting distribution depend on the initial state
probability distribution? (e) Assuming vour conclusions from parts (a) and
(b) are correct, show how the results of part (a) could be used to deduce the
conclusions of part (b).

In vour report, first summarize vour numerical results briefly and sue-
cinctly. Present these results in such a way that the reader can easily under-
stand the observations that von are drawing from vour experiments. Next
state your ohservations based on the numerical results, and indicate any

seneral conclusions that seem to be sngeested by the experiments.
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2.7 Monday 3/10/2008 notes

) ot - //)“"h loy 200y Math 504

/L/()l)c

Convergent Finite Markov Chains

1 Introduction

Consider a finite state Markov chain with one-step probability transition
matrix P and state probability distribution vector 7(® at time n > 0. Then

) =z p  p=0,1,--- .

A fundamental question is whether or not the process approaches a limit
in the long-run. In other words, given an arbitrary initial state probability
distribution 7, do the state probability distributions 7(* converge as n —
0o. Since

2™ = 7O pn

for each n > 0, and since 7(%) is arbitrary, this question is equivalent to
asking whether the powers of the transition matrix converge as n — oco.
A Markov chain with transition matrix P will be called convergent if P"
converges as n — 0o In this case, we shall also refer to the transition matrix
as being convergent.

2 Structure and Properties of Finite Markov
Chains

The study of Markov chains hinges on the notion of recurrent and transient
states. For a state 4, let T}; denote the time until the process first returns to
state 7, given that it starts in state 7. Then state 7 is said to be recurrent
if P(T;; < oo) = 1, and otherwise, if P(T;; < oco) < 1, state ¢ is said to
be transient. Thus, a state is transient if the process, having started in
that state and perhaps having returned to that state a number of times, will
eventually leave that state forever. It can be shown that if states ¢ and j are
transient then -
> pﬁ}” <00.

n=1
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This expression is the expected number of visits to state j, given that the
process starts in state 7. Thus, for transient states 7 and j, we have

p§§>—>0, as n — 00. (1)
One important consequence of this result is that not all states of a finite

chain can be transient.

The process moves among the states randomly, according to the transition
probabilities. Two states 7 and j are said to communicate if

pl(-;-l) >0, and p{™

Ji >07

for some n and m. In other words, two states communicate if it is possible
to travel from one state to the other and back again. If state n is recurrent,
and it communicates with state m, then state m must be recurrent also.

A set of states S is closed if p;; = 0 whenever i € S and j ¢ S. Note that
if the process enters a closed set, then it will never leave that set. A chain
is said to be irreducible if there is no proper closed subset. Otherwise, the
chain is called reducible. For a reducible chain, after possibly re-ordering
the states, the transition matrix can be written in the form

P 0
P=| . :
P, P
The matrix P, is the transition matrix for the sub-chain consisting of a closed
set of states.

It follows from these concepts that for an arbitrary finite Markov chain,
the probability transition matrix, again after possibly re-ordering the states,
can be written in the so-called canonical form:

D 0
SR @)
where the matrix D is block diagonal
D, 0 - 0
0 D, 0 O
= . . 3 3)
B e O B
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To see how this form comes about, start with a recurrent state, and find all
states that communicate with it. These states form an irreducible, closed
set. Let the matrix consisting of the one-step transition probabilities among
these states form the first block D;. Next, find a recurrent state (if any)
that is not in the set obtained previously, and determine all states that
communicate with it. This set of states forms another irreducible, closed
set. Let the matrix consisting of the one-step transition probabilities among
these states form the second block D,. Continue in this fashion until no
recurrent states are left. The remaining states are transient, and the matrix
consisting of the one-step transition probabilities among these states is the
matrix (). The matrix R in (2) consists of the one-step transition probabilities
from transient states to recurrent states. Finally, the matrix of zeros in (2)
appears in the upper righthand corner, since it is not possible to go from a
recurrent state to a transient state.

The canonical form reveals much about the behavior of the chain. If
the process starts in an irreducible class, it will stay there and ultimately
approach the limiting behavior of that class, if any. On the other hand, if
the process starts in a transient state, it will ultimately move into one of
the irreducible classes. In fact, as indicated by (1), Q™ — 0 as n — oo,
since the (i, j)-th entry of this matrix is the probability that the process is
in transient state j, after n steps, given that it started in a transient state
i. Further, entry (k,s) of the matrix Q™R is the probability that when the
process starts in transient state k, it will enter for the first time, one of the
irreducible sub-chains in n+ 1 steps, and will do so at state s. Summing over
n, it follows that entry (k, s) of the matrix

R+QR+Q°R+---=(I+Q+Q*+- )R,

is the probability that when the process starts in transient state k, it will
ultimately enter the recurrent classes for the first time at state s. Using the
Neumann expansion N = (I — Q) ' =1+ Q + Q*+--- , we can write this
matrix simply as NR.

Example Suppose the one-step transition matrix of a Markov chain is
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given by

[ 0.800 0.200 O 0 0
0.300 0.700 O 0 0
0 0 1.00 0 0
P = 0 0 0  0.400 0.600
0 0 0 0.200 0.800 0O 0
0.100 0.200 0.050 0.150 0.200 0.100 0.200
L 0.300 0.100 0.200 0.100 0.050 0.100 0.150 |

o O O O
o O o O

The states have been numbered so that the matrix is in canonical form. The
first recurrence class consists of states 1 and 2, the second recurrence class
consists of state 3 only, and is absorbing, while the third and last recurrence
class consists of states 4 and 5. States 6 and 7 are transient. The matrices
R and @ are

__ | 0.100 0.200 0.050 0.150 0.200] 0

Bi= 0.300 0.100 0.200 0.100 0.050

0.150 0.200
0.100 0.050

Thus

NR:(I_Q)_IR:[O.IQS 0.255 0.111 0.198 0.242]

0.376 0.148 0.248 0.141 0.087

Consider the first row of this matrix. The first entry shows that 19.5% of the
entities that start in state 6, will enter the recurrent classes for the first time
at state 1. Similarly, the second entry shows that 25.5% of the entities that
start in state 6, will enter the recurrent classes for the first time at state 2.
Thus, 19.5%+25.5% = 45% of the entities that start in state 6 will ultimately
enter the first recurrence class. These entities however, once having entered
this recurrent class, must then circulate among the states and ultimately
become distributed according to limiting behavior of the class. The third
entry in the first row shows that 11.1% of the entities that start in state 6
will enter the recurrent classes for the first time at state 3. Since this state
is absorbing, the limiting behavior is clear. The entities that enter this state
just stay there. A similar analysis can be done for entries 4 and 5 in this
row.

In general, we will be able to determine the limiting distributions of the
recurrent classes by finding the limit P™ as n — oo. In this case, the limit

4
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matrix is

( 0.600 0.400 0O 0 0 0 07
0.600 0.400 0O 0 0 00
0 0 1.00 0 0 00
W = 0 0 0 0250 0.750 0 O
0 0 0 0.250 0.750 0 O
0.270 0.180 0.110 0.110 0.330 0 O

L 0.314 0.210 0.248 0.057 0.171 0 O |

Consider the 6-th row of this matrix. The first two entries show that 27%
of the entities that start in state 6 ultimately go to state 1, and that 18%
ultimately go to state 2. Thus, 27% + 18% = 45% of the entities that start
in state 6 ultimately move to the first recurrence class. We saw this result
earlier using the matrix NR. From the 2 X 2 matrix in the upper left corner,
we see that in the long-run, 60% of the entities in the first recurrence class
will be in state 1, and 40% will be in state 2. In particular, the entities
that reach this recurrence class from state 6 are proportioned this way: the
fraction 0.270 is 60% of the total fraction 0.45, while the fraction 0.180 is
40% of the total fraction 0.45.

A similar analysis applies to the entities that go from state 6 to the third
recurrence class. Indeed, the fourth and fifth entries show that 11% of the
entities that start in state 6 ultimately go to state 4, and that 33% ultimately
go to state 5. Thus, 11% + 33% = 44% of the entities that start in state 6,
ultimately move to the third recurrence class. From the 2 x 2 matrix in the
middle of W, we see that in the long-run, 25% of the entities in the third
recurrence class will be in state 4, and 75% will be in state 5. In particular,
the entities that reach this recurrence class from state 6 are proportioned this
way: the fraction 0.11 is 25% of the total fraction 0.44, while the fraction
0.33 is 75% of the total fraction 0.44.

So far, we have accounted for 45% + 44% = 89% of the entities that start
in transient state 6. But entry (6,3) of W shows that the remaining 11% go
to state 3 and are absorbed. Thus, our accounting of the entities that start
in transient state 6 is complete. The same analysis can be used to account
for the entities that start in transient state 7.

Ut
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2.8 Monday 3/17/2008 notes
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Chapter 5: Some Solutions

5.7 Consider an irreducible Markov chain with a finite number of states
{0,1,2,---,m}. Let E denote the event that the process reaches state
m before it reaches state 0. Set Q; = P(E | Xy = ). Then Qo = 0 and
@ = 1. (a) Find a system of m — 1 linear equations that is satisfied
by Q1,Q2,++,Qm—1. (b) Show that the matrix in this linear system of
equations is nonsingular.

Solution (a) Conditioning on the next state gives us

m m—1
Qi=>_PE|Xi=jpij = Qjpij + Pim ,
j=0 J=1
forie I ={1,2,---,m—1}. Note that the Markov property was used to get
the second equation. (b) If the matrix in this linear system of equations is
singular, then there is a nonzero vector v € R™~! such that

m—1

vi =) Upij

Jj=1

for ¢+ € I. Normalize v so that each component is less than or equal to one,
and at least one component is equal to one. Set J = {¢ € I|v; = 1} and
S:{LEI]UZ<1}

Suppose first that S # (). Assume there is a nonzero p;, for some i € .J
and some r € S. It then follows that

m—1

L=v=) vpi +y vip < 3 py <1,
€7 j€s =i

which is impossible. Therefore, for any ¢ € J, and any r € S, we must have
pir = 0. But then, for each i € J,

L=vi=3 vpi =D pij -

JjeJ j€J
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This result tells us that once the process enters a state ¢« € J, it must travel
to another state in J. Thus, in the original chain, the set of states .J, which
is not empty, must be a closed set. However, this result is impossible, since
the original chain is irreducible. Therefore, S = ().

It now follows that J = {1,2,---,m — 1}. But then, for each i € J,
l=v;=) vpi; =) pij,
jed jed

since v; = 1 for each j € J. Thus, as before, the set J is seen to be a closed
set, which is a contradiction.
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2.9 Wed 3/19/2008 notes
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Chapter 6 Some Solutions

6.3 For an absorbing Markov chain, let V;; denote the number of visits
to transient state j before absorption, given that the process starts
in transient state i. Let B denote the matrix whose (i, 7)-th entry is
bij = E(V;;). (a) Show that B =N = (I —Q)~'. (b) Given that
the process starts in state 7, give a formula for the expected number of
steps until absorption.

Solution (a) Condition on the next state to get
BE(Vig) = > B(Vij| Xy = E)pu + Y E(Vij | X1 = k)pu
keA keT

where A denotes the set of absorbing states, and T denotes the set of transient
states. Let d;; be the Kronecker delta, which equals one when i = j, and
equals zero otherwise. Then, in the first sum, E(Vj; | X| = k) = d;;, since k is
an absorbing state. For the second sum, making use of the Markov property,
E(Vij| X1 = k) = 0;; + E(V4;), since here k is a transient state. Thus,

E(Vij) = 3 dipik + O [0i + E(Vag)lpir = 655+ Y pin E(Viy) -
keA keT keT

Therefore, for each pair of states i and j in T,
bz] - Z pikbkj = 61] .
keT
In matrix form, these equations are expressed as B — QB = I, where [ is

the identity matrix. Note that this result shows that I — @ is invertible, and
that B= (I — Q).

Here is another proof. Note first that

E(Vy)=E (Z In| Xo = t') :

n=0

.
where I, = 1 ¢f X, = j and I, = 0 otherwise. Thus,

E(Vy)=E (Z L | Xy = 1) =Y P =8+ 47,
n=1

n=0 n=0

1

dnoth=c
pfadé {711/7‘-

(1-®) «

,ﬁ/{,/%;‘éll .
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where ¢ is the (4, j)-th element of the matrix Q". Therefore, E(V;;) is the
(4, 7)-th element of the matrix

I+ Q@ =(1-Q".
n=1

(b) The sum of the elements in the i-th row of B is the expected value of
the random variable
Yi=> Vi,

jer
which is the number of visits to transient states before absorption, given that
the process started in transient state .

6.5 Consider a regular Markov chain, with state space I = {1,2,---,r}.
Denote by T;; the first entrance time into state j, given that the process
starts in state i. Set m;; = E(T};). (a) Show that

my; =1+ Zpilcmlcj :
k#j

(b) Let (wy,ws,---,w,) be the stationary probability state vector for
the process. Show that m;; = 1/w;, for each state j. (¢) Give a
heuristic argument to justify the result of part (b).

Solution (a) Conditioning on the next state yields

E(Tiy) = Y E(Ty| X1 = k)pix = E(Tij | X1 = j)pi + D E(Tyy | X1 = k)pax -
kel k#j
This equation then becomes
E(Tl]) =1- Pij + Z(l o E(Tkj))pik =1+ ZpikE(Tkj) .
k#j k#j

which is the result to be shown. (b) In the last equation above, for a fixed
J, multiply the ¢-th equation by w;, and sum over 7 to get

Z ‘U)iE(TL'j) = Z w; + Z Z wipilcE(Tk‘.’l') #
=1 =1

i=1 h#j
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We have that w = wP, and the sum of the components of w is one. Therefore,
interchanging the order of summation, we get

S wE(Ty;) =14 wpE(Ty) -
=1 k#j

Cancelling like terms on each side of this equation yields w;E(T};) = 1, as
required. (¢) Over a long number of time steps 7, the average number
of times the process is in state j is w,;T. But the average duration between
these times that the process is in state j is m,;. Hence, in the long-run,

(w;T)m;; = T. Thus, dividing by T, yields m;; = 1/wj.
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2.10 Wed 4/23/2008 notes
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Chapter 10: Solutions to Selected Problems

10.4 Consider a set of m machines that are in continuous operation, and
which fail independently of each other at an exponential rate A. Assume
there are s : 1 < s < m, repair persons that service the machines
independently and each at exponential rate p. Let X (t) dendte the
number of machines at time ¢ that are not operational; that is, they
are in the repair shop. Determine the arrival and departure rates for
the birth-and-death model.

Solution Suppose the state of the system is 7 and that s < i < m. Then
m — ¢ machines are in operation, and s repair persons are busy. Hence, for a
small time interval of length h, the probability p;;41(h) of an increase of one
in the system is
_/c Ta Ke
P

( ””’; ! ) (M + 0(A)(1 = M + o(R))™ =1 (1 — b + o(h))* +o(h) .
The first factors covers the event of one breakdown and no service comple-
tions, while the last o(h) term covers other less likely possibilities, such as
two breakdowns and one service completion, say. For the case 0 < i < s, the
same expression holds, except the last factor becomes (1 — jh+o(h))*, since
now 4 repair persons are busy. Thus, for 0 < i < m, we have

piiv1(h) = (m —i)Ah+o(h) as h— 0" .

Hence, the birth rates are \; = (m —1)A, for 0 < i < m. For i = m, evidently
A; = 0 since no arrivals are possible in this case.

For the departure rates, suppose again that the state of the system is i
and that s < ¢ < m. Then m — ¢ machines are in operation, and s repair
persons are busy. Hence, for a small time interval of length A, the probability
pii—1(h) of a decrease of one in the system is

( ' ) (h 4 0(h)) (1 = ph+ 0(h))*~ (1 = A+ o(h)™ ™ + o(h) .

e <b

a Al
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The first factors covers the event of no breakdowns and one service comple-
tion, while the last o(h) term covers other less likely possibilities, such as one
breakdown and two service completions, say. For the case 1 < i < s, the
probability p;;—i(h) becomes

< i ) (ph + o(h))(1 — ph+o(h))" (1 = Ah + o(h))™ " + o(h) .

since now ¢ repair persons are busy. Thus, asymptotically, p;;—1(h) = suh +
o(h), for s < i < m, while for 1 < i <'s, p;;—1(h) = iph + o(h). Hence, the
departure rates are p; = sp for s < ¢ < m, and p; = ip, for 1 <i < s.
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Chapter 10: The Kolmogorov Equations

The purpose of this note is to develop the forward Kolmogorov equations,
and also the backward Kolmogorov equations, for the case of a pure-jump,
continuous-time Markov chain.

For a stationary Markov chain, define the transition probability
pislt) = P(X(r +4) = | X(r) = i) .

Denote the state space by I. Then, considering the transition probability
pij(t + s), and partitioning over all intermediate states k& € I at time s, it
follows that
pii(t+5) = > pir(s)pr;(t) -
kel

These equations are the Chapman-Kolmogorov equations, which play a fun-
damental role throughout the analysis of Markov chains. From these equa-
tions, we can derive the forward Kolmogorov equations and the backward
Kolmogorov equations.

The Forward Kolmogorov Equations We have

])z](t + R) = Zl)zk(t)[)k](s) = Zp’lk‘(t)pkj (“) + pl_l(t)ij (5) .
kel k#j
Thus,
pig(t+5) = pig(8) = 3 P ()prg (5) + i (8) (P (s) — 1) -

=
Dividing both sides by s, and proceeding formally, we can take the limit as
s — 0%, to get

pi(t) = S pin(t)arj — vipis(t) -
k]

These equations are called the forward Kolmogorov equations.
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The Backward Kolmogorov Equations We have

pii(t + 5) szk( pk] me $)pi;j(t) + pii(s )pij(t) e
kel k#i

Thus,

pij(t + 8) — pij(t) =D pik(8)prj () =D pir(8)pas (t) + (pii(s) — V)py;(t) -
kel k#1

Dividing both sides by s, and proceeding formally, we can take the limit as
s — 07, to get
i;(t qupkj () = vipy(E) +
k#j
These equations are called the backward Kolmogorov equations.

Let P(t) be the matrix whose (i, j)-th entry is p;;(t). Denote the state
probability vector at time ¢t by z(t). Thus, z,(t) = P(X(t) = n), for n € I.
For any time ¢ > 0, we then have z(t) = z(0)P(t). Next, define @ to be the
matrix whose (z, j)-th entry is ¢;;, for i # j, and ¢;; = —v;. Then the forward
Kolmogorov equations can be written

P'(t)=P#t)Q, for t>0,
while the backward Kolmogorov equations can be written
P'(t)=QP(t), for t>0.

In developing mathematical models using continuous time Markov chains,
the elements of the matrix @ are typically determined first. See for instance,
Example 10.3.1 in the text, and also Problems 10.4, 10.5, and 10.6. Then,
in theory at least, the differential equations above can be solved to find the
transition matrix P(¢) and the state probability vector z(t) defined above.

Example 1 The Poisson process: The Poisson process, with rate con-
stant A > 0, is a pure birth process with state space I = {0,1,2,---}, for
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which g;;+1 = A, v; = A, and ¢; j = 0 otherwise. Thus, the matrix () has the
form

-2 A 0

The entries in the transition matrix P(¢) can be found by induction. However,
we will just find the state probability vector z(t), assuming the process starts
in state 0. Recalling that z,(t) = P(X(t) = n), we have z(0) = (1,0,0,---).
In effect, we are finding the first row of P(t), since at any time ¢ > 0,
z(t) = 2(0)P(t). Using the forward Kolmogorov equations gives us

2(t) = 2(0)P'(t) = 20)P()Q = (1)@ .
Thus, for n = 0, we have z{(t) = —Azy(t), and for n > 1,

21 (1) = Azp_1(t) — Azy(2) -

n

¢, where we have used the initial

The equation for n = 0 yields zy(¢) = e™*
condition z;(0) = 1. Next, for n > 1, using the integrating factor e*, we can

solve for z,(t) to get

t
2n(t) = Ae /0 21 (s)ds ,

where we have invoked the initial condition 2,(0) = 0 for n > 1. Working
with these equations successively, starting with z,, gives us

)™ - \ s aa Xt
( ) G—M, for n>0. = AW A~ ¢ i

n! %« @ 9

Zn(t) =

Example 2 A device is either operational (state 1), or being repaired
(state 0). If it is in state 1, it can fail in an interval of time (¢,¢ + h) with
probability ph + o(h). If it is in state 0, it can be repaired and become
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operational in an interval of time (¢, + h) with probability Ah + o(h). For
this model, we have

— s \Je b%\
Q - & Ve

The forward Kolmogorov equations P'(t) = P(t)Q@ are, in the first row:

[—A A ] Ay, b selee U0

Poo(t) = =Apoo(t) + ppoa(t) and pp,(t) = Apoo(t) — pupo,(t) 7 e
FEEVAS

and in the second row:

Pro(t) = =Ap1o(t) + ppri(t) and pi(t) = Apro(t) — pupra(t) -

From the first set of equations, noting that poo(t) + po1(t) = 1, we obtain
the single differential equation /

Poa () + (A + m)poa() = £1 . T Rl Y

Using the initial condition pg1(0) = 0, and employing the integrating factor
e~ Mt vields

A A

_ —(A+p)t
=5 e s
Por =7 +u A+
and thus,
© A —(A )t
Poo = + e e
g =5 +u A+u
In a similar way, it follows that
_ Ko (Ot
g = —— —¢ ,
R Adp A+p
and,
pl 1= —— + —M_e_(’\+“)t.

A+pu A4p
Note that by taking the limit as ¢ — oo, the long-run state probability vector

7 is found to be
m A
T=—, — .
Adp’ A+

This result could also have been obtained by solving the balance equations
7@ = 0, subject to mp + 7 = 1. =
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Exercises

1. For the machine repair problem in Problem 10.4 of the notes, what is
the (Q matrix? Assume there is only one repair person (s = 1).

2. For the machine repair problem with spares in Problem 10.5 of the
notes, what is the Q matrix? Assume there is one repair person (s = 1),
and one machine (m = 1).

3. For the light bulb problem, Problem 10.6 of the notes, what is the @
matrix?
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2.12 Wed 5/7/08 notes

//ﬁh/mrz% Wed . Mﬁ; 5 2009

Chapter 9: The Poisson Process - Solutions to Selected
Problems

9.1 A randomly occurring event 'E is called a Poisson event if (i) for some
constant A, the probability that E occurs during a time interval of
length h is Ah + o(h), (ii) the probability that E occurs two or more
times during an interval of length h is o(h), and (iz) the occurrence or
lack of occurrence of E during disjoint time intervals are independent
events. Let T" be the waiting time for a Poisson event E to occur. Show
that 7" is exponentially distribution with parameter \.

Solution The probability
P(T > t) = lim(1 — A+ o(h)V,
h—0
where Nh = t. Thus,
P(T > t) = lim(1 — Ah 4 o(h))/" = et
h—0

The distribution of the time until the first Poisson event occurs is therefore
exponential. Note further that it follows, using the binomial distribution,
that during a time interval of length ¢, the expected number of occurrences
of a Poisson event is the limit as h — 07 of N(Ah + o(h)), where again
Nh = t. This expected value is thus At.

9.2 Consider two independent Poisson processes, type 1 having rate A;, and
type 2 having rate \y. Show that the combined process, where events
are observed without regard to type, is still Poisson and that the rate
is Ap + Ao.

Solution Since each of the processes are Poisson, and since each operates
independently of the other, it follows that in the combined process, we again
have independent and stationary increments. Next, since the sum of two
Poisson random variables is again Poisson, with mean equal to the sum of
the two means, it follows that property (c) in the first definition of a Poisson
process is satisfied.
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9.3 Consider a Poisson process such that each time an event occurs, it
is of type 1 with probability p > 0, or it is type 2 with probability
q = 1—p > 0. Assume these two types appear independently from event
to event. Show that these two processes each are Poisson processes and
that they are independent of each other. Help: Let Ny (t) and N(t)
be the counting processes for each type of event. Find the their joint
distribution by conditioning on N(t), where N(t) = N, (t) + Ny(t).

Solution We can think of the processes Ny and N, as being formed by
tossing a coin each time an event in the process N occurs. If the coin is
heads (with probability p,) then the event is viewed as one in the N; process,
and otherwise (with probability ¢), it is viewed as one in the N, process. The
coin tossing is done independently on each occasion. It follows that since the
original process has stationary increments, so must the processes N; and N.
Indeed, since the number of events for the original process in an interval of
time (s,s + t) does not depend on s, and only on ¢, the same must be true
of the derived processes N; and N,. Similarly, since the original process has
independent increments, it follows that each of the processes N; and N, must
have independent increments. Indeed, since the number of events in disjoint
intervals of the original process are independent, and since the coin tossing
takes place independently from each occasion to the next, each of the derived
processes must have independent increments. All of these conclusions hold
whether or not the original process follows the Poisson process, only the
independent and stationary increments of the original process are needed.

To find the distributions of Ny and Ns, note that for any nonnegative
integers n and m, the probability P(N(t) = n, No(t) = m) is equal to
fo's)
> P(Ny(t) =n, Na(t) =m|N(t) =v)P(N(t) =v) .
v=0
But each conditional probability in the sum is zero, except for v = n + m.
Therefore, this sum becomes simply

P(Ny(t) =n,Na(t) =m|N({t) =n+m)P(N(t) =n+m) .
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Next, by the coin tossing interpretation above, it follows that

n—+m ,
P(Ni(t) =n,Na(t) =m|N(t) =n+m) = ( AT )1)”(1’"’ .
m
since each of the n 4+ m events corresponds to a Bernoulli trial, and the trials
are independent with probability p that a type 1 process occurs. Therefore,

| 0 + - . - /\f n+m
P(Ny(t) =n, Nao(t) = m) = ( 5 )p g e ((n—:m)' '

Simplifying this expression, and writing A = A\p + A¢, we find that

P(Ni(t) =n, Na(t) =m) = e_’\”t——()\pf)n e"\"‘i(/\qt')m .
n! m!
Since the joint distribution of N; and N, can be written as the product of
a function of n alone, and a function of m alone, it follows that NV, (¢) and
Ny (t) are independent. However, each term in this product is a distribution
function itself, and so
n m
P{N(E) =n) = e_’\m(ifﬁl and P(Ny(t) =m) = e”“"%— .

Using these formulas, and the conclusion above that each process is station-
ary, it follows that property (c¢) of the first definition in the class notes for
a Poisson process holds for Ny and N,. Alternatively, these formulas can be
used to establish property (¢) of the second definition of a Poisson process.
Either way, we can conclude that N, is Poisson with parameter Ap, and N,
is Poisson with parameter \q.

9.5 A vehicle-controlled traffic light will stay green for 7 seconds after a car
passes through the intersection, and if no cars arrive during a period
of time 7, then it turns red. Let X denote the number of cars that
pass through the intersection following dissipation of the initial queue
and until the light next turns red. Assume cars arrive according to a
Poisson distribution with rate A. Find the probability distribution of X
and find the expected value of X. Help: Note that the event {X > n}
occurs if the inter-arrival times of the next n arriving cars are each no
more than 7.
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Solution We have
p(‘Y:"’) :P(Tl <T7"'1Tn< 7, Tn+1 > T)a

where the 7; are the inter-arrival times of the next n cars following queue
dissipation. Since cars arrive according to a Poisson process, the T; are
independent random variables that are each exponentially distributed with
parameter . Thus,

P{X =m) = (1 — e“’\7>ne”/\7 ,

forn=0,1,2,---. ot Gheafic

To find the expected value of X, note that ¥ = X + 1 has a geometric
distribution. Indeed,

k—1
PY=k)=P(X=k-1)=e>(1-e™) |

for k =1,2,---. Therefore, the random variable Y is geometric with param-

eter 7. Hence,

EX)=EY -1)=EY)—-1=[1/(eM)]-1=€e"-1.

9.6 An investor must decide on just one investment to make during a fixed
"R period of time 7". The opportunities are of two types, those of profit H,
LN and those of profit L, where L < H. Opportunities appear at random
according to a Poisson process of rate A. Each time an opportunity
appears it is worth L with probability p, and worth H with independent
probability ¢ = 1 —p. Consider the following strategy. For a given time
7, we invest only if an opportunity of profit H occurs. After this time,
we invest in the next opportunity that appears, if any. What is the
expect profit?

Solution Let Y denote the profit, and let X denote the first time an in-

vestment opportunity arrives. Partition the sample space according to the
events E={X <7}, F={r< X <T},and G ={T < X}. Then

E(Y) = E(Y|E)P(E) + E(Y|F)P(F) + E(Y|G)P(G) .

4
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Since opportunities arrive according to a Poisson process, say N(t), we see
that P(E) = P(N(7) > 1) =1— P(N(r) =0) =1 — e~*". Further, P(G) =
P(N(T) = 0) = e*T. Hence

P(F)=1- (1 - e"\T) g e R A

Returning to the expression for E(Y) above, note that in the last term,
E(Y|G) =0, and so

E(Y)= E(Y|E)P(E) + E(Y|F)P(F) .

Consider next, in the second term, E(Y'|F). Given that the event F' has
occurred, the next opportunity will yield profit L with probability p and
profit H with probability q. Hence E(Y'|F') = pL + qH. Thus, we have so far

E(Y) = E(Y|E)P(E) + (pL + ¢H) (e — e™") .

Finally, consider E(Y | E). Given that the event E has occurred, namely
that at least one opportunity has arrived in the period up to time 7, the
probability that n opportunities arrive in this time interval is

1 1 (AT)™
n. = == PN = = o ’
£ P(E) (N(7) =n) 1—e n!
and the possible values for n are 1,2,3,--- . Therefore, the probability, say

Q1, that all the arriving opportunities yield profit L is

- n 1 —AT - (’\Tp)n 1 —A A
QL:‘;]) q”:i—__e—Te ; 7L! = 1_6._)\7_6 7—(6 Tp_]_) 5

and so,
6—/\Tq o e—/\r

e s v

Hence, given that the event E has occurred, the probability that in the period
up to time 7, at least one of the arriving opportunities yields profit H is

e~)\‘rq . e—)\r 1— 8—)\7(/
‘)L 1= e«)w- I — g7
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We now write

1 — e—)\‘rq

EY —
( 1—=g 2

BYy=H(1-Qr)+0-Qr=H
Returning to the last expression for E(Y') we get

E()”) —H (1 _ 6—-/\7’({) + (pL + qH) (e—)\r B P_XF) '

9.7 Consider the G/M/1 model. (a) Is the chain irreducible? TIs the
\\O‘\r . chain aperiodic? Help: Write the transition probability matrix with a
e+ +, say, for each entry that is positive, and a 0 otherwise. (b) Find
the transition probabilities when the inter-arrival time distribution is
exponential with parameter A\. (¢) Under the assumption of part (b),

find the stationary distribution?

Solution (a) The transition matrix has nonzero entries on and below the
diagonal, and also on the first upper diagonal. Given any two states ¢ and j,
it follows that j is accessible from i. Indeed, if j < i+ 1, then it is possible to
go from state 7 to state 7 in one step. However, if 7 > 741, then it is possible
to go to state ¢ + 1 in one step, then from state ¢ + 1 to state ¢ + 2, and so
on until state j is reached. It follows that any two states communicate with
each other, and so the chain is irreducible. Thus all states must be of the
same type and each must have the same period. Since p;; > 0, state 1 has
period one, and so all states have period one.

(b) Substitution of the density f(¢) = Ae™ into the expressions for the
transition probabilities yields

pan=¢q, for i>1, and Dij =pgtl for 1<j<i+1,

where ¢ = pu/(A+ p), and p =1 — ¢, and where p;; = 0 otherwise.

(¢) The solution for this case at hand should be the same as the one for
the earlier problem concerning the M/G/1 queue. Thus, we could consider
a solution to the stationary equations of the form m; = cp', where p = \/pu,
and then verify that such a solution works.

6
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However, it is possible to show that a stationary vector exists in the
general for an arbitrary inter-arrival time distribution. Consider a solution

of the form 7; = ¢r’, for some constants ¢ > 0 and r : 0 < r < 1, which are
to be determined. The stationary equations are

o0
mj= Y mpy, forj=2,3,---, where m +m+---=1.
i=j—1
It suffices to consider only the equations for j = 2,3, -- -, since the condition
w1+ mo + - -+ = 1 implies that the equation for j = 1 is a consequence of the

other equations. Now, for j > 1, plugging the hoped for solution into the
j-th equation gives us

£ e £ [
cre =75 = TiPij = cr / el = P L
' i=j—1 ! i=j—1 /0 (i4+1—3j)!

Making the change of variables v = ¢ — (j — 1), simplifying, and then using
the series expansion for the exponential function yields

e N (A o i1
T:Z/O (i Atg?’)“f(t)dt:/o e u(l )tf(f)dt7
[/:0. :

which gives us the equation
o0
rzwmz/eﬂwmﬂmw
0

Note that ¢(r) is a positive and increasing function of r, and that ¢(1) = 1.
It follows that a solution to this equation for r exists and is unique, provided
¢'(1) > 1. But
goel
d(r) = /L/ te ML=t £(1)dt |
0
so we need -
Mmzu/fﬂﬂﬁ>L
0
Note that ¢'(1) can be interpreted as a traffic intensity, defined as the ratio
of the arrival rate to the service rate.
It follows now from Theorem 5.5.3 of the notes on classification of states,

that when the condition ¢'(1) > 1 holds, the Markov chain G/M/1 is irre-
ducible, aperiodic and all states are positive recurrent.

=
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2.13 Wed 5/7/08 notes

Key solutions to continuous time Markov chains, chapter from lecture notes, chapter 10.
Hordpet wed . Mag 5 2008

Chapter 10: Solutions to Selected Problems

No  10.2 Find the recurrence formula for the expected values of the first entrance

oY O~ times T;,;_; for the birth-and-death process. Remark: To use such a
recurrence formula to find the expected values E(T;,;_;), it is necessary
to specify boundary conditions. Generally, however, the boundary con-
ditions can only be determined on a case by case basis.

Solution Following the steps in Section 10.4, let Tj; denote the first en-
trance time into state j, given that the process has just entered state i. For a
birth-and-death process, we shall find the expected value of T;; 1,7 > 1, by
conditioning on the next state. Thus, let S denote the event that the next
state is i — 1. Then

E(Tii1) = E(Tii-1| S)P(S) + E(Tii1 | S)P(S)

Note that S is the event that the next state is i + 1. Using the jump proba-
bilities for the birth-and-death process, we have

Ai

N+ il

Hi
Ai + pi

E(Tii-1) = E(Tyi | S) + E(Tii-1|5)
Now, E(T;;-1]S) = 1/(\i + 1), because the expected time to reach state
i — 1, given that the next state is ¢ — 1, is simply the expected time spent in
state 4, which is 1/(X; + ;). Next, ’
1
i+

for if the next state is i + 1, then the process must spend the expected time

E(Ti;-1]8) =

+ [B(Titr1;) + E(Tim1)]

in state 4, which is 1/(\; + s;), then spend the expected time E(Tjy1;) to
get, back to state i, and then finally spend the expected time E(T};_1) to get
from state i to state i — 1. Substituting these results, and then solving for
E(T;;41), yields

Ai
E(Ti-1) = —+ — E(Tu4) -
i
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As remarked above, to use this recurrence formula to find the expected
values E(T;;_1), it is necessary to specify boundary conditions. Generally,
however, the boundary conditions can only be determined on a case by case
basis. Such a case appears in the next problem.

10.3 (a) For the M/M/1 queue, find the expected first entrance time
E(T\p). This time can be interpreted as the busy time for the queue.
Assume A < p.  (b) For the M/M/3 queue, find the expected values
E(T;;—,) for all ¢ > 1. Help: Use the recurrence formula obtained in
problem 10.2 above. Argue that all the values E(T;;_;) are the same
for all 7 > s, where s is the number of servers.

Solution For the M/M/s queue, when i > s, we have \; = X and yu; = sy,
and these rates to not depend on the state . The random variables T;;_;,
for i > s, are concerned only with transitions above state ¢ until the first
instant that a transition to state i — 1 occurs. Thus, the set of sample paths
associated with the event {T};_; = n} is the same for each 7 > s, and each
sample path for one value of 7 > s is just as likely to occur as for another.
Therefore, the stochastic nature of each T;,;_; for ¢ > s is the same. Note
that this argument could not be made for the T;,,. In these cases, the
random variables are concerned only with transitions below state i until the
first instant that a transition to state i + 1 occurs. The set of sample paths
associated with the event {T;,,; = n} now depends on i, as some sample
paths go below state s. Moreover, for smaller values of 7, transitions that
include visits to state 0 are more likely than for larger values of ;. Thus, not
all sample paths associated with the event {T;,,1 = n} are as likely to occur
for one 7 as for another.

Continuing now with the solution, it follows that for i > s, each E(T;;_4)
is a constant, say 7. Substituting 7 into the recurrence formula obtained in
the solution to Problem 10.2, we get

T=1/sp)+ (N/sp)T,
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and solving this equation yields

T=E(T;—1)=1/(sp—A), for i>s.

Now, for part (a), when s = 1, we have E(T\y) = 1/(u — A). Next, for
part (b), when s = 3, we have

E(T32) =1/(3u—A).

Using again the recurrence formula obtained in the solution to Problem 10.2,

we get
1 A 3/2
E(T,)) = — +—E(I35) =
(T»,1) 2'M+2'N (Ts,2) 3p— A’
and finally,
1 3+ (1/2)A
E(T\p) = — E(Ty)) = ——————.
(Tio) 1-p - 1-p (Ton) (3 — A)

v 10.4 Consider a set of m machines that are in continuous operation, and
which fail independently of each other at an exponential rate A. Assume
there are s : 1 < s < m, repair persons that service the machines
independently and each at exponential rate p. Let X(¢) denote the
number of machines at time ¢ that are not operational; that is, they
are in the repair shop. Determine the arrival and departure rates for
the birth-and-death model.

Solution Suppose the state of the system is ¢ and that s < ¢ < m. Then
m — ¢ machines are in operation, and s repair persons are busy. Hence, for a
small time interval of length h, the probability p;;11(h) of an increase of one
in the system is

("7 ) O o Mt o) 1= i+ o) o).

The first factors cover the event of one breakdown and no service completions,
while the last o(h) term covers other less likely possibilities, such as two

3
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breakdowns and one service completion, say. For the case 0 < i < s, the
same expression holds, except the last factor becomes (1 — ph +o(h))’, since
now ¢ repair persons are busy. Thus, for 0 < i < m, we have

piivi(h) = (m —i)Ah+o(h) as h— 0" .

Hence, the birth rates are \; = (m — i)\, for 0 < i < m. For i = m, evidently
Ai; = 0 since no arrivals are possible in this case.

For the departure rates, suppose again that the state of the system is ¢
and that s < ¢ < m. Then m — ¢ machines are in operation, and s repair
persons are busy. Hence, for a small time interval of length A, the probability
pii—1(h) of a decrease of one in the system is

( ; ) (uh +o(h))(1 — ph + o(h))* 1 (1 — Ah + 0(h))™ " + o(h) .
The first factors covers the event of no breakdowns and one service comple-
tion, while the last o(h) term covers other less likely possibilities, such as one
breakdown and two service completions, say. For the case 1 < i < s, the
probability p;;—1(h) becomes

( ; ) (uh + o(h))(1 — ph + o(h))™ (1 = Ah + o(h))™ " + o(h) .

since now ¢ repair persons are busy. Thus, asymptotically, p;;—1(h) = sph +
o(h), for s < i < m, while for 1 < i < s, pi;—1(h) = ipph + o(h). Hence, the
departure rates are pu; = sy for s <i < m, and p; = ip, for 1 <i < s.

10.5 Consider a set, of m~+n machines which fail independently of each other
at an exponential rate \. It is intended that m machines are to be in
operation at any time. The remaining machines serve as spares and are
called into operation when an operating machine fails. If more than
n machines are in a state of failure, then all the operational machines
will be in service. Suppose there are s, 1 < s < m, repair persons
that service the machines independently and each at exponential rate

4
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p. Let X (t) denote the number of machines at time ¢ that are not
operational; that is, they are in the repair shop. Determine the arrival
and departure rates for the birth-and-death model.

Solution Suppose the state of the system is i. Then the number of machines
not in the repair shop is m +n — 4. Thus, if m +n — ¢ > m, or equivalently
» < n, then the arrival rate to the repair shop is mA, while if m +n—1i < m,
or equivalently ¢ > n, then the arrival rate to the repair shop is (m+n—i)A.
Finally, as in the case of the M /M /s queue, the departure rates are p; = i
for i < s, and p; = sp for ¢ > s.
'z
10.6 Consider a sign that contains N light bulbs, each with a lifetime that
follows an exponential distribution with parameter A. Assume that the
bulbs function independently of each other. Suppose it is the policy to
allow bulbs to burn out until the moment the r-th bulb expires, and to
then replace all burned out bulbs at that time. Define the state of the
system X (¢) to be the number of burned out bulbs at time t. Argue that
this stochastic process (a) has the Markov property, (b) is stationary,
and (c¢) can be represented as a pure jump process. Determine the
parameters v; and ¢;; of the jump process. (d) Determine the balance
equations for this system, and find the long-run probability distribution
for the states.

Solution For (a) and (b), suppose it is known that the state of the system is
i at time s. Then there are N — i bulbs still functioning. These N — i bulbs
operate independently of each other, and each has a lifetime that follows
the exponential distribution. However the exponential distribution has the
memoryless property. Thus, the situation is the same as if we were faced
with N — 7 new bulbs, whose lifetimes are not influenced by the behavior of
the bulbs that have expired previously. The future evolution of the system
depends only this information, and therefore depends only on the current
state ¢, and not on how the system arrived at this state, nor on the current
time. Hence, the process has the Markov property and is stationary. (c) Set

pij(h) = P(X(t+h)=3|X(t)=1).

J
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, TS N T

Using the properties of the exponential distribution, it follows that for small
h,and 2 <r—1,

—

pii+1(h) = < Nl ) (A +o(h) (1 = Ah+o(h))N 77 = (N —i)Ah +o(h) .

Thus, g;;+1 = (N —4)A. For j # i+ 1 and j # i, this transition probability
pij(h) = o(h). Hence,

pii(h) =1— (N —i)Ah +o(h) .

Therefore, when ¢ < r—1, we have ¢; ;41 = (N —i)\, and v; = (N —i)\, while
¢ij = 0 otherwise. Finally, for ¢ = r — 1, using reasoning similar to above,
and because all bulbs are replaced at the instance the r-th bulb expires, we
get

Pr—10(h) = (N —r+ 1) \h +o(h),

and

Pr—1r—1(h) =1 = (N —r+1)Ah+o(h) .
Therefore, when ¢ = r — 1, we have ¢,_190 = (N —r + 1)), and v,_;, =
(N —r+1)A, while ¢;; = 0 otherwise. (d) The balance equations in this case

are
N —1 N
m;, for 1=0,1,2,---,7r—2, and m_| = ——7 .
) ) ) r—1 N—r+1 0
Requiring that 7y + 7 + -+ m_1 = 1, we get

1 1
h(r,N) N —3i’

Ty = for i=0,1,2,---,r—1.

where h(r, N) is,

1 1 1
N N-1 N—-(r—1)"

h{r; N) =
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7
ﬁ}j/l().? For the previous light bulb problem: (@) What is the expected time

'

between replacements?  (b) Suppose for each replacement, it costs
«a + fr dollars to replace the r bulbs, where v and § are constants.
Develop a formula that gives a reasonable estimate of the expected
cost per unit time.

Solution (a) The time between replacements is
R=Ti+Tp+---+T,,

where T; is the time between the (i — 1)-st burnout and the i-th burnout.
The random variable T} is an exponential random variable with rate constant

(N —i)A. Thus, E(T;) = 1/(N — i)A. Hence,

1 1 Il

R PR R R T R

(b) One could argue as follows. Over a long period of time T, the average
number of renewals is approximately T/ E(R). The total cost over this period
of time is (a+/3r)[T/E(R)]. Dividing by the total time T yields an estimate of
the cost per unit time. The final formula is therefore C'(r) = (a+ pr)/E(R).

—

10.12 For the M/M/2 queue, find the long-run probability distribution for
the states. Use these probabilities to find F(.X), the expected number
of customers in the system in the long-run. Help: Let p = A\/2u. Then

E(X) =2p/(1-p*).

Solution For the M/M/s queue, with arrival rate A and service rate p, the
steady state probabilities are given by

A )™ A )"
_— ( /l'l) po, for n=1,2,---,s, and p,= ( ‘/“) py, for n>s,
n! sign—3
where:
L (MNp? 1 = Afp™ .
— = — ided p=A/spu<1.
Po st 1—(A/sp) N nX::o n! provided pe= A/ey

1’ = //‘H '{’)}\
ZTL) | \%/‘
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For the case of two servers,

00 00 (o]
L= ann: an)n:P1+Z'7Pn .
n=0 n=1 n=2

where p; = (A/p)po = 2ppo, and for each n > 2, p, = 2p"p,. Substituting

vields
o0 0
L = 2ppy+2py Y np" =2ppo+2ppo y_ np"™'
n=2 n=2
> d [ 2ppo
(e ) -am 2 (50) - 2
nZ::Q dp :éo (1—p)?

It remains to find py. From the formula above,

(P - 22\ 1=,
m= (Y o) = (12 ) -1

Hence, we get finally L = 2p/(1 — p?).

10.15 Consider the m/m/1 queueing model, with the modification that when
a customer finishes being served, there is a probability p that the cus-
tomer will be returned to the queue to repeat the required service.
(a) Assume this process follows a birth-and-death model, and find the
arrival and departure rates. (b) Find the long-run state probability
distribution.

Solution The state is the number of customers in the system. Suppose first
the state ¢ = 0. Then we have po1(h) = Ah+o(h), and poo(h) = 1—Ah+o(h).
Suppose now the state ¢ > 1. Then

Pii—1(h) = (1 = Ah 4+ o(h))(ph + o(h))q .

The first factor indicates that no arrival has occurred, and the next two
factors indicate that a service completion has taken place, and the customer
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was not returned for service. Thus, asymptotically, p;;—1(h) = pgh + o(h).
Next, we have

piit1(h) = (Ah 4+ 0(h))(1 — ph + o(h)) .

The first factor indicates that an arrival has occurred, and the next factor
indicates that no service completion has taken place. Thus, asymptotically,
Pii+1(h) = Ah—+o(h). Next, since the process follows a birth-and-death model,
we could determine p; ;(h) from p; ;i (h) and p; ;1 (h). However, it is instruc-
tive to find this term directly. Thus, we have

pii(h) = (1 — A +o0(h))(1 — ph + o(h)) + (1 — A+ o(h))(uh + o(h))p .

The first term in the sum indicates that no arrival nor service completion
have occurred. The second term in the sum indicates that no arrival has
occurred, but a service completion has taken place, and the customer was
returned for service. Asymptotically then,

pii(h) =1 — Ah — ph+ puph+o(h) =1 — (A + pg)h + o(h) .

In summary, then, we have \; = A, for all ¢, and for i > 1, u; = ugq.

(b) Appealing to the solution of the balance equations given in the class
notes, we have p, = r"pg, for n = 1,2,---, where r = \/uq. For a steady
state to exist, we must require that r < 1. With this restriction, we get
Py =(1—rh® for n=10,1,2,-+:.

10.16 For the m/m/s queueing model, assume that when a customer arrives
X~ and finds servers idle, the customer selects a server at random from
Qq Q,+‘} those available. - Consider a particular server, say server number 1.
sl Show that the probability, in the long-run, that this server is idle is
1 — p where p = \/su. Help: Condition on the number in the system

in the long-run.

Solution Let I denote the event that server one is idle. Then, for n < s,

/{/&U Y ( . ) o

D 9

)
PU|N=n)=" S
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while P(I | N =n) =0 for n > s. Thus

P(I) = f P | N =n)m, = i (” - ") T .

n=0 n=0 s

Using the formulas from Example 10.3.2 for the long-run state probabilities,
and setting r = \/pu, gives us

where

g ¥ 8l-=p
To ease notation, set
=1 %
Ts = I
=0 v

Then we can write the previous equation as

T o . ) s

1=T,m+ T1=3" or equivalently 1 — p=my(1— p)Ts + To— -
stl—p s!

Now,

P =[S () ] = 2 (-5

and so 5

rs r
P([) = To |:(1 —/))T.; -+ —S—'} = 7T0(1 “—/))Ts +7T0§ 3

Finally, recalling the expression for 1 — p in the equation two lines up, we see
that P(I) =1 — p.

10
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2.14 Wed 5/7/08 notes

Hastings metropolis algorithm lecture 11

11. Hastings-Metropolis Algorithm — Lecture 11 — October
8, 2002

11.1 The Hastings-Metropolis Algorithm
1. Begin with an irreducible Markov matrix Q;;, with 4,5 = 1,2,3,...n (which

need not be symmetric). ot Lo 27

s wh

2. Let n =0 and Xy =k, for some 1 < k < m.

3. Generate a new random variable X such that Prob{X = j} = Qx, ;-

4. Generate a random number U uniformly distributed on (0,1). If U <
[b(X)@x,xn] - X ~ -
[b(X..)Q);:‘,x] then NS = X;; othemse\]!i-»X,,.

5. Letn=n+1; set X, = NS. 0 b

6. Go to step 3.

¢ s

11.2 Application — Example 10a in Ross

- We begin with a large set L of all permutations of {1,2,...,n} for which
Y51 Jz; > a for a given constant a. Another example is the set of all tree subgraphs
of a given graph H. We want a limiting probability distriubtion which is uniform.

— First define a Markov chain graph G whose vertices are the elements of L.
We will need a notion of neighbors in L, and we join node ¢ to j by an arc if j is
accessible from ¢ in one move.

- For L = S,, we put the arcs of G between states or permutations which differ
by a transposition.

— Let N(s) = { the neighbors of a node s}, and let |N(z)| equal the cardinality
of N(s). Let Qs+ = fracl|N(s)| if t € N(s).

— Since we are interested in sampling uniformly from L, we want II(s) = II(¢) =
K= E'?'b—j. Therefore, by setting

min(1, ::g; = min( m: ,1) (11.1)
-
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we get an ergodic Markov chain which is reversible:

. 1’ b¢Sts
P.s,t _ Qs,tmln( bsth) \ (11.2)
Qs,s + zr;és Qs,r(l - m'm(l, ﬁﬁ))

by a theorem in the last lecture.

- The justification for using min(1, :: Qf;: = mian(1, I%I[ as opposed to the earlier
formulation min(1, %‘: is based on relaxing the condition that Q. = Q.

We check that 37", P,; = 1; and P,, > 0 for some s, which is a generic
property that leads to aperiodicity.

— Suppose the current state is X, = S. Choose one of its neighbors randomly
(make a random transposition).

If | Ny| < ||, then accept X1 = t.

If |N,| > |N,|, then set X1 = ¢ with probability g = INl. Set X,.,; = s with
probability 1 — g =1 — |},

11.3 Gibbs Sampler (Vector form of Hastings-Metropolis)
Let X = (X1,2, ..., ;) be a random vector with probability mass function

p(X) = cg(#). We want to sample from such a distribution of random vectors,
where g(X) is known but ¢ is not.

Consider a Markov chain where the states are ¥ = (1, 3, .y Zn). Let Z be
the curent vector state. Choose i = 1,2,...,n randomly and set the random variable
X =z with:

Prob{X =z} = Prob{X; = z|X; = x;,j # i} (11.3)

(which is given a priori by p(%)), since

Prob{X; = z,X; = zj,j # i}

_ P 114
PTOb{X, .'IIlX] Zj,J # Z} P’)"Ob{X]’ — -Tj;j 7£ Z} ( )
Prob{X;=z,X; ==x;,j #1} (11.5)

Yk Prob{X; =k, X; =z;,j #1} .
p(ml,zz,--~,$i—1,$i,$z'+1a ---;-’En) (11.6)

ka(xla X2y o0y Ti—1, kr Tit1y ooy xn)
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Next, if the random variable X = z, then ¥ = (21, %2, ..., Zi—1, %, Tit1, .., Tn) iS
a possible next state vector.

This is equivalent to Hastings-Metropolis with:

AEg) = %P rob{X; = z|X; = z;,j # i} (1L7) -
_ p(%)
" nProb{X; =z;,j #1} (11.8)
= p(%) 119)

nZkP(fBl, T2, ooy Tic1, Ky Tig1, ey Tn)

zT, T 7 z (11.10)
Z,%) + Xz Q(Z, 2)(1 — ;’;i(?')%(;—’,i%

= { QE.9) -’774‘3} (11.11)

) { Q(E, Pmin(1, 5BYED) }
Q( )

11.4 Application (Example 10b)

the problem is to generate n random points on the unit circle, such that no

two points are within distance d of each other, where
B = Prob{no two points are within distance d of each other} (11.12)

is assumed to be small.

Do this by applying the Gibbs sampler, starting with n points on the unit
sphere z1, 3, ..., T, such that no two are within distance d of each other.

Generate a random number U and let I = int(nU)+1. this step picks randomly
fromi=1,2,...,n.

Next, generate a random point on the circle, X = z and if |z — z;| > d,j # I,
then set §¥ = (1, %2, ..., T1-1, T, T141, ..., Tn). Otherwise generate another point X =

7’ and repeat.
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11.5 The Metropolis Algorithm for Statistical Mechanics
Construct Aafinal probability distribution

e PE@)  p(Z)

Hj;‘ = Pf = =
Zn 3#b(7)

(11.13)

where N denotes the number of particles or the number of lattice sites. To be
precise let us suppose that the domain is the unit square (with periodic boundary
conditions), and the N particles can take any position on a uniform (MzM) grid —
let us say (100z100) for this demonstration.

a. Compute the number of states in the problem. For N = 100 this number
is (104)M = (10*)'% which is huge!

b. So Q is an M*NxM?N matrix Q(Z, ) = &+ Prob{X; = z| X, = z;,j # i}.

c. The important point is that in the Metropolis algorithm,

= . b;Q(3,%)
z, 1, A=
Pj‘,fj _ . Q( :lj)mzn( —bizQ(z,ﬁ) bR (1114)
Q(:I:, 37) + Zé‘;éi:’,b,-<b,~ Q(-T’ 2)(1 - baq(i‘:g’))
d. Finally, we need to analyze what
Prob{X; = X|X; ==z;,j #i};4,j =1,2,..N (11.15)

z; € L, the MzM grid.

This can be treated as a graph G where the nodes are all possible states Z
of which there are M2N. Arcs connect “neighbors” in G of Z which are defined by
states ¢ that can be reached from Z by a Gibbs sampler move, i.e, randomly choose

i1=1,2,..., N and then change X; = z, leaving X; = z; for j # i with

Prob{X; =z, X; = z;}
Prob{X; = z;,j # i}
e—BE@)

= D (11.17)

ProbX; =z|X; =z; = (11.16)
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e. Putting it together we get
o e_ﬁE(g‘)
Q(z7y—) = Nzk e_ﬁE(Xi=k) (11.18)
and
—¢’ — f
Py= Q(d Zz) {76 ’ (11.19)
QEZ) §=2%
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Chapter

study notes,lecture notes

3.1 some code I wrote for testing things...

1. [expected test.m|

2. jsolving 3 _dot_ 6.nb|

3. A small note on using the left eigenvector of the one step transition matrix for a
regular chain to determine the limiting distribution [trying 8 1 problem.nb]
ing & 1 problem.pdi

3.2 Definitions

Source of this block unknown and lost from the net:
“Continuous Time Markov Chains

Most of our models will be formulated as continuous time Markov chains. On this page we
describe the workings of these processes and how we simulate them.

Definition.

We say that an event happens at rate r(t) if an occurence between times t and t + dt has
probability about r(t)dt when dt is small.

Fact. When r(t) is a constant r, the times t[i] between occurrences are independent exponen-
tials with mean 1/r, and we have a Poisson process with rate r.

Markov chains in continuous time are defined by giving the rates q(x,y) at which jumps occur
from state x to state y. In many cases (including all our examples) q(x,y) can be written
as p(x,y)Q where Q is a constant that represents the total jump rate. In this case we can
construct the chain by taking one step according to the transition probability p(x,y) at each
point of a Poisson process with rate Q.

If we throw away the information about the exponential holding times in each state, the
resulting sequence of states visited is a discrete time Markov chain, which is called the
embedded discrete time chain. In our simulations, the total flip rate Q at any one time is a
multiple of the number of sites, CQ. Since the number of sites is typically tens of thousands,
we lose very little accuracy by simulating TCQ steps and calling the result the state at time
T.

To build the discrete time chain we must pick from the various transitions with probabilities
proportional to their rates. In our particle systems we can do this by picking a site at random,
applying a stochastic updating rule, and then repeating the procedure. Because of this,

187


study_notes/code/expected_test.m
study_notes/code/solving_3_dot_6.nb
study_notes/code/trying_8_1_problem.nb
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continuous time is occasionally referred to as asynchronous updating. This is to distinguish
that porcedure from the synchronous updating of a discrete time process which updates all
of the sites simultaneously. ”

3.2.1 Regular finite M.C.
definition 1: There exist some n such that P™ has all positive entries
definition 2: A regular finite chain is one which is irreducible and aperiodic

Notice that this means regular chain has NO transient states.

3.2.2 irreducible M.C.

A M.C. which contains one and only one closed set of states. Note that for finite MC, this
means all the states are recurrent. In otherwords, its state space contains no proper subset
that is closed.

3.2.3 Stationary distribution

This is the state vector m which contains the probability of each state that the MC could be
in the long term. For an irreducible MC, this is independent of the starting 7(©), however,
for a reducible MC, the Stationary distribution will be different for different initial 7(©

3.2.4 recurrent state
1. fi; = 1. In otherwords, the probability of reaching state i eventually, starting from
state 7 is always certain.
2. ZPE? ) = 00, in otherwords, since sum diverges, this means the probability to return
n=0

back to ¢ starting from ¢ will always exist, not matter how large n is (i.e. sum terms
never reach all zeros after some limiting value n)

3.2.5 transient state

1. fi < 1. In otherwords, the probability of reaching state 7 eventually, starting from state
1 is not certain. i.e. there will be a chance that starting from 7, chain will never again
get back to state 3.

o
2. Zpg?) < 00, in otherwords, since sum converges, this means the probability to return
n=0

back to i starting from ¢ will NOT always exist (i.e. sum terms reach all zeros after
some limiting value n)

3.2.6 Positive recurrent state

A recurrent state where the expected number of steps to return back to the state is finite.
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3.2.7 Null recurrent state

A recurrent state where the expected number of steps to return back to the state is infinite.

3.2.8 Period of state

GCD of the integers n such that pfzn )>0.In otherwords, find all the steps MC will take to
return back to the same state, then find the GCD of these values. If the GCD is 1, then the
period is 1 and the state is called Aperiodic (does not have a period).

3.2.9 Ergodic state

A state which is Aperiodic and positive recurrent. i.e. a recurrent state (with finite number
of steps to return) but it has no period.

3.2.10 First entrance time T;;

The number of steps needed to reach state j (first time) starting from transient state &

3.2.11 [

This is the probability that it will take n steps to first reach state j starting from transient
. (n) _ _
state 4. i..e f;;” = P(Ti; = n).

3.2.12 f;
This is the probability of reaching state j (for first time) when starting from transient state
1. Hence fij = Zfz(]n) = P(ﬂj < OO)

n=1

3.2.13 Closed set

A set of states, where if MC enters one of them, it can’t reach a state outside this set. i.e.
P,; = 0 whenever i € S and j ¢ S, then set S is called closed set.
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3.2.14 Absorbing M.C.

1 0 0
0 1 0
R R qu q2
R R g g

0
0
All none-transient states are absorbing states. Hence the P matrix looks like ie.

o
R Q
3.2.15 (@ Matrix

Properties of a ) matrix are: There is at least one row which sums to less than 1. And there
is a way to reach such row(s) from other others. and @™ — 0 as n — oo

3.2.16 Balance equations

3.3 HOW TO finite Markov chain

3.3.1 How to find f"

This is the probability it will take n steps to first reach state j from state i. In Below C(J)
means the closed set which contains the state j and T" means the transient set

ieC(J),jeC(J) use formula (1) below

ieC(J),j¢Cl) =0

i € T, 7 Absorbing state | Calculate A™ = Q™R where m = n — 1 then the i, j entry of A™ gives fi(f)

Normally we are interested in finding expected number

€T, 7T
vE5 of visits to j before absorbing. i.e E(V;;). see below. Otherwise use (1)

We can use pw . Notice the subtle difference between f and pgb).

fi(f) gives the probability of needing n steps to first reach j from %, while ng) gives the
probability of being in state j after n steps leaving ¢. So with pg-b) could have reached state
J before n steps, but left state 7 and moved around, then came back, as long as after n steps
exactly MC will be in state j. With fi(f) this is not allowed. The chain must reach state j

the very first time in n steps from leaving ¢. So in a sense, fi(;’) is a more strict probability.
Using the recursive formula

pgl) f(n) +f(n 1)p§;) +fzn 2)p§§) _|_f(1) (n—=1) (1)
We can calculate f(n) We see that f(l) = pﬁj) and so f;; @) _ pg) f(l)pg) and also

3 2 1
f()_pZ] f( )p_]_] f( )p]J
_ .3 2 (1),,(1) (1),(
_pi] <pz3 f p]g )p]] .f p]]
2 1 1 1 2
=l = (o0~ o] ) -2

— 3 @), 1) [, m> ®,2)
- pij p'Lj p]g +p |:p” ] pz] pJJ

and
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ij Pjj

—_ @4 ®3) (2, (1) W[, ] o, @ ) ®, 1) (2 1),.3)
=Dij — (pij — Di;'Pjj t Dy [pj‘} — Dij pjj)pj‘ - <pij - fij Dj; >pjj — Jij Py

— 4 @ 0 _ @l 0%, ol0]®_ 00 @ 2,2 _ 1), 1) (2) 1),,(3)
=Py~ <Pz‘j bjj = Pij [pj'] T Pij [Pj'] ~ Pij Pjj ij) B < i Pij — Pij Pij pjj) ~ Pij Pjj

2 3
N CY) 3) 1) @) 1,1 @], 1), (1), (2) 2,2 ®), @), (2) ®),,(3)
=Py~ DPij Pjj + Py [pﬁ} ~ Py [pjj} T Dij Pij Pjj — Py Pjj ¥ Pij Pij Pjj — Pij Pjj

@ 6.0 . @@, @0 olonld W, 1.2 (1) 3)
=Dij) — Dij Pjj — Py Pjj + i [pj‘} — Py [pj‘} +2pi;'Dji Pj; — Pij Pjj

ij Pjj

4 4 3), (1 2)_ (2 1) (3
fi(j)zpz(j)_f()()_f()()_fz(j)p;j)

etc...
Hence knowing just the P matrix, we can always obtain values of the f;; for any powers

However, using the following formula, from lecture notes 6.2 is easier

A =Q"R

the i,j entry of A™ gives the probability of taking n + 1 steps to first reaching j when
starting from transient state ¢ . So use this formula. Just note this formula works only when
1 is transient.

question: If 7 is NOT transient, and we asked to find what is the prob. it will take n steps
to first reach state j from state 7. Then use (1). right?

3.3.2 How to find f;;

This is the probability that chain will eventually reach state j given it starts in state 4

ieC(J)
=1
jecW) fij
ieC(J)
=0
j ¢0W) &
ieT Use formula in page 5.5 lect

j recurrent but not absorbent, hence in a closed set with other states 2; —probability that trans

1€T 1
= (I — .
7 is an absorbent fij [( Q) R] 0,
1e€T
jerT We know eventually p;; = 0 f

3.3.3 How to find E(V;;) the expected number of visits to j before
absorbing?
Here, i € T and j € T Then
E(Vy) = (I - Q);;

The above gives the average number of visits to state j (also transient) before chain is
absorbed for first time.

question: Note that if chain is regular, then all states communicates with each others and
then i € R,j € R and so E(V;;) can be found from the stationary distribution 7*° , right?
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3.3.4 How to find average number of steps E(T;;) between state :
and state ;57

E(Ty) =1+ paE(Ti;)
reqular :t € R,j € R k#j
if i = j then E(T};) = wL where w is the stationary probability vector

¥

1e€T,j€T does not make sense to ask this here?

3.3.5 How to find number of visits to a transient state?

Number of visits to transient state is a geometric distribution.
Pr(n) = fi (1~ fa)
The expected number of visits to transient state ¢ is

1
REZ

E(X)

where f;; is the probability of visiting state 4 if chain starts in state ¢

3.4 Some useful formulas

lim,, o0 (1 — —)n =e?

— N

e

limp_o (1 — Mo + o(h))

3.4.1 Law of total probability

Pr(A) =Y Pr(A|B;)Pr(B)

3.4.2 Conditional (Bayes) formula

Pr(A|B) = %j’;)

3.4.3 Inverse of a 2 by 2 matrix
d —b]

{a b]‘l_ [—c a

c d "~ ad—bc

3.44 wj=

The above says that for a regular finite MC, where a stationary probability exist (and is
unique), then it is inverse of the mean number of steps between visits u; to state j in steady
state.
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3.4.5 w=wP

The above says that for a regular M.C. there exist a stationary probability distribution w

3.4.6 Poisson random variable

N is number of events that occur over some period of time.
N is a Poisson random variable if

1. N(0)=0

2. Independent increments

3. P(N =n) = e

n!

Where ) is the average number of events that occur over the same period that we are asking
for the probability of this number of events to occur. Hence remember to adjust A\ accordingly
if we are given A as rate (i.e. per unit time).

3.4.7 Poisson random Process

N(t) is a Poisson random variable if
1. N(0)=0
2. Independent increments

3. P(N(t) =n) = 20"

n!

Where A is the average number of events that occur in one unit time. So N(t) is random
variable which is the number of events that occur during interval of length ¢

The probability that ONE event occure in the next h interval, when the interval is very small, is Ah + of

This can be seen by setting n = 1 in the definition and using series expansion for e~** and
then letting h — 0

Expected value of Poisson random variable: E(N) = A. For a process, E(N(t)) = At where
A is the rate.

3.4.8 Exponential random variable

T is random variable which is the time between events where the number of events occur as
Poisson distribution,

pdf: f(t) = Ae™

o0

e Mds = e M

P(T >t)=
P(T <t)

o —leM -1 =1—eM

/)\e"\sds =— e‘As}t =
0

’ pdf=derivative of CDF ‘

Probability that the waiting time for n events to occur < t is a GAMMA distribution.
gn(t) = (n— 1)!()‘t)n Le X
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3.5 Diagram to help understanding

[ R,

K‘Qﬂ \D\l Ly = Teb a-\\ \Dé)ﬁ& Ao enve d bA

3#«‘-«3\‘1&‘,h 11_’ . N\ wheep b

-\
E(_L_Q) '—Z:"& . = Db o) bey sbsorlbl 8 C(”S)

Y

Zpme Seaa

\"
o ; f'Z

3.5.1 Continouse time Markov chain

v; is the parameter (rate) for the exponential distributed random variable which represents
the time in that state. Hence The probability that system remains in state ¢ for time larger
than ¢ is given by

Pr(T; >t) =e "

o) Jump probability @Q;; = q” for i # j. This is the probability of going from state i to state
Jj (once the process leaves state i)

o) FOrward Komogolv equation
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P'(t) = P(t)Q, let z(t) = 2(0) P(t), hence 2'(t) = 2(0) P'(t) , hence 2'(t) = 2(0) P(t) @
therefore

Z(t) = 2(t) Q

o) Balance equations

7Tj’vj= E qkjﬂ'k

kit
This is "flow out’ = 'flow in’.

This equation can also be obtaind more easily I think from 7¢) = 0 Where @ is the matrix

made up from the ¢'s and the v's on the diagonal. Just write then down, and at the end add
o+ m +--- =1 to find 7
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4.1 Computing Assignment 1. Wed 2/7/08

Grade 5/5.

A problem in conditional probability (the first simulation HW, confidence interval, histogram)
see first hand out for more details

42 e 1jR2][0Y
/%//w//z/""/ -/ /eLﬁ /

A Problem in Conditional Probability

A number is chosen at random from the interval [0,1]. This value is placed in a
box, and twice this value is placed in a second box. One of these boxes is selected at
random and opened to reveal the number inside. Given this observed value, what is the

probability that this number is the smaller of the two.

1. A Solution Let the random variable X denote the observed number, and let S
denote the event that the selected box contains the smaller number. We seek P(S|X = z)
for 0 < z < 2. The quantity P(S|X = z) is undefined for other values of z. We will apply

|

Bayes Theorem which gives us v [od =3
N NAA

G y &)
P61 = ) = ZEPE)

where fx(z) is the density function of the random variable X, and fx(z|S) is the condi-
tional density of X given the event S. If 1 < z < 2, then evidently we have the larger of
the two numbers, and so P(S|X = z) = 0 when 1 < z < 2. Thus, we need consider only
the case 0 < z < 1. Since a box is selected at random, P(S) = 1/2. Next, the conditional
density of X given the event S is just the uniform density on [0,1]. Thus, fx(z|S) =1
for 0 <z <1, and fx(z|S) = 0 otherwise. Finally, to determine the density function of

the random variable X, we use U[""\ [ ulo2] ,’L £ o pH A

RS AT U ez ff/c'{"‘/’ Cland
fx (@) = fx(|S)P(S) + fx(|S)P(S5) . Uled*7 —s vle2]

The conditional density of X given the event S, is the uniform density on [0,2]. Thus,
fx(z]S) =1/2 for 0 < x < 2, and fx(z|S) = 0 otherwise. Hence, for 0 <z < 1,

Jx(@) = Sx(@IS)P(S) + Sx@ISP(S) =1- 5+ 55 = 73,

while for 1 < z < 2,

Fx(@) = Fx(@lS)P(S) + Fx(aISIP(S) =0+ S + 15 =

—_
DO =

1

1

and otherwise, fx(z) = 0. Returning now to the formula for P(S|X = z) we have for
O< < 1,

P(S|X =z) = % _

Wl
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2. Expected Value of Y Suppose now the strategy is to switch if the observed {/«n

This result shows that when we select a box at random, and observe a value between 0

and 1, there is a 2/3 chance that the observed value is the smaller of the two.

. TFr~ ol
Exercise S s

Suppose that when we select a box, and observe the value, we have an opportunity

,JZ ik
' %p//,/ to switch to the other box. The result above suggests that if we observe a value

between 0 and 1, then we should switch, and otherwise, hold the value we have.

Let the random variable Y denote the reward using such a strategy. Write a

simulation program (in MATLAB, say) to estimate the expected value of Y. Use a

—

95% confidence interval, and determine the sample size so that the relative accuracy
_SPatolliceniog M es vas

_of your estimate is about one percent. In your report, explain how you determined

your sample size. Also, compare theory and practise; that is, did your confidence

t‘“
interval 1nclude the true leue s enymle S 1 ;CL
é / / x —Crel
neeel <

—_—

value is less than or equal to 1, and otherwise to hold. Let Y be the reward using this

strategy. Then
EY)=EY | X<1H)PX<1)+EY |X>1)P(X>1).

Consider first the events {X < 1} and {X > 1}. In order for the event {X > 1} to
occur, we must select the box with the larger value, which occurs with probability 1 /2, and
also the original value must be in the interval (1/2,1), which occurs with probability 1/2.
Since these two events are independent, it follows that P(X > 1) = (1/2)(1/2) = 1/4,
and further, P(X <1)=1-1/4=3/4.

Next consider the expected value of Y given that the event {X > 1} has occurred.
Then Y is the observed value X. Given that the event {X > 1} has occurred, the random

variable X is uniformly distributed over the interval (1,2). Hence, E(Y | X > 1) = 3/2.
Ll i st kst =X
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Consider now the expected value of Y given that the event {X < 1} has occurred.
Here, we will switch to the value in the other box. However, we will either («) switch to
the larger value, which occurs with probability 2/3, or (3) switch to the smaller value,
which occurs with probability 1 — 2/3 = 1/3. In case (a), Y is the larger value, which
is uniformly distributed over the interval (0,2). Hence its expected value is 1, and so
E(Y|a) = 1. In case (f), Y is the smaller value, which now, because the event {X < 1}
has taken place, is uniformly distributed over the interval (0,1/2). Hence, the expected

value is 1/4, and so E(Y|f) = 1/4. Thus,
B(Y | X 1) = B(Y]a)P(a) + E(YI))P(6) = 1- +

We are ready finally to compute the expected value E(Y'). From the formula above,

we get

_E(Y)=E(}|X <1)P(X <)+ E(Y|X > )P(X > 1) = % .

Exercise

1. Find the density function of the random variable Y.

brade co Tl %(zx} 7(%(':)/5‘) P(s) wf\r(tllf) P(3)
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4.1.1 Problem description

A number is chosen at random from the interval [0,1]. This value is placed in a
box, and twice this value is placed in a second box. One of these boxes is selected at
random and opened to reveal the number inside. Given this observed value, what is the
probability that this number is the smaller of the two.

1. Suppose that when we select a box, and observe the value, we have an opportunity
to switch to the other box. The result above suggests that if we observe a value
between () and 1, then we should switch, and otherwise, hold the value we have.
Let the random variable YV denote the reward using such a strategy., Write a
simulation program (in MATLAB, say) to estimate the expected value of ¥. Use a

95% confidence interval, and determine the sample size so that the relative accuracy

of your estimate is about one percent. In your report, explain how you determined

vour sample size. Also, compare theory and practise; that is, did your confidence

interval include the true value.

4.1.2 Purpose and design of project

The purpose of this project is to estimate the expected value of a random variable (called
Y') which is generated by an experiment that is described in the above problem statement.
Each experiment generates one random variable y. The experiment is described well in the
above problem statement and no need to repeat it here again.

In addition, we are asked to determine the interval over which we are 95% confident the
estimated expected value will lie within. We are asked that the interval should not be wider
than 1% of the true mean from either side of the estimated expected value.

The simulation involve a two stage process. In the first stage, an initial simulation was
made for 20,000 experiments in which we obtained an estimate of the population standard
deviation s and estimate of the population mean given by the sample mean X. These 2
values are used to determined the sample size (number of experiments) needed for the second
simulation performed to meet the above stated requirement for relative accuracy in expected
value of Y. Therefore, once the first simulation is completed, the sample size for the second
simulation was found by solving for n (sample size) by setting the expression for the standard
error to be 1% of the population mean (in which we are using an estimate of which is X as
generated by the first simulation). Therefore, we solve for n from

S —
1.96— = 0.01X
Vn

Finally, the second simulation was now run using the above computed n, and the confidence
interval was found from

_ S — S
Cl.=<X—-196— --- X+1.96—
{ AR ﬁ}

Where in the above equation the s and X are the sample standard deviation and the sample
mean resulting from this second simulation (and not the first simulation run used to estimate

Next, the histogram Y was plotted to obtain an estimated of the probability density function
of Y.
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4.1.3 Summary of numerical results

For the initial simulation run, we used 20, 000 experiments and obtained the following estimate
of the standard deviation and the population mean

s = 0.625760
X =0.931717

Now solve for n from

s —_
1.96— = 0.01X
NG

Running the second stage simulation now to estimate the expected value of Y we obtain the

we found

following result that the estimate of the expected value of Y is

X =0.9311632

and the 95% confidence interval was found to be

{0.92190 - -- 0.94043}

4.1.4 Discussion of numerical results

Since we know that the true value of E(Y) = 12 = 0.9375, we see that the

’95% confidence interval did contain the true value‘

We also notice that the relative error in X (the estimate of the expected value) when compared

to the true mean p = 12 is calculated as ";X = 0957509811632 — 0.006759 3 ~ 0.7% which is

little below the 1% requirement.

We note that the value of the relative error did not come out exactly 1% because we used
an estimate of the true mean in order to find the sample size needed for the calculation.

The result of the simulation is the estimate of the PDF of Y which is shown in the plot below.
The number of bins used is 50. This was determined by trial and error to obtain the most
pleasing looking histogram.
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HW1 Mathematica 504, CSUF apring 2008

sirmlation[17328], s = 0.62229, X = 0.93116302, » = 0.9375
95 perecent confidence interval for mean iz (0.92190 ... 0.94043)

1 T T T T T T

0s

[ lsimulation POF

_ — —=—gxact POF
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— — — ——

0.4
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o ——
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#=final obsered value

a 0z 04 0B 08 1 1.2 1.4

16 18 2

We note that the true PDF is given below (derived in the class) and we see from the above
plot that the estimated PDF is very close to the analytical PDF.

3 0<y<o05
PY=y)=4 1 05<y<l1
% 1<z <2

4.1.5 Code listing

nma_Math504__HW1.m

~

function nma_Math504_HW1(nBins,nSims,seed)

%by Nasser Abbasi, HW1, Math 504
%calculate expected value of y by simulation

%clear all; close all;

YA

% CONSTANTS and PARAMETERS
%

%nSims = 20000;

%nBins = 50;

%seed = 01010101;

skip = round(0.01*nSims);
a=0; b=1;

str = 'HW1 Mathematics 504
str =[str '\nsimulation[%d],
barWidth = 2/nBins;

CSUF spring 2008';

h
5 INITIALIZATION

std[%4.3f], mean[’%6.5f],

true mean[%5.4f]'];
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A
rand('twister',seed);
box = zeros(1,2);

y = zeros(nSims,1);
figure(1);

h
% LOGIC
%
for i=1:nSims
box(1)=rand;
box (2)=2*box (1) ;
boxSelected=((a + (b-a).*rand)<=.5)+1;

y(i)=box(boxSelected) ;

if y(i)<=1 Yswitch box if needed
if boxSelected==1
boxSelected=2;
else
boxSelected=1;
end

y(i)=box(boxSelected) ;
end

[n,x]=hist(y(1:i),nBins);

currentArea = barWidth*sum(n);

if mod(i,skip)==
bar(x,n/currentArea,'y'); Jrelative frequency
title(sprintf(str,i,std(y),mean(y),15/16));
xlabel ('x=final observed value');
ylabel('P(X=x)"');
xtrue=[0 .5 .56 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue, 'Color','r', 'LineWidth',4);
ylim([0,1]);
legend('simulation PDF','exact PDF');
drawnow;
pause(0.01)

end

end

end

nma_ Math504_ HW1_ as script.m

function nma_Math504_HW1_part2()

%by Nasser Abbasi, HW1, part 2, Math 504
%calculate expected value of y by simulation

%This scripts simulates the pdf of the observed value from
#the following expeirment:

h

%pick a random number x from uniform[0,1], put this
Jnumber in a box, and put twice the number in a second
%box. Next, pick one of these boxes by random, and look
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%at the number inside. Call this y. If the number is smaller than
%one, then switch the box. Find the pdf of final y observed y, and
%find the estimate of the mean of y.

%Notice that O0<= y <= 2.

clear all; close all;

seed = 01010101;
rand('twister',seed);

% First do an initial estimate using simulation to estimate
% population mean and standard deviation, and then use these to
% obtain the needed sample size for the error level required

[s,xBar] = initialEstimate();
err = 0.01 * xBar;
((1.96%s) /err)~2;

sampleSize

YA
% CONSTANTS and P ARAMETERS
A

nBins = 50;

skip

round (0.01*sampleSize) ;
barWidth = 2/nBins;

YA

% INITIALIZATION

YA

y = zeros(sampeSize,1);

figure(1);

set (0, 'DefaultTextinterpreter', 'none');
h=title('');

axpos = get(gca, 'pos');

extent = get(h, 'extent');
set(gca, 'pos', [axpos(1) axpos(2) axpos(3) axpos(4)-.45*extent(4)]);
set(h, 'VerticalAlignment', 'Middle');

%
% LOGIC
%
for i=1:sampleSize
y(i) = makeAnObservation();
% currentArea = barWidth*sum(n);
if mod(i,skip)==
generateOneFrame(y(1:i) ,nBins,sampleSize) ;
end
end

generateFinalResult (y,nBins) ;

end

Tt o o oo o To o ToToToToToToToToToTo T o oo oo Fo 1o
b
b
Tl oo o oo oo lo oo ToToToToToToTo oo oo oo oo o
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function [s,xbar]=initialEstimate()
sampleSize = 20000;
y = zeros(sampleSize,1);

for i = 1:sampleSize
y(i) = makeAnObservation()

end
s = std(y);
xbar = mean(y);
end

Tt lo oo oo oo ToToToToToToToToToToToTo oo oo oo oo
h
h
Tl oo oo o o oo o ToToToToToToToToToTo o oo oo oo o

function y = makeAnObservation()

box = zeros(1,2);

box(1) = rand;

box(2) = 2*box(1);

boxSelected = (rand<.5)+1; %pick a box by random

y =box(boxSelected) ;

if y <=1 %switch box if needed
if boxSelected ==
boxSelected = 2;
else
boxSelected = 1;
end

y = box(boxSelected);
end

end

ToloToToToTo 1o o oo foToToTo 1o 1o o o o o ToToTo T Jo o o o o o
b
b
ToloToToToTo oo oo ToToTo 1o 1o o o o o JoToTo 7o o o o o oo

function generateOneFrame(y,nBins,sampleSize)
currentFrameNumber = length(y);

firstLineTitle '"HW1 Mathematics 504, part(2) CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=V6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$";

[n,x]=hist(y,nBins);
bar(x,n/sampleSize,'y'); %relative frequency
ls=sprintf (secondLineTitle,currentFrameNumber,std(y) ,mean(y),15/16);

h=title(char(firstLineTitle,ls), 'fontsize',12, 'interpreter','latex');
xlabel ('x=final observed value');
ylabel ('P(X=x)');
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xtrue=[0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue, 'Color','r', 'LineWidth',2, 'LineStyle','--');
ylim([0,1]1);

legend('simulation PDF','exact PDF');

drawnow;

end

Tl o o oo oo loToToToToToToToToToTo oo oo oo o 1o
)
)
Tl lolololo oo foToToToToToToToToToToTo oo oo oo oo 1o

function generateFinalResult(y,nBins)

sampleSize = length(y);

firstLineTitle 'HW1 Mathematics 504, CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$"';

.
(]
% Compare estimated mean with theortical mean

h

estimatedMean = mean(y);
standardError = 1.96+*std(y)/sqrt(sampleSize) ;
1lss=sprintf('95 perecent confidence interval for mean is (%6.5f ... %6.5f)',...

estimatedMean-standardError,estimatedMean+standardError) ;

ls=sprintf (secondLineTitle,sampleSize,std(y) ,mean(y),15/16);
title({firstLineTitle,ls,1lss}, 'fontsize',12, 'interpreter', 'latex');

[n,x]=hist(y,nBins);
bar(x,n/sampleSize,'y'); %relative frequency
ls=sprintf (secondLineTitle,sampleSize,std(y) ,mean(y),15/16);

h=title(char(firstLineTitle,ls), 'fontsize',12, 'interpreter','latex');
xlabel ('x=final observed value');

ylabel('P(X=x)');

xtrue=[0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];
line(xtrue,ytrue, 'Color','r', 'LineWidth',2, 'LineStyle','--');
ylim([0,11);

legend('simulation PDF','exact PDF');

drawnow;

end

nma_ Math504_ HW1_ partl_as_ script.m

% file nma_Math504_HW1_partl_as_script
%by Nasser Abbasi, HW1, Math 504

%This scripts simulates the pdf of the observed value from
#the following expeirment:

)

%pick a random number x from uniform[0,1], put this
Jnumber in a box, and put twice the number in a second
%box. Next, pick one of these boxes by random, and look
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%at the number inside. Call this y. Find the pdf of

%y. Notice that O0<=y <= 2.

clear all; close all;

%
% CONSTANTS
%

nSims = 20000;

nBins = 50;

seed = 01010101;

skip = round(0.01*nSims);

PARAMETERS

Jmy seed to reproduce same results.

str = 'HW1 Mathematics 504, part 1. CSUF spring 2008';

str =[str '\nsimulation([%d],

barWidth = 2/nBins;

h

% INITIALIZATION

A
rand('twister',seed);
box = zeros(1,2);

y = zeros(nSims,1);
figure(1);

A

% LOGIC

A

for i=1:nSims
box(1) = rand;

box(2) = 2xbox(1);
boxSelected = (rand<.5)+1;
y(i)=box(boxSelected) ;

[n,x]=hist(y(1:1i) ,nBins);
currentArea = barWidth*sum(n);

if mod(i,skip)==

bar (x,n/currentArea, 'y');

std[%4.3f], mean[%6.5f],

hrelative frequency

title(sprintf(str,i,std(y),mean(y),3/4));

xlabel ('x=observed value');
ylabel('P(X=x)"');

xtrue=[0 1 1 2]; ytrue=[.75 .75 .25 .25];
line(xtrue,ytrue, 'Color','r', 'LineWidth',2, 'LineStyle','--"');

ylim([0,1]);

legend('simulation PDF','exact PDF');

drawnow;
%pause (0.01)
end
end

title(sprintf (str,nSims,std(y) ,mean(y),3/4));

true mean[’%5.4£f]'];
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nma_ Math504_ HW1_ part2.m

function nma_Math504_HW1_part2()

%function nma_Math504_HW1_part2()

b

%This function simulates the pdf of the observed value from

%the following expeirment:

)

%pick a random number x from uniform[0,1], put this

Jnumber in a box, and put twice the number in a second

%box. Next, pick one of these boxes by random, and look

%at the number inside. Call this y. If the number is smaller than
%one, then switch the box. Find the pdf of final y observed y, and
%find the estimate of the mean of y.

%Notice that O0<=y <= 2.

%by Nasser Abbasi, HW1, part 2, Math 504
clear all; close all;

seed = 01010101;
rand('twister',seed);

% First do an initial estimate using simulation to estimate
% population mean and standard deviation, and then use these to
% obtain the needed sample size for the error level required

[s,xBar] = initialEstimate();

err 0.01 * xBar;

sampleSize = round(((1.96%*s)/err)~2);
fprintf ('s=)f, xBar=)f\n',s,xBar);

)

% CONSTANTS and P ARAMETERS

YA

nBins = 50;

skip = round(0.0l*sampleSize); /for simulation, skip frames

%

% INITIALIZATION

%

y = zeros(sampleSize,1);

figure(1);

set (0, 'DefaultTextinterpreter', 'none');
h=title({'',"'',"'});

axpos = get(gca, 'pos');

extent = get(h, 'extent');
set(gca, 'pos', [axpos(1) axpos(2) axpos(3) axpos(4)-.20%extent(4)]);
set(h, 'VerticalAlignment', 'Middle');

%

% LOGIC

%

for i=1:sampleSize
y(i) = makeAnObservation();
if mod(i,skip)==

generateOneFrame(y(1:1) ,nBins) ;

end
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end
generateFinalResult (y,nBins);

end

TotooTotoToTo o 1o 1o ToTo Yo To 1o o To o Jo 1o JoTo o Jo to o Fo o To o
yA

A

T IR IIIT LIS To oot loto o TotofoTo o To o

function [s,xbar]=initialEstimate()

sampleSize = 20000;
y = zeros(sampleSize,1);

for i = 1:sampleSize
y(i) = makeAnObservation();

end
s = std(y);
xbar = mean(y);
end

ToloToToTo 1o 1o o oo ToToTo 1o 1o o o o o JoToTo T o o o o o o
)
b
oo ToTo 1o oo o oo o o ToTo 1o 1o o o o o ToToTo 1o 1o o o o o o

function y = makeAnObservation()

box = zeros(1,2);

box(1) = rand;

box(2) = 2%box(1);

boxSelected = (rand<.5)+1; %pick a box by random

Y = box(bOXSeleCted);

if y <=1 %switch box if needed
if boxSelected ==
boxSelected = 2;
else
boxSelected = 1;
end

y = box(boxSelected);
end

end
TotooTotoToTofoTotoToTo foTo To o To o Jo to JoTo o Jo to o To o o o
yA

A

TotooTotoToTo o To toToTo Vo To to o To o Jo o Jo o o T Fo o Fo o o o

function generateOneFrame(y,nBins)

barWidth = 2/nBins;

sampleSize = length(y);

firstLineTitle = 'HW1 Mathematics 504, part(2) CSUF spring 2008';

secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=%5.4f$"';
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[n,x] = hist(y,nBins);

currentArea = barWidth*sum(n) ;

bar(x,n/currentArea,'y'); ‘relative frequency
ls=sprintf(secondLineTitle,sampleSize,std(y) ,mean(y),15/16);

title(char(firstLineTitle,ls), 'fontsize',12, 'interpreter', 'latex');
xlabel ('x=final observed value');

ylabel('P(X=x)');

xtrue = [0 .5 .5 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];

line(xtrue,ytrue, 'Color','r', 'LineWidth',2, 'LineStyle','--');
ylim([0,11);

legend('simulation PDF','exact PDF');

drawnow;

end

Tt lo oo oo oo ToToToToToToToToToToToTo oo oo oo oo
h
h
Tl oo oo o o oo o ToToToToToToToToToTo o oo oo oo o

function generateFinalResult(y,nBins)

barWidth = 2/nBins;
sampleSize = length(y);

firstLineTitle 'HW1 Mathematics 504, CSUF spring 2008';
secondLineTitle = 'simulation[$%d$], $s=%6.5f$, $\\bar{X}=%9.8f$, $\\mu=J5.4f$"';

h

% Compare estimated mean with theortical mean

A

estimatedMean = mean(y);

standardError = 1.96*std(y)/sqrt(sampleSize);

lss=sprintf('95 perecent confidence interval for mean is (%6.5f ... %6.5f)',...

estimatedMean-standardError,estimatedMean+standardError) ;
ls=sprintf(secondLineTitle,sampleSize,std(y) ,mean(y),15/16);

[n,x]=hist(y,nBins);

currentArea = barWidth*sum(n) ;

bar(x,n/currentArea,'y'); Y%relative frequency
title({firstLineTitle,1ls,1ss}, 'fontsize',12, 'interpreter', 'latex');
xlabel ('x=final observed value');

ylabel('P(X=x)"');

xtrue=[0 .56 .56 1 1 2]; ytrue=[.75 .75 .25 .25 .5 .5];

line(xtrue,ytrue, 'Color','r', 'LineWidth',2, 'LineStyle','—-"');
ylim([0,1]);

legend('simulation PDF','exact PDF');

drawnow;

end
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rhist.m

function [no,xo] = rhist(varargin)

JRHIST Relative Histogram.

% N = HIST(Y) bins the elements of Y into 10 equally spaced containers

% and returns the relative frequency of elements in each container. If Y is a
% matrix, RHIST works down the columns.

)

h N
)

h N
%  among bins with centers specified by X. The first bin includes

RHIST(Y,M), where M is a scalar, uses M bins.

RHIST(Y,X), where X is a vector, returns the relative freqency of Y

% data between -inf and the first center and the last bin

% includes data between the last bin and inf. Note: Use HISTC if

% it is more mnatural to specify bin edges instead.

b

% N = RHIST(Y,M,Any_Character) returns relative frequency density of

% Y among bins.Any_Character is the any character inside single quotation
% or any numeric value.

% You can omit second optional argument using single quotation

% i.e. N = RHIST(Y,'',Any_Character) returns relative frequency density
% for 10 bims.

% It is to be noted that sum(N)equals unity for relative frequency

% while area under curve for relative frequency density equals unity.

% Note that as size(Y,1) and M increases relative frequency density is
% close to probability demsity for continous random variable.

b

% [N,X] = RHIST(...) also returns the position of the bin centers in X.
)

% RHIST(...) without output arguments produces a histogram of relative
%  frequency or relative frequency densisty bar plot of the results.

% The bar edges on the first and last bins may extend to cover the min
% and max of the data unless a matrix of data is supplied.

)

% RHIST(AX,...) plots into AX instead of GCA.

)

% Class support for inputs Y, X:

A float: double, single

)

%  See also HIST.

%  Copyright 2004-2005 Durga Lal Shrestha.
%  $Revision: 1.0.0 $ $Date: 2005/6/20 14:30:00 $

% Parse possible Axes input

error (nargchk(1,inf ,nargin));
[cax,args,nargs] = axescheck(varargin{:});

y = args{1};
if nargs ==
x = 10;
elseif nargs ==
x = args{2};
else
if isempty(args{2})
x = 10;
else
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x = args{2};
end
end
[m,n] = size(y);
[nn,x]=hist(y,x); % frequency
nn = nn./m; % relative frequency

% relative frequency density
if nargs ==

binwidth = x(2)-x(1);

nn = nn./binwidth;
end

if nargout ==

if ~isempty(cax)

bar(cax,x,nn, [min(y(:)) max(y(:))],'hist');
else

bar(x,nn, [min(y(:)) max(y(:))], 'hist');
end
xlabel('y"')
if nargs ==

ylabel('relative frequency density')
else

ylabel('relative frequency')

end
else

no = nn;

X0 = X;
end

hwl.nb Mathematica
lhw1.nbl

4.2 Mon 2/5/08

Grade: 2/2.

Derive PDF of Y from an experiment where we switch boxes, uses probability decision tree

4.2.1 Problem description
This problem is a follow up on the problem described in HW1.

In this problem we are asked to derive analytically the PDF of the random variable Y by
conditioning on the box selected.

Y is the random variable which is the observation from the following experiment: Generate
random variable X from uniform [0, 1]. Put this number is box labeled S and put twice this
number in a box labeled S. Next, we pick one of these 2 boxes by random. If the number
inside the box selected is found to be greater than 1, then we switch the boxes and pick the
number inside the second box. The random variable Y is the final number selected.



HWs/HW1_assigned_janurary_23_2008/code/hw1.nb
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4.2.2 Solution

We first note the following known probabilities in this problem. The probability of picking
box S or box S is % Once we pick box S, then we have to switch the box. If we pick the S
box, then we switch only if the observed X is less than 1.

To help solve this problem, we start by drawing the decision tree describing the possible flow
and assign a probability to each branch. At the end of each branch we draw the PDF of
Y resulting from traversing that branch only. Next, we combine (add algebraically) all the
PDF’s together after we scale each PDF by the probabilities found along the edges which
lead to the end of the branch.

Pick random variable X
from uniform [0,1]. Put this
number in box S and twice
this number in box $
MNext, pick one box by
random
N\
7 N\
Picked S box *~ \Picked § box
P=1/2 \ P=1/2
e
z In this state \
X<1 we always Observe the value
= switch since X and decide if we
I x=1 need to switch
! Switch box to § ,A\
+ xX=1 / \\
= =
Observe value P ”?/ )i 1
inS box / \P=1/2
. | \
l Switch box to S i \\ Since Xo1
we use this
Y ¥ \ \value asyY
i Observe value :
1% in S box Y
- 1
0 2
A Y u 1 2 -
2
0 4 1 2

Using the above diagram as a guide, we now calculate the PDF for Y as follows (starting

from the right most branch to the left most branch)
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) : 0<y<3 | 4 2 O0<y<y; | 4 0 O<y<s
3 l<y<2 0 1<y<2 1 1<y<?2
I o<y<i 1 O0<y<i 0 O<y<1i
=<3 3<y<l +¢ 0 i<y<l 440 1i1<y<l
T l<y<2 0 1l<y<2 Tol<y<2
P
= ‘-11 s <y<l
3 l<y<?2

4.3 Wed 2/20/2008

Grade: 2/2.

The long analytical problem. Problem #4 from handout #3 above. Solving Einstein-Weiner
pde using fourier transform
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4.3.1 Problem

; Solve the partial differential equation

of _ daf) 3
- Ja?

— +D—.

ot dr J
for the Ornstein-Ehrenfest process. Use the Fourier transform (see definition in
previous problem), and the following steps. (a) Multiply the differential equation

through by e~%* and integrate with respect to x over the interval (—o00,00). Then
use integration by parts three times to obtain the equation

] g

E = —f’?fa -

Dy’¢ |
where

$(y,t) = \’% / Z flz, t)eV*dz .

In doing the integrations by parts, assume that

af(z, t)

zf(x,t) = 0, and D

=0, as r— to0.

(b) Introduce the integrating factor

D ,
10)= o0 (2)
() = exp ( 53

and show that u(y, t) = I(y)d(y,t) satisfies the hyperbolic equation

ou + cy B =0

ot Yoy T

subject to the initial condition u(y,0) = uy(y) = I(y)é(y,0) for —cc < y < oco.
Note that @(y,0) is the Fourier transform of f(x,0), the density of the location of
the particle at time ¢ = 0.

(¢) Use the method of characteristics to solve the previous hyperbolic equation and
conclude that

u(y, t) = uy (_rﬂ"”) , for —co<y<ooc and £ 2> 0.

Then, using the definitions of u(y,#) and wug(y), deduce that

1 . D -
oy, t) = exp (—;az(ﬂy?) @ (ye""',ﬂ) , where o(t) = — (1 - "’"') .

L

(d) To simplify the analysis, assume that the particle starts at a point xy. Thus,
the initial density of position is a dirac-delta function centered at the point rg. It
follows that

1 :
I’:’{y|[]) = —‘)f'_w"'" 1
&

In this case, use the previous result to conclude that

1 1 . 2 . .
oy, t) = \/Tvxp (—Eﬂz(n‘]y" - :y,u.(.!]) , where ji(t) = xe™ .
=i

(¢) Set b/a = —pu(t) and 1/4a* = (1/2)o?(t). and use the result of part (¢), Problem
3, to conclude that

&y, t) = Fr(- )](y) ,

where

R e B W ST GAY
"ot = Ve oP 2( 2(0) )]

Thus, f(x,t) = r(x.f), which is the solution given above for the Ornstein-Ehrenfest
model.
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4.3.2 Solution

The PDE equation to solve is

of (z,t) _ O(zf(z,t)) 0 f(z,t)
ot ¢ Ox +D 02

part A

multiply through by e~®%® and integrate w.r.t. x from —oco to co we obtain

0 ( r » Ooa(xf(x t)) _ 0% f(z,t) -
Wy — iy iy
5 f(z,t)e dm) c / o dx + D / — dz (A)

—0o0

Now do integration by parts on the first and second terms on the RHS above. We start with
the first term

dv
/%(xf(x,t))e_”yxdx = [vu]>, — /vdu

= [zf(z,t) e )7 —l—zy/ zf(z,t) e ¥ dx

—0o0

Using the assumption given that zf(z,t) — 0 as x — oo then the first term above will
vanish leaving

/%(wf(w,t))e‘iwdx = iy/xf(x,t) e Y dg (1)

Now we need to solve the RHS of the above. To do that, we take the derivative of the Fourier
transform itself with respect to its variable y and write

d d 1 [ e
S0 = d‘yﬁé f@.) e da
1 [d e
= E d—(f(x t)e ™) d

—iz f(z,t) e ¥dx

Therefore we see that

= |iv2r i F [f] (y) (2)
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We now use this result to complete the solution. Substitute (2) into (1) we obtain

o0

/ a%(xf(x,t)) i gy — —y\/_ S 1) (3)

—00

And using

Then (3) becomes

[ Bt evmdo = —yvom oty )

Now going back to equation (A) above, we do integration by parts twice on the second term
on the RHS of that equation and obtain

u

82
—zya: — —iyx
D / 8x2 dr =D / (%{ 5 } dz

= DA [vu| — vdu

-D laf(:v t —zyx} —|—Zy (Z t) e—iywdx

of (z t)

The term [%e‘iw} vanishes from the assumption that — 0 as £ — +00, hence

—0o0

the above becomes

dv

0% f(z,t 0 t
D/ wz ) —zyxdw D zy/' f(x ) —Zy.'l)d
oz oz

—0o0

Doing integration by parts again on the above we obtain

2 oo
D/(9 z,%) e~ dx = iyD< [vu] — /vdu

—0o0

=iyD< [f(z,1) e"iy“’]iooo + iy/f(m, t) e ¥ dx

The term [f(z,t) e=%%]>_ vanishes from the assumption that f(z,t) — 0 as  — +o00, hence
the above becomes
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o (e o]
D/a ];:2 .Y e Wy = yzD{/f(x,t) eiy’”dx}

= —y’DV2rr [f] (y)
= —y’DV2ré(y, 1) (5)

Substituting (5) and (4) into (A) gives

%( (o) dw) — —eyVEr 00, 0) ~ 1 DVERH(0, 1)

Hence
0 0 9
\/ﬂaqﬁ(y,t) = —cy\/ﬁa—yﬂy,t) — y*DV2ré(y, ¢)
Simplifying
a - Yo, Dy* ¢(y,t)
part B
We need to show that
u(y,t) = I(y) ¢(y, 1) (1)

satisfies the hyperbolic equation shown below in (2), where I(y) = exp (£¢?) and ¢(y,t) =

\/%/f(x, t) e ¥2dx

ou 8u
=0 2
a " Yoy @)
One way to do this is to plug in the expression for u(y,t) given in (1) into the LHS of (2)
and see if that gives zero. Hence the LHS of the above pde becomes

LHS = % + ygz
g; ) 9(0:0) + 5 1) (0,
o0,0) 252 + 1) 2| oot TG+ 10) 90| o

But al(y) =0 and ag_(yy) = %I(y) and % = —cy? Zt) Dy? ¢(y,t) since this is the pde
we obtalned in part(A), hence putting all these into (3) we obtain

=02 6.0 | + v ot 0) 22 1) + 1) P2

LHS = {I(y) {—cy%z’t)

A\ A
e ~N

=) %ﬂjt) —I(y) Dy’ $(y,t) + 1(y) Dy*$(y, 1) +eyI(y) —a“g’ 2

-
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Which is zero.

Hence u(y,t) = I(y) ¢(y, t) satisfies ?9—1; + cyg—z = 0 by direct substitution.

Part C

Now we need to solve the first order hyperbolic PDE equation

ou ou

5 ya_y =0 (1)

In the method of characteristics we convert the PDE to an ODE by looking for parametric

path along which solutions for PDE exist. Let ¢t = ¢(s) and y = y(s) where s is a parameter.
So now we can write

u = u(t,y) = u(t(s), y(s))

Therefore taking full derivative of u w.r.t. to the parameter s we obtain using the chain rule
the following

du . Ou dt au@

o _ o, 9t 2
ds Otds + Oy ds )
Compare (2) to (1) we see that if we set
dt
=1 (2.1)
with the initial condition ¢(s = 0) = 0 and if we set
& _ cy (2.2)

ds

with initial condition y(s = 0) = yo, then this would make Z—z = 0, which means that the
solution is constant along each specific parameter s which is what we want. Let the initial
condition u(s = 0) = u(y(s = 0),t(s = 0)) = ug(yo, 0) . Hence solution to % = 0 is

u = to(Yo) (3)

Now, from (2.1) we have ¢t = s since ¢(0) = 0 and from (2.2) we have y = ype®*where y, comes
from initial condition of y(s) as above.

Now, since t = s hence we have

y= yoed

Hence solve for y, we have
—ct

Yo = Ye

Pluging the above into (3) gives

u(t,y) = uo(ye™)

Which is the solution for £ > 0 and —c0 <y < o0
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Now to show the final part. From part(B) we showed that

u(y,t) = I1(y) ¢(y, ) (4)

But since u(t, y) = uo(ye™ ) then we write (4) as

uo(ye™) = I(y) b(y, ) (5)

But
uo(ye) = I(ye™) ¢(ye,0) (6)

which is the initial conditions we are given in the problem statement (where I replaced y by
ye~") Hence plug (6) into (5) we obtain

I(ye™) ¢(ye*,0) = I(y) ¢(y, 1)

or

d(y,t) = d(ye™,0) (7)

e—C ex %( e_Ct)2 —9¢ —9%¢
Bus 1550 = HEE) — e Byt - £47) = exp (<471 - )

Hence (7) becomes

d(y,t) = exp (—%yz(l - e‘“)) ¢(ye *,0)

Letting o%(¢) = 2(1 — e72*), then the above can be rewritten as

d(y,t) = exp (—30%(t) y?) dp(ye~,0) (8)

Part (D)

Since now ¢(y,0) = = exp (—iyzo), then

P(ye™*,0) = \/%_ﬂ exp (—iye “zo)

where I replaced y by ye™

Substitute the above into (8)

60,8 = exp (—5003*) = exp (i)

_ \/% exp(_% 2(t) y* — iyu(t))

Where u(t) = e~z
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part(E)
We need to show that

1 1/z—p)\?) r 1 1,y .
WeXp <—§< o () ) ) %Eexp(—ia )y~ —iyp(?))

where [ is the Fourier transform operator.

Since the transform variable is y, we can rewrite the above as needing to show the following

exp (—% (240) ) % o(t) exp(—50°(1) 7 ~ ign(t) )

We start by using result from problem (3) part (c¢) which says the following is true

o r 1 y> b
exp (—(az +b)°) = Vald] exp(—@ + zya) (2)
Hence, we know (2) is true, and we need to show that (1) is true. Using the hint given, we

let a = ﬂi(t) and ® = —p(t) in (2) to arrive at (1). hence starting with (2) we write

y*> b
exp(——— +iy—
VZlal P(—y Ty )

exp (—[ . (z — u(t))} 2) 5 M%z(t)l exp(—% — iyu(t))
4 (ﬂcr(t))

0
»4
o)

I
1
)
VRS
8
+
| o
~
| I

[\&)
~
-
—

Simplify, we obtain

exp (—% (%’;)“)) ) L o(t) exp(— yo(t) o* — iun(t)

Which is the same as (1). QED

4.4 Computing Assignment #2, Wed 2/27/2008

Grade: 2/2.

The limiting process simulation. Show that random walk final position is normally distributed
in the limit under the Einstein-Weiner process (see problem 2 in this handout
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/-f/h//rl""( Math 5&4
Monday 1/28/2008

Continuous Approximations To Random Walks

1. A Simple Random Walk Consider a particle that moves along the real line
in such a way that, at each point in time, it makes one step to the right with probability
p, and one step to the left with probability ¢ = 1 — p. Assume that distance is measured
in multiples of an amount Az, and that time is measured in multiples of At. Let X,
denote the position of the particle after n steps. We shall assume the particle starts at
the origin.

Let 771(”) = P(X,, = jAz). Thus, 77](”) is the probability that the particle is located

at jAz at time nAt. Conditioning on the next state, we can write
P(Xpy1=jAz) = P(Xpy1=jAzr| Xy =(j —1)Az)P(X, = (j — 1)Az)
+ P(Xpp1=jAz | X,=(j+1)Az)P(X, = (j+1)Az),
or equivalently
ﬁ;-"“) = p7r§'i)1 o q7r§1)1 ;
for j = 0,£1,%+2,---, and n = 0,1,---. Consider now a fixed position = and time ¢,
subject to © = jAz and t = nAt. Suppose that when Az and At are small, we have the
approximation
W](") = f(z,t)Az,
where f is some function of z and ¢. Note that for each fixed ¢, the function f is a density
function that describes probabilistically the location of the particle. From the recurrence
formula above, we see that for such an approximation to hold, we need approximately

[, t+ At) Zpf(z — Az, t) + ¢f (z + Az, t).

Assuming f is twice continuously differentiable, the Taylor series expansion yields

s PP of | L ap®f
f(x,t)—!—AtE—kO(At) = p{f(z,t) Maf“z(“) 922
N T B
+ q[f(z,t)+Azax+2(Ax) 92 +O(Az)’,
which, upon simplification, gives us
af Az df 1(Az)?8%*f O(Azx)? .
o P Ve Ty A a2t A OB

In order to obtain a limiting equation, assume that for small Az and At, there are
constants 3 and D such that approximately,
1(Az)?

Az
(pfq)j =/f and T A =.D .

1
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Recalling that ¢ = 1 — p, these approximations tell us that in the limit we need

p=l<1+/jA$) and q:l<1—’3A£>.

2 2D 2

Going to the limit then, we arrive at the partial differential equation

of  of o*f
ot = Par TPaz

Using the Fourier transform, this equation can be solved to get

Ha ) = i Xp [_l <x ; “)2} , where p=pft, and o= vV2Dt. (1)

e
oV 2T 2
The steps of this method are outlined in Problem 3 below.

There is an alternative way to reach this conclusion. After n steps, the particle will
have made a certain number of steps to the right, say R,,, and a certain number of steps
to the left, say L,. Then R,+L,, = n and X,, = (R,—L,)Az. Hence, X,, = (2R,, —n)Ax.
Note that R, is a binomial random variable with parameters n and p. Thus, the central
limit theorem tells us that the distribution of R,, and hence of X, is approximately
normal. Further, the mean of position is

p(Ax)*

E(X,) = (2E(R,) — n)Az = (2(np) — n)Az =nAz(2p—1)=n 5D

where we have used the formula for p above. Hence, the mean of position is

BAz - B(Az)?
(IL 5D ) Az = (nAt) 5SDAL

However, in the limit as n gets larger, we have t = nAt and (Az)?/At = 2D. Thus, the
mean of position is simply pu = [t.

Next, continuing this line of reasoning, we argue that the variance of position is

Var(X,) = Var((2R, — n))Az) = Var(2R,Az) = 4(Az)*Var(R,) .

| BAx ’
2D ’

where we have used the formulas for p and ¢ above. Finally, going to the limit, and noting

But the variance of R, is npq. Hence, the variance of position is

; ; BAz\ 1 [ Ax)?
4(Az)*npq = 4(&1‘)2711 (1 + dAI) - (1 - ,dAa:) = (Az) (nAt)

2 2D 2D At

again that ¢t = nAt and 2D = (Ax)%/At, we conclude that the variance of position is
0? = 2Dt. Thus, in the limit, the distribution of position is approximately normal with

2
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mean p = [t and variance 0 = /2Dt. This result is the same as the one we obtained
earlier through use of the partial differential equation.

A stochastic process is a family of random variables X (¢), where X (¢) represents
the state of the process at time t. In our case, the state of the process is the position of
the particle along the real line. A process is said to have stationary increments if for
any t, the distribution of the increment X (s +¢) — X (s) depends only on ¢, the length
of the time interval. Further, if the increments are independent for any set of disjoint
intervals, the process is said to have independent increments.

Since the continuous process above, with transition distribution function (1), was
derived as the limit of a discrete process that has stationary and independent increments,
it is reasonable to expect that the limiting process would also have these two properties.
A continuous process with transition distribution function (1), is called an Einstein-
Wiener process. The parameter [ is called the drift coefficient, and the parameter D
is called the diffusion coefficient.

2. The Ornstein-Ehrenfest Model For a positive integer a, consider a random
walk in which, at each point in time, if the process is at position jAz, it moves one
step to the right with probability (a — j)/2a and one step to the left with probability
(a+ 7)/2a, when —a < j < a. If j = a then it moves to the left with probability 1, and
if 7 = —a it moves to the right with probability one.

Denote by 7rJ(~") the probability that the process is at point jAz at time nAt. Then,
by conditioning on the next state, we can write

me)) _6—J+1 @) at+j+1 (n
J n 2q -1 2a 9L

foreach j =1,2,---,and n =0, 1, - - -. Consider this process in the limit when the bound
a is large, and the Az and At are small. For a fixed position = and time ¢, subject to
x = jAx and t = nAt, suppose we have the approximation

7r](~") ~ f(z,t)Az,

where f is some function of z and ¢. From the recurrence formula above, we see that for

such an approximation to hold, we need approximately

=71
2a

at+j+1

flw,t+ At) = -

flz — Az, t) + f(z + Az, t) .
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Assuming f is twice continuously differentiable, the Taylor series expansion yields

ot = STt 0 pg  Loa 0
f(.n,t)+Atat+O(At) — g [f(x,t) Aa:az+2(_n) 97
a+j+1 gji 1//_202}0 13
— [f(x,t)+Axax+2(AL) Pz + O(Azx)”,

which, upon simplification, gives

of 1
ot aAt

z Of a+1(Az)29*f O(Ax)?
anios T e aAt ezt A TOBY.

flx,t) +

In order to obtain a limiting equation, assume that for small Az and At, and large a, we
have approximately,

-1, 1(Az)? _
alAt =c and 5 Aar =D

for some constants ¢ and D. Going to the limit then, we arrive at the partial differential
equation

of = CM + Daz—f .

ot ox Ox?
This equation is not so easily solved as in the previous case. However, under the boundary
conditions

zf(z,t) =0, %—m as r — oo,

and using the Fourier transform, the equation can be transformed into a first order,
variable coefficient hyperbolic equation. This hyperbolic equation can then be solved
using the method of characteristics. This method of solution is outlined in Problem 4
below.

Suppose the particle starts at a point xy. Thus, the initial density of position is a
dirac-delta function centered at the point xo. Then the solution is found to be

flat) = ——exp [—% = “)] |

o ? (1 o e—Qct) )

where p = xge~ " and

A continuous process with stationary and independent increments, and having this tran-
sitional distribution function, is called an Ornstein-Ehrenfest process.
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Exercises

1. Derive the Einstein-Wiener process by noting that the position of the particle is
x = jAxz, where j = X + Xy +--- X, with t = nAt, and the X; are independent
and identically distributed random variables which have value +1 with probability
p, and value —1 with probability ¢ =1 — p. Take p = ¢ = 1/2.

2. (a) Use the formulation in the previous exercise to simulate the random walk for

p = q = 1/2, and a specified diffusion coefficient D. Restrict Az and At so that
D = (Az)?/2At. (b) Use the simulation model to test that in the limit as Az — 0
and At — 0, subject to D = (Ax)?/2At, the distribution of position, for fixed time
t and given D, is normal with mean 0 and variance o2 = 2Dt.

3. Solve the partial differential equation

0 0 0?

o o o

ot ox ox?
for the Einstein-Wiener process. Use the Fourier transform, and the following steps.
(a) The Fourier transform of an absolutely integrable, and piecewise continuous

function g on (—oo, ), is defined by
Flol) = —= [ g(a)e d
= T T .
g)\y 5 _Oo!/

Multiply the differential equation through by e~®* and integrate with respect to
x over the interval (—oo,00). Then use integration by parts twice to obtain the
equation

% = (~ify — Dy?) é(y,1) ,

where

i o0 :
y,t :—/ z,t)e"Ydx .
6= = [ f@)
In doing the integrations by parts, assume that

flz,t) =0, %ﬁjw—)O as * — £00.

(b) Solve the differential equation for ¢ to get
6(y, 1) = ¢y, 0) exp (—ifty — Dty®) .

Note that ¢(y,0) is the Fourier transform of f(z,0), the density of the location of
the particle at time ¢ = 0.

ot
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(¢) Now make use of the following two properties of the Fourier transform:

(1) For f(z)=e*, F[flly)= %eﬂﬁm 1

and
2) For g(e)=flaz+8), a0, Flol(y) = e F[fl(u/a)
Thus conclude that
For g(z) =e @’ a0, Flg(y) = ! ey(bla)g=y*/4a®

V2|

(d) Set b/a = —ft and 1/4a® = Dt, and use the previous results to conclude that
(y,1) = 6(y,0) exp [(—=iBy — Dy?) t] = 6(y, 0)FIh(-,1)](y) ,

where

a(t)

(e) Finally, the Fourier transform has the property that

(%, %) = ﬁexp [—% (x — Mt)) l ; i) =p8t, o(t)=v2D¢t.

F[f * g] = V2 F[f]F[g] , where fxg(z)= /oo flu)g(x — u)du .

—00

Use this property to show that

flet) = \/LQ_W/_O:Of(u, 0)h(z — u,t)du .

In particular, if the particle starts that the origin, then we can view the initial
density of position, f(z,0), as a dirac delta function and thus deduce that in this
case

Filz, 1) = \/%_Wh(.’c,t) ;

which is the expression (1) above.

@ Solve the partial differential equation

v

of _ 0af) | pf

=c —.

ot ox da2
for the Ornstein-Ehrenfest process. Use the Fourier transform (see definition in
previous problem), and the following steps. (a) Multiply the differential equation

6
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through by e~ and integrate with respect to z over the interval (—oo, 00). Then
use integration by parts three times to obtain the equation

9 09,

where I .
i = — -y J,
By t) = o= L G

In doing the integrations by parts, assume that

of (z,t)
d ox

xf(xz,t) >0, an —0, as * — £00.

(b) Introduce the integrating factor

I(y) = exp (%yz)

and show that u(y,t) = I(y)¢(y,t) satisfies the hyperbolic equation
ou ou

8t+cy—8520’

subject to the initial condition u(y,0) = ue(y) = I(y)¢(y,0) for —o0o < y < oo.
Note that ¢(y,0) is the Fourier transform of f(x,0), the density of the location of
the particle at time ¢t = 0.

(¢) Use the method of characteristics to solve the previous hyperbolic equation and
conclude that

u(y,t):uo(ye_“) , for —co<y<oo and t>0.

Then, using the definitions of u(y,t) and uy(y), deduce that

1 . D :
o(y,t) = exp <—§Jz(t)y2) o (ye‘“,O) , where o?(t) = - (1 - e*m) .
(d) To simplify the analysis, assume that the particle starts at a point xy. Thus,
the initial density of position is a dirac-delta function centered at the point zq. It
follows that
e~ Wro

o(y,0) =

1
V2T
In this case, use the previous result to conclude that

1 1 . 9 . ey
oy, t) = \/—9—7r exp <—§02(t)y2 - zyu(t)) , where pu(t) = zoe™".

-~
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(e) Set b/a = —pu(t) and 1/4a* = (1/2)0?(t), and use the result of part (c), Problem
3, to conclude that

¢(y,t) = Fr(-,1)](y) ,

where

S T IRV TR0\,
0= v p[ 2( =0 )]

Thus, f(x,t) = r(x,t), which is the solution given above for the Ornstein-Ehrenfest

model.
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4.4.1 Simulation

A Matlab function was written to simulate a random walk based on the Einstein-Wiener
process to verify that the distribution of the final position of the walk is normally distributed
with mean = St and variance = 2Dt (more details in the report).

4.4.2 Purpose and design of project

Nature of the project

We are solving problem #2 as described in the following screen shot (taken from the class
handout)

1. Derive the Einstein-Wiener process by noting that the position of the particle is
r = jAx, where j = X, + Xo + -+ X, with t = nAf, and the X; are independent
and identically distributed random variables which have value +1 with probability
p, and value —1 with probability g = 1 — p. Take p=¢ = 1/2.

2. (a) Use the formulation in the previous exercise to simulate the random walk for
p=g=1/2 and a specified diffusion coefficient D. Restrict Az and At so that
D= 'Ii.."‘."__-""‘_’_\.’. (h) Use the simulation model to test that in the limit as Az — 0

and At — 0, subject to D = (Ax)? /2At, the distribution of position, for fixed time
t and given D, is normal with mean 0 and variance ¢* = 2D,

Short background on the problem: In this project we are asked to verify an analytical result
derived in a handout given in the class called ’Continuos approximation to random walk’.

A random walk is formulated, by proposing that 7rj(~")which is the probability that the position
of a particle at x = jAz and at time nAt can be expressed as f(x,t) Az, where f(z,t)
represents a density per unit length, which gives a measure of the particle being at that

position x at time t.

Starting with this and applying a limiting argument lead to a partial differential equation

whose solution is the normal distribution function with certain mean and variance. However,

the condition for a2rriving at the PDE was that as we make At and Az small, we needed to
(Az)

keep the ratio ~=,-constant.

In this assignment, we simulate a random walk as At and Az are made smaller and smaller
subject to this same condition to verify if the distribution of the final position of the random
walk converges to the solution of the PDE which is normal distribution and if the converged
distribution will have the same variance of 2Dt and same mean of 5t as does the solution of
the PDE.

The details of the theoretical derivation is shown in the above mentioned handout. A diagram
below is made to help illustrate the overall purpose of this assignment. In this assignment,
we are working on the flow shown on the right side below.
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Let p the probability of right step

Let ¢ the probability of left step

n+l
—’T( ) = ;}H;f% + q.’ri';fl)

I

Let JTJ';H " = flx, H)Ax

@

Assuming flx,7) is twice continuously
differentiable, expand by taylor series

and let Av and At become very small Input 7, D, 3

1

repeatedly perform random
(Ax)? Ax and A7 are made peatedy p _ _
7 (ax)? walk simulation for increasing
B (- g )ﬁ small such that=Z; number of steps under the
- )7 remains constant 1 (882

condition that D =

2 At
s @
oaq Ford o
= Pa+D

|
|
i
|
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|

fle.t) = —= e (F(30)7)

|
|
|
|
g 2r !
\\ /! :
\ / :
\ J/ 1 Verify that the distribution converges
+ = 3 | .
° e s \ to the theoretical model of normal
= pt /1 distribution
| |
| |
_____________________________________ I e
Simulation to verify the
s . . . s . Verify that varlance of : . .
Theoretical derivation of Einstein-Wiener simulation converges o Einstein-Wiener model
process from random walk model variance of analytical model from random walk

Figure 4.1: Random walk simulation to verify the Einstein-Wiener analytical derivation

Questions we are investigating

These are the questions we are trying to answer in this project

1. Does the distribution of the random walk final position generated by increasing the
number of steps for fixed ¢ (total time of the random walk) while keeping the ratio

2

(AA“? constant (equal to 2D), converges to a normal distribution (which is the solution

of the Einstein-Wiener process model)?

2. Does the variance of the above distribution converges, as At — 0 and Az — 0 under
the above mentioned condition of keeping <AAwt) , to the analytical variance of 2Dt and
the theoretical mean of 5t?
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Few words on the program

The input to the program is t, D, 8 where t is the total random walk time and D, 8 represents
the terms as shown in the diagram above.

A distribution of the final random walk position is generated by running the random walk
simulation a number of times (called the sample size). In each such run, we use a specific
number of steps. The number of steps is increased, and we generate another distribution.
We keep doing this and plot each distribution as the number of steps is increased.

At the end of the simulation, to verify that the distribution in the limit is normal. A quantile-
quantile plot is made to compare the generated histogram with the theoretical standard
normal distribution to see if the result is close to a straight line or not. Also a plot is made
showing the convergence of the variance of the current distribution as number of steps is
increased by keeping track of the relative error in the variance. In addition, the RMS error
between the standard normal and the current distribution is calculated and plotted as a
function of delta(T) as delta(T) is made smaller and smaller. The program is written in
Matlab version 2007a and uses the statistics toolbox.

The following is a description of the algorithm of the program

We simulate a random walk, where each step made is either to the left or to the right with
probability ¢ and p respectively.

Let Y; be either 1 or —1 depending if we make a right or a left step. Hence

Y — 1 probability p
‘| =1  probability q

and now if we let X,, =Y, + Y5+ ---+ Y, then the final position of the random walk can be
written as

Xn:szn:Y}-

=1

where Az is the step size. The step size is found by solving Az = vV2DAt where D is the
diffusion parameter which is an input, and At is the current time step found by dividing the
total simulation fixed time ¢, which is an input, by the current number of steps n.

At="

n

This program handles a general value for § other than zero. To be able to accomplish this,
we need to determine the correct starting step size n to avoid the problem with coming up
with a value for the probability p being larger than 1. So, this was done in the initialization
stage using this formula

tart: d tﬂz +1
starting n — roun —_—
g 2D

And the simulation was started from the above n and not from 1.
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A note about the quantile-quantile plot

To answer the first question of this simulation, which is to determine if the final position
distribution converges to normal distribution with mean St and variance 2Dt, a quantile plot
was used. In this plot, the quantile for the standard normal distribution was plotted against
the quantile of the distribution of the final position.

The = — axis of the quantile-quantile plot was found as follows

n = sample__size
r=F(([L:n]-05)/n

Where F~! is the inverse of the CDF for the standard normal distribution (the matlab
function norminv() was used for this). While the y — axis is the quantile of the actual data
(the sample data of the final distribution of the random walk position). This was found by
sorting the data from small to large and then using the resulting sorted vector as the y values.
Notice that the distribution was already standardized using

Where p = Bt and o = /2Dt,

4.4.3 Summary of numerical results

A number of experiments were performed for different input parameters. The table below
lists the variance of the distribution of the final position as the number of steps is increased.
The run parameters are also shown

Experiment #1 g =2,t=2,D =3,n =100
starting step number= 2, 8 = 2,t =2, D = 3, final p = 0.557, final ¢ = 0.443

sample size 5000, number of bins 40, seed= 123456

n (number of steps) | Variance | True variance (2Dt) | At

2 3.92 12 1

7 9.73 12 0.2857
12 10.43 12 0.1667
17 10.9 12 0.1176
22 11.37 12 0.0909
27 11.19 12 0.0741
32 12.02 12 0.0625
67 12.05 12 0.0299
72 11.89 12 0.0278
7 12.16 12 0.0260
82 11.99 12 0.0244
87 11.78 12 0.0230
92 12.03 12 0.0217
97 11.88 12 0.0206
102 11.47 12 0.0196
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firet etep|Z] current etep[102] sampleSize[5000] p = [0.557] g = [0.443] & = [4.000] D =[3] £ = [2]
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Experiment #2 =2,t=2,D =3,n=50

Since the parameters t, D, 3, then running for n = 50 will produce the same numerical values
already contained in the first experiment when looking at the table above up to n = 50 (the
program starts by seeding the random number generator, so nothing will change here and we
will just produce a subset of the result already produced in first experiment). So I will just
show the final plot, showing the convergence of the histogram and the quantile-quantile plot
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Experiment #3 f=2,t=2,D=3,n=20

Again, as described at the start of experiment 2 above, this is a subset of the first experiment.
We will show the final plot only to show how close to the standard normal the final position
histogram is.
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Experiment #4 f=2,t=2,D =3, n = 7000

The following 2 experiments are not required to do, but they are extra experiments I already
done and included here.

starting step number= 400, 8 = 5,t = 100, D = 3, final p = 0.623, final q = .377
sample size 5000, number of bins 60, seed= 123456

final Az = 0.2945 final At = 0.0145

Experiment number | n (number of steps) | Variance | True variance (2Dt) | At

1 400 1.89 600 0.2392
2 900 340 600 0.1089
3 1400 420 600 0.0705
4 1900 464 600 0.0521
5 2400 504 600 0.0414
6 2900 514 600 0.0343
7 3400 525 600 0.0293
8 3900 546 600 0.0255
9 4400 536 600 0.0226
10 4900 533 600 0.0203
11 5400 952 600 0.0185
12 5900 958 600 0.0169
13 6400 567 600 0.0156
14 6900 583 600 0.0145
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Experiment #5 n =160,8=5,t=1,D =3

starting step number= 5,8 =5,t =1, D = 3, final p = 0.579, final ¢ = 0.421

sample size 5000, number of bins 50, seed= 123456

final Az = 0.1907, final At = 0.0061

Experiment number | n (number of steps) | Variance | True variance (2Dt) | At

1 3 1.019 6 0.2

2 10 3.4 6 0.1

3 15 4.09 6 0.0667
4 20 4.74 6 0.05

) 25 S 6 0.4

6 30 5.18 6 0.0333
7 35 5.43 6 0.0286
8 40 5.466 6 0.0250
9 45 9.3 6 0.0222
10 90 .66 6 0.02
11 %) 5.4 6 0.0182
12 60 5.85 6 0.0167
31 150 5.78 6 0.0065
32 155 5.909 6 0.0063
33 160 5.75 6 0.0061
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4.4.4 Discussion of numerical results

From the above tables we observe that as At becomes smaller, the variance of the sample of
the final position becomes closer to the variance predicted by the model which is 2Dt.

The mean remains the same which is St.

We observe that if the total walk time is large (experiment #4) , then more steps are needed
to bring At to be small enough so that the variance becomes close to 2Dt.. This answers the
second question we are set to solve in this project which is Does the variance of the above
distribution converges, as At — 0 and Az — 0 under the above mentioned condition of

keeping %, to the analytical variance of 2Dt and the theoretical mean of §t?

Now to answer the first question of convergence of the histogram of the final position to the
normal.

Looking at the quantile plots we observe that as more steps are used (hence smaller At and
smaller Az) then the quantile-quantile plot was tilting closer and closer to the straight line
at 45° which would be the case when we plot the quantile of 2 data sets coming from the
same distribution. This concludes that the final distribution of the random walk position
converges to normal distribution with the above parameters.
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The following diagram below shows a run where on the left side there is a plot showing the
quantile plot when the number of steps is small. The plot on the right side shows the quantile
plot at the end of the run when n was large. We see that the quantile plot line is now almost
exactly over the 45° line, confirming that the data is coming from normal distribution.
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Therefore, we have answered the 2 questions this simulation was designed to answer.

4.4.5 Final observation

In doing the above experiments, it was observed that the relative error in the variance of
the final position as n increased does approach the true variance 2Dt but the convergence
is not smooth. As the relative error (around 5% to 10%), then increasing n more can cause
the error to sometimes increase and not decrease as one would expect. Meaning the relative
error is not monotonic decreasing as n increases. However, as n becomes very large, the trend
is for the relative error is to decrease. I can only contribute this behavior to some sort of
statistical error. This needs to be investigated more.
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1 Purpose and design of project

1.1 Nature of the project \,..»)
We are solving problem #2 as described in the following screen shot (taken from the class
handout)

1. Derive the Einstein-Wiener process by noting that the position of the particle is
= jAz, where j = X + Xy +--- X, with £ = nAf, and the X; are independent
and identically distributed random variables which have value +1 with probability
p. and value =1 with probability ¢ =1 — p. Take p=¢ = 1/2.

o

. (@) Use the formulation in the previous exercise to simulate the random walk for
p = q = 1/2. and a specified diffusion coefficient D. Restrict Az and Al so that
D = (Ax)?/2A1. (b) Use the simnlation model to test that in the limit as A — 0
and At — 0, subject to D = (Az)?/2At, the distribution of position, for fixed time
t and given D. is normal with mean 0 and variance 2 = 2D\

Short background on the problem: In this project we are asked to verify an analytical result
derived in a handout given in the class called ’Continuos approximation to random walk’.

A random walk is formulated, by proposing that 7rj(-")which is the probability that the position
of a particle at ¢ = jAz and at time nAt can be expressed as f (z,t) Az, where f (z,t)
represents a density per unit length, which gives a measure of the particle being at that
position z at time . \,.J .

Starting with this and applying a limiting argument lead to a partial differential equation
whose solution is the normal distribution function with certain mean and variance. However,
the condition for arriving at the PDE was that as we make At and Az small, we needed to

keep the ratio %ﬁconstant.

In this assignment, we simulate a random walk as At and Az are made smaller and smaller
subject to this same condition to verify if the distribution of the final position of the random
walk converges to the solution of the PDE which is normal distribution and if the converged
distribution will have the same variance of 2Dt and same mean of 8t as does the solution of
the PDE.

The details of the theoretical derivation is shown in the above mentioned handout. A diagram
below is made to help illustrate the overall purpose of this assignment. In this assignment,
we are working on the flow shown on the right side below.
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1.2 Questions we are investigating

Random walk simulation to verify the Einstein-Wiener analytical derivation

These are the questions we are trying to answer in this project

1. Does the distribution of the random walk final position generated by increasing the
number of steps for fixed ¢ (total time of the random walk) while keeping the ratio
(B2)?

2. Does the variance of the above distribution converges, as At — 0 and Az — 0 under

constant (equal to 2D), converges to a normal distribution (which is the solution
of the Einstein-Wiener process model)?
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the above mentioned condition of keeping %ﬁ, to the analytical variance of 2Dt and
the theoretical mean of 3t?

1.3 Few words on the program

The input to the program is ¢, D, 3 where t is the total random walk time and D, 3 represents
the terms as shown in the diagram above.

A distribution of the final random walk position is generated by running the random walk
simulation a number of times (called the sample size). In each such run, we use a specific
number of steps. The number of steps is increased, and we generate another distribution.
We keep doing this and plot each distribution as the number of steps is increased.

At the end of the simulation, to verify that the distribution in the limit is normal. A
quantile-quantile plot is made to compare the generated histogram with the theoretical
standard normal distribution to see if the result is close to a straight line or not. Also a plot
is made showing the convergence of the variance of the current distribution as number of
steps is increased by keeping track of the relative error in the variance. In addition, the RMS
error between the standard normal and the current distribution is calculated and plotted as
a function of delta(T) as delta(T) is made smaller and smaller. The program is written in
Matlab version 2007a and uses the statistics toolbox.

1.3.1 The following is a description of the algorithm of the program

We simulate a random walk, where each step made is either to the left or to the right with -

probability q and p respectively.
Let Y; be either 1 or —1 depending if we make a right or a left step. Hence

Y = 1 probability p
‘71 =1  probability q

and now if we let X,, =Y + Y5 +---+ Y, then the final position of the random walk can be
written as

Xn=Az }:l: Y;
=1

where Az is the step size. The step size is found by solving Az = v2DAt where D is the
diffusion parameter which is an input, and At is the current time step found by dividing the
total simulation fixed time ¢, which is an input, by the current number of steps n.

A=t
n
This program handles a general value for 8 other than zero. To be able to accomplish this,
we need to determine the correct starting step size n to avoid the problem with coming up
with a value for the probability p being larger than 1. So, this was done in the initialization -
stage using this formula
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starting n = round ﬁ +1
gn= 2D

And the simulation was started from the above n and not from 1.

1.3.2 A note about the quantile-quantile plot

To answer the first question of this simulation, which is to determine if the final position
distribution converges to normal distribution with mean 3t and variance 2Dt, a quantile plot
was used. In this plot, the quantile for the standard normal distribution was plotted against
the quantile of the distribution of the final position.

The = — azxis of the quantile-quantile plot was found as follows

= sample_size
z=F"(1:n]-05)/n

Where F~! is the inverse of the CDF for the standard normal distribution (the matlab
function norminv() was used for this). While the y — azis is the quantile of the actual data
(the sample data of the final distribution of the random walk position). This was found
by sorting the data from small to large and then using the resulting sorted vector as the y
values. Notice that the distribution was already standardized using

ag

Where pu = ft and o = v2Dt,
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2 Summary of numerical results

A number of experiments were performed for different input parameters. The table below
lists the variance of the distribution of the final position as the number of steps is increased.

The run parameters are also shown

2.1 Experiment #1 =2,t=2,D =3,n =100

starting step number= 2, 8 = 2,t =2, D = 3, final p = 0.557, final q = 0.443

sample size 5000, number of bins 40, seed= 123456

n (number of steps) | Variance | True variance (2Dt) | At

2 3.92 12 1

v 9.73 12 0.2857
12 10.43 12 0.1667
17 10.9 12 0.1176
22 11.37 12 0.0909
27 11.19 12 0.0741
32 12.02 12 0.0625
67 12.05 12 0.0299
i 11.89 12 0.0278
7 12.16 12 0.0260
82 11.99 12 0.0244
87 11.78 12 0.0230
92 12.03 12 0.0217
97 11.88 12 0.0206
102 11.47 12 0.0196

first step|2] current step[102] sampleSize[5000] p = [0.557] ¢ = [0.443] £t = [4.000] D = [3] £ = [2]
: T : T T : :

05 [Jcurrent pdf
§0.4— = — — — limit pdf
2 03} 5
4 02} e
2 - b
(f T
2 e e
4 3 2 -1 0 1 2 3 4
relative error in variance (2DT) RMS error in PDF as AT — 0
® o true var= 12.0, current var=11.5 AT =0.0196 A X = 0.3430 rms = 0.01613
& 0 2
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g o0 B st
& g gt
g o v
g g
) =
2@ §
- [ =
T 0 — -0
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number of steps (n) loga(AT)
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4 T T T
§ +  data
E=1
2 2 —— normal distribution 7
a
G
& 0F
B
§ i
4 1 1 1 1 1
-4 3 2 1 0 1 2 3 4

quantile of normal distribution
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2.2 Experiment #2 f=2,t=2,D =3,n=50

Since the parameters ¢, D, 3, then running for n = 50 will produce the same numerical values
already contained in the first experiment when looking at the table above up to n = 50 (the
program starts by seeding the random number generator, so nothing will change here and
we will just produce a subset of the result already produced in first experiment). So I will
just show the final plot, showing the convergence of the histogram and the quantile-quantile
plot

first, step|2] current step[52] sampleSize[5000] p = [0.580] ¢ = [0.420] 8¢ = [4.000] D = [3] £ = [2]

I T T 1 1] T I
05 :I current pdf
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2
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o
502t -
=3
ol Fﬂﬂ l_l i 'ﬂﬁ-, i
0 _J__n—-rf'ﬂ
-4 4
relat.we errer in vanam:e (2DT RMS errer in PDF ag aﬁT -0
® true var= 12.0, current var=11.7 AT =0.0385 A X = 0.43804 rins = 0.03815
80 - - -
g D ‘ //'/ ]
= —
2 e 2 A
o [ -l
o (1] II/-
§ 40 g 5t \\f .
5 <
| s
E \d\fw
@ 0 1 1 i i -0 1 L L L 1 1
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+ data
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o
1

] ] 1 ] 1
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2.3 Experiment #3 =2,t=2,D =3,n

20

Again, as described at the start of experiment 2 above, this is a subset of the first experiment.
We will show the final plot only to show how close to the standard normal the final position

histogram is.
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2.4 Experlmeht #4p=0t=

The following 2 experiments are not required to do, but they are extra experiments I already

done and included here.

starting step number= 400, # = 5,t = 100, D = 3, final p = 0.623, final ¢ = .377

B

S
\

sample size 5000, number of bins 60, seed= 123456
final Az = 0.2945 final At = 0.0145

(/3) n= 7000> “ R

2=

Experiment number | n (number of steps) | Variance | True variance (2Dt) | At

1 400 1.89 600 0.2392
2 900 340 600 0.1089
3 1400 420 600 0.0705
4 1900 464 600 0.0521
S 2400 004 600 0.0414
6 2900 514 600 0.0343
7 3400 925 600 0.0293
8 3900 946 600 0.0255
9 4400 536 600 0.0226
10 4900 533 600 0.0203
11 5400 952 600 0.0185
12 9900 958 600 0.0169
13 6400 967 600 0.0156
14 6900 283 600 0.0145

first step[418] current step[7418] sampleSize[3000] p = [0.619] g = [0.381] S¢ = [500.000] D = [3] ¢ = [100]
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_Mﬂmﬂﬂmﬂﬂmmmm .

[Ceurrent pdf ||

= = = limit pcif

420

440

relative error in v«mnnce (2DT)
true var= 600.0, current var= 565.2

N Y @ =]
o o o o

relative error percentage

o

Rt

R\,_,—\\/
n ' L L i

1000 2000 3000 4000 5000 6000 7000

number of steps (n)

560 580

RMSerrormPDFasAT—»U
AT =0.0135 A X = 0.2844 rms = 0.00067

0

3 d
g5 -5 4
° o
A
Bl —
= -10
b9
a5 . L . A
5 4 3 2 A 0
laga (AT

Quantile-Quantile plot

T T T

-

data
normal distribution

quantile of final position
o
T

-3 -2 -1

quantile of normal distribution



CHAPTER 4.

HWS

250

2.5 Experiment #5 n = 160,35 = 5,t

—=1iD=43

starting step number= 5,5 =5,t =1, D = 3, final p = 0.579, final q = 0.421
sample size 5000, number of bins 50, seed= 123456

final Az = 0.1907, final At = 0.0061

Experiment number | n (number of steps) | Variance | True variance (2Dt) | At

1 ) 1.019 6 0.2

2 10 3.4 6 0.1

3 15 4.09 6 0.0667
4 20 4.74 6 0.05

) 25 ) 6 0.4

6 30 5.18 6 0.0333
7 35 5.43 6 0.0286
8 40 5.466 6 0.0250
9 45 9.3 6 0.0222
10 50 5.66 6 0.02
11 99 5.4 6 0.0182
12 60 5.85 6 0.0167
31 150 5.78 6 0.0065
32 155 5.909 6 0.0063
33 160 5.75 6 0.0061
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3 Discussion of numerical results

From the above tables we observe that as At becomes smaller, the variance of the sample of
the final position becomes closer to the variance predicted by the model which is 2Dt.

The mean remains the same which is ft.

We observe that if the total walk time is large (experiment #4) , then more steps are needed
to bring At to be small enough so that the variance becomes close to 2Dt.. This answers the
second question we are set to solve in this project which is Does the variance of the above
distribution converges, as At — 0 and Az — 0 under the above mentioned condition of

keeping &%tﬁ’ to the analytical variance of 2Dt and the theoretical mean of 5t?

Now to answer the first question of convergence of the histogram of the final position to the
normal.

Looking at the quantile plots we observe that as more steps are used (hence smaller At and
smaller Az) then the quantile-quantile plot was tilting closer and closer to the straight line
at 45° which would be the case when we plot the quantile of 2 data sets coming from the
same distribution. This concludes that the final distribution of the random walk position
converges to normal distribution with the above parameters.

11
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The following diagram below shows a run where on the left side there is a plot showing the
quantile plot when the number of steps is small. The plot on the right side shows the quantile
plot at the end of the run when n was large. We see that the quantile plot line is now almost

exactly over the 45° line, confirming that the data is coming from normal distribution.
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Therefore, we have answered the 2 questions this simulation was designed to answer.

3.1 Final observation

In doing the above experiments, it was observed that the relative error in the variance of

the final position as n increased does approach the true variance 2Dt but the convergence

is not smooth. As the relative error (around 5% to 10%), then increasing n more can cause
the error to sometimes increase and not decrease as one would expect. Meaning the relative
error is not monotonic decreasing as n increases. However, as n becomes very large, the
trend is for the relative error is to decrease. I can only contribute this behavior to some sort
of statistical error. This needs to be investigated more.

12
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function nmaHW4math504 ()

%function nmaHW4math504 ()

$Solve problem #2 in second handout, Math 504
%$spring 2008 CSUF

$by Nasser Abbasi feb 8,2008

$Developed on MATLAB Version 7.4.0.287 (R2007a)
%Running on Win XP. Uses statistics toolbox

%

$ MAIN CONFIGURATION SECTION

%

params.D = 3; % Diffusion parameter

params.T = 1; % total running time

params.beta = 5; % drift parameter

%

%

% These parameters are derived automatically from the above
%

params. trueVar = 2%*params.D*params.T;
params. trueStd sqrt (params. trueVar) ;
params. trueMean params.beta*params.T;

]

%

% internal program CONFIGURATION

% These are configutation parameters for displying
% and for setting sample size and number of steps
% Adjust as needed

%

config.seed = 12345;

config.nBins = 50;

config.sample size = 5000;
config.max number of steps = 160;

%

%determine the starting number of steps such that 'p' comes out to be
%less than 1. see report for derivation of this formula

%

config.starting step = round (params.T*params.beta”2/ (2*params.D)) +1;

%add the above number of steps to the starting step to
%obtain max number of steps

config.max number of steps =
config.starting_step+config.max_numbe:_of_steps;

%

% set the number of steps to skip at each simulation else this
% will take too long to run

%

config.n = config.starting_step:5:config.max_pumber;pf_steps;
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%

% Rest are internal data structures to keep track of
% simulation data during runs

%

config.varianceVector = zeros (length(config.n) ,h1);
config.rmsVector zeros (length (config.n) ,1) ;

config.delT = zeros (length(config.n) ,1);

config.standarize = 0; %set this to zero if you do not standarize
%

% Determine the theoretical quantiles for the standard normal

% distribution to use in the plots generated
%
config.gp=norminv( ((l:config.sample size)-.5)/config.sample size,0,1);

%

$ INITIALIZATION

% Create the figure and seed the random number generator
%

makeFigure() ;

hold on;

rand('state',config.seed) ;

%
% Here we go, let start the fun part
%

for i = l:length(config.n)
config=simulate_ one walk( params, config, config.n(i), i );

end

end
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STV 5%%%

%

%

LT LIXITVLLLTH5%%%

function config=simulate one walk( params, config, number of_ steps,
current_gxperiement_number )

o0

% generate delt(T) and del(X) and p and g from the input

%

config.delT (current_ experiement number) = params.T/number of steps;
delX = sqrt(2*params.D*config.delT(current experiement number)) ;

P = 1/2 * (1 + params.beta*delX/(2*params.D)) ;

qQ =1-p;

[normalizedPosition,position] = generate distribution(p,q,delX, ...
number of steps,params,config);

config.varianceVector (current experiement number) = var(position);

if config.standarize
pos=normalizedPosition;
else
pos=position;
end

%

% Now that we have a distribution generated, lets find the rms error

%

[config, truePDF,estimatedPDF,estimatedFit,xForSimulation,xForNormal]=. .

getRMSerrorInCurrentPDF (pos,config,params,p,q, . . .
current_experiement number) ;

%

%0k, we have all the data, lets make a plot

%

updatePlots (number of steps,normalizedPosition, ...
delX,params,config, truePDF,estimatedPDF,p,q, . ..
xForNormal,current experiement number) ;

end
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L D P LR R R R R E R R R R R R R b i

%

% This function generates a sample

%

N L L L L R AR R AR AR AR R R R AR R AR AR A

function [normalizedPosition,position]=generate_distribution(p,q,...
delX,number_pf_gteps,params,config)

generate 2 arrays to hold the final positions in. One
for standardized position and for not standarized position
(was not sure which to use at one point, so I keep both)

oP of o° of of

position = zeros (config.sample size,l);
normalizedPosition = position;

for i = l:config.sample_ size

y = makeOneRandomWalk (p,q,number of_ steps);

position (i) = sum(y) *delX;

normalizedPosition(i) = (position (i)-params.trueMean) 74
params. trueStd;
end

end

L5555 %%5%%%

%

%

T 5%%%%

function y=make0neRandomWalk(p,q,number_of_steps)

Y = rand(number of steps,l);
y(y<=q) = -1;
y(y>q) = 1;

end
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SRR R R R LR TR

% Called to obtain the RMS error between the normal distibution
% and the current sample distribution

%

TS5 55%%%%%%%5%5%%%%

function [config,truePDF,estimatedPDF,estimatedFit, ...

xForSimulation,xForNormal]=getRMSerrorInCurrentPDF (position, config, ...
params,p,q,current experiement number)

mu=mean (position) ;
stdd=std (position) ;

xForSimulation = linspace (mu-4*stdd, ...
mu+4*stdd,config.nBins) ;

[estimatedPDF,config.xout] = hist(position,xForSimulation) ;

config.binWidth = config.xout(2)~config.xout(l) ;

currentArea config.binWidth*sum (estimatedPDF) ;

estimatedPDF estimatedPDF/currentArea;

if config.standarize

stdd = 1;
mu = 0;
else
stdd = params.trueStd;

nu = params.trueMean;
end

xForNormal = linspace(mu-4*stdd, mu+d4*stdd, config.nBins) ;
truePDF pdf ('Normal',xForNormal,mu, stdd);

diffPDF = truePDF-estimatedPDF;

config.rmsError (current_ experiement number) =
norm (dif£PDF) /sqgrt (length (dif£PDF) ) ;

estimatedFit = pdf ('Normal', xForSimulation,parans.trueMean,
stdd*sqrt (4*p*q)) ;

end
L5 5%5555%%%
%

%

LTS5 5%%%
function makeFigure ()

figure;

set(gef, 'Position',[200 100 700 600]);
set (gcf, 'Resize', 'off")

set (0, 'DefaultTextinterpreter’', 'none') ;
axpos = get(gca, 'pos');

h = title({'',"'"'});

extent = get(h, 'extent');

% position is [left, bottom, width, height];
set(geca, 'pos’', [axpos (1) axpos(2) axpos(3) axpos (4) -.3*extent (4) ]) ;
end
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555555 %%5%5%%%

oo

o0

ST I%9%%%%%

function updatePlots (current number of steps,...
normalizedPosition,delX,params,config, truePDF, . ..
estimatedPDF,p,q,xForNormal, current_experiement number)

subplot(3,2,1:2) ;

strl='first step[$%d$] current step[$%d$] sampleSize[$%3dS$S] Sp=[%4.3f]3
Sq=[%4.3f3] $\\beta t=[%4.3f]$ $D = [%d]$ $t = [%d]1$';

cla;

bar (config.xout,estimatedPDF, 'y'); %relative frequency

linel=sprintf (strl,config.starting_ step,current number of steps,...
config.sample size,p,q,params.trueMean,params.D,paramns.T) ;

title(char(linel) , 'fontsize',10, 'interpreter', 'latex') ;
xlabel (sprintf('y') , 'fontsize',10, 'interpreter', 'latex') ;
ylabel ('pdf (position) ') ;

set (gca, 'FontSize',8);

hold on;

plot (xForNormal, truePDF, '--r', 'LineWidth',2) ;

ymax = max (truePDF) ;
ylim ([0,ymax+.5*%ymax]) ;
if config.standarize
xlim([-4,4]);
else
x1lim ([params. trueMean-4*params. trueStd, . ..
params. trueMean+4*params. trueStd]) ;
end
legend('current pdf','limit pdf');
drawnow;

oo

% relative error in variance plot
%
subplot(3,2,3);
cla;
line([config.n(l) config.n(end)],[0 0]);:
z=repmat (params. trueVar,current experiement number,1l) ;
relativeErrorInVar =
((abs (z-
config.varianceVector(l:current experiement number)))./z)*100;

line(config.n(l:current_experiement_pumber),relativeErrorInvar);
xlim([config.n(1l) config.n(end)]) ;
ylim ([0 80]);
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linel = sprintf('relative error in variance ($2DTS$) ') ;

line2 = 'true var$=%4.1£f$, current var$=%4.1f$';

line2 =

sprintf (line2,params. trueVar, config.varianceVector (current experiement
number) ) ;
title(char(linel,line2), 'fontsize',10, 'interpreter', 'latex') ;
ylabel ('relative error percentage', 'fontsize',10);
xlabel ( 'number of steps (n)','fontsize',10);

%¥set(gca, 'XTick',l:config.max number of steps);

set (gca, 'FontSize',8) ;

drawnow;

%

% RMS error plot
%

subplot (3,2 14) ;
cla;

plot(log2(config.delT(l:current experiement number)), ...

log2 (config.rmsError (1:current_experiement number)),'=z-');
linel=sprintf ('\\ \\ \\ \\ \\ \\ RMS error in PDF as
S\\bigtriangleup{T}\\rightarrow{0}$"') ;
line2=sprintf ('$\\bigtriangleup{T}=%6.4f \\: \\bigtriangleup{X}=%6.4f
\\:\\: rms=%6.5£8',...

config.delT (current experiement number) , delX,

config.rmsError (current experiement number));
title(char(linel,line2), 'fontsize',10,'interpreter', 'latex');

ylabel (sprintf ('S$log 25 (rms
error) ') ,'fontsize',10, 'interpreter', 'latex') ;
xlabel (sprintf. ..

('Slog 2(\\bigtriangleup{T})$'),'fontsize',10, 'interpreter’', 'latex');

x1im([-10,0]) ;
ylim([-15,.5]1);

set (gca, 'FontSize',8) ;
drawnow;

%

% quantile plot

%

subplot(3,2,5:6);

cla;

sp=sort (normalizedPosition) ;
plot(config.qgp,sp,'r.");

xlabel ('quantile of normal distribution');
ylabel ('quantile of final position');
title('Quantile-Quantile plot', 'fontsize',10);
hold on;

line([-4 4],[-4 41);

legend('data', 'normal distribution', 'Location', 'NorthWest') ;
set(gca, 'FontSize',8);

xlim([-4,4]);

ylim([-4,4]);

drawnow;

end
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4.4.7 Source code listing

Matlab code is

function nmaHW4math504 ()

%function nmaHW4math504 ()

%Solve problem #2 in second handout, Math 504
%spring 2008 CSUF

%by Nasser Abbasi feb 8,2008

%Developed on MATLAB Version 7.4.0.287 (R2007a)
%Running on Win XP. Uses statistics toolbox

h

% MAIN CONFIGURATION SECTION
)

params.D = 3; % Diffusion parameter

params.T = 2; % total running time

params.beta = 2; % drift parameter

b
)
% These parameters are derived automatically from the above
0,
b

params.trueVar = 2*params.D*params.T;

params.trueStd = sqrt(params.trueVar);

params.trueMean = params.betakparams.T;

b

% internal program CONF I GURATION

% These are configutation parameters for displying
% and for setting sample size and number of steps

% Adjust as needed
YA

12345;
config.nBins = 10;

config.seed

config.sample_size = 5000;
config.max_number_of_steps = 20;

b

%determine the starting number of steps such that 'p' comes out to be
%less than 1. see report for derivation of this formula

)

config.starting_step = round(params.T*params.beta”2/(2*params.D)) +1;

%add the above number of steps to the starting step to
%obtain max number of steps

config.max_number_of_steps = config.starting step+config.max_number_of_steps;

0,

/A

% set the number of steps to skip at each simulation else this
% will take too long to run

0,

b

config.n = config.starting_step:5:config.max_number_of_steps;

)

% Rest are internal data structures to keep track of




CHAPTER 4. HWS 261

% simulation data during runs
.

config.varianceVector = zeros(length(config.n),1);

config.rmsVector zeros (length(config.n),1);

config.delT zeros(length(config.n),1);

config.standarize 1; Yset this to zero if you do not standarize

.

(]

% Determine the theoretical quantiles for the standard normal
% distribution to use in the plots generated

.

config.qp=norminv( ((1:config.sample_size)-.5)/config.sample_size,0,1);

b
#INITIALIZATION
% Create the figure and seed the random number generator

h

makeFigure();
hold onmn;
rand('state',config.seed);

A
% Here we go, let start the fun part
%

for i = 1:length(config.n)
config=simulate_one_walk( params, config, config.n(i), i );
end

end

TolototoToto o Toto oo Toto o To o o To o oo o

b

b

TolotoTo oo To o To o ToTo 1o oo ToTo To oo To o

function config=simulate_one_walk( params, config, number_of_steps,
current_experiement_number )

A

% generate delt(T) and del(X) and p and q from the input

)

config.delT(current_experiement_number) = params.T/number_of_steps;
delX = sqrt(2*params.D*config.delT(current_experiement_number)) ;

P 1/2 * (1 + params.beta*delX/(2*params.D));

qa =1-p;

[normalizedPosition,position] = generate_distribution(p,q,delX,...
number_of_steps,params,config) ;

config.varianceVector(current_experiement_number) = var(position);

if config.standarize
pos=normalizedPosition;
else
pos=position;
end
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h

% Now that we have a distribution generated, lets find the rms error

b

[config,truePDF,estimatedPDF,estimatedFit,xForSimulation,xForNormal]=..
getRMSerrorInCurrentPDF (pos,config,params,p,q,.. .
current_experiement_number) ;

A

%0k, we have all the data, lets make a plot

YA

updatePlots (number_of_steps,normalizedPosition,.
delX,params,config,truePDF,estimatedPDF,p,q, .
xForNormal, current_experiement_number) ;

end

TooTo oo oo o oo o o o To o 1o o o oo ToTo o 1o o o o o foToToToJo o o o o o To To T 1o

b

% This function generates a sample

b

ToloToToToTo o o oo ToToTo o 1o o o o o ToToTo 1o o o o o Jo To To T 1o o o o o Jo To T Fo o

function [normalizedPosition,position]=generate_distribution(p,q,...
delX,number_of_steps,params,config)

b

% generate 2 arrays to hold the final positions in. One

% for standardized position and for not standarized position
% (was not sure which to use at one point, so I keep both)

h

position = zeros(config.sample_size,1);

normalizedPosition = position;

for i

y
position(i) = sum(y)*delX;

1l:config.sample_size

makeOneRandomWalk(p,q,number_of_steps) ;

normalizedPosition(i) = (position(i)-params.trueMean) / params.trueStd;
end

end
TototooTotofoTo o oo o oo o
YA

h
Toloto1otooto oo 1o oo oo o

function y=makeOneRandomWalk(p,q,number_of_steps)

y = rand (number_of_steps,1);
y(y<=q) = -1;

yy> =13

end

TototoloTotofoTo o o To o oo o

h

yA

TotololotolotofoJotofoTo o Jo o

function updatePlots(current_number_of_steps,...
normalizedPosition,delX,params,config,truePDF,...
estimatedPDF,p,q,xForNormal,current_experiement_number)

subplot(3,2,1:2);
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stri='first step[$/d$] current step[$/d$] sampleSize[$%d$] $p=[%4.3£1$ $q=[%4.3£$]
cla;
bar(config.xout,estimatedPDF,'y'); Jrelative frequency

linel=sprintf(strl,config.starting_step,current_number_of_steps,...
config.sample_size,p,q,params.trueMean,params.D,params.T);

title(char(linel), 'fontsize',10, 'interpreter', 'latex');
xlabel (sprintf('y'),'fontsize',10, 'interpreter', 'latex');
ylabel ('pdf (position)');

set(gca, 'FontSize',8);

hold onm;

plot (xForNormal,truePDF,'--r','LineWidth',2);

ymax = max(truePDF);

ylim ([0, ymax+.5%ymax]) ;

if config.standarize
x1im([-4,4]);

else
x1im([params.trueMean-4*params.trueStd,...

params.trueMean+4*params.trueStd]) ;

end

legend('current pdf','limit pdf');

drawnow;

h

% relative error in variance plot

h

subplot(3,2,3);

cla;

line([config.n(1) config.n(end)],[0 0]);

z=repmat (params.trueVar,current_experiement_number,1) ;

relativeErrorInVar = ...
((abs(z-config.varianceVector(1:current_experiement_number)))./z)*100;

line(config.n(1:current_experiement_number) ,relativeErrorInVar) ;
x1lim([config.n(1) config.n(end)]);
ylim([0 801);

linel = sprintf('relative error in variance ($2DT$)');
line2 = 'true var$=J4.1f$, current var$=J4.1f$’';
line2

sprintf (1ine2,params.trueVar,config.varianceVector (current_experiement_numt
title(char(linel,1line2), 'fontsize',10, 'interpreter','latex');
ylabel('relative error percentage','fontsize',10);

xlabel ('number of steps (n)','fontsize',10);

%set(gca, 'XTick',1:config.max_number_of_steps);

set(gca, 'FontSize',8);

drawnow;

A

% RMS error plot
yA
subplot(3,2,4);
cla;

plot(log2(config.delT(1:current_experiement_number)),...
log2(config.rmsError(1:current_experiement_number)), 'r-');
linel=sprintf('\\ \\ \\ \\ \\ \\ RMS error in PDF as $\\bigtriangleup{T}\\rightar:

$\\beta t=[

ber) ) ;

row{0}$');
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line2=sprintf ('$\\bigtriangleup{T}=%6.4f \\: \\bigtriangleup{X}=7%6.4f \\:\\: rms=Y¢
config.delT(current_experiement_number) ,delX,
config.rmsError (current_experiement_number));
title(char(linel,1line2), 'fontsize',10, 'interpreter','latex');

ylabel (sprintf ('$log_2$(rms error)'),'fontsize',10,'interpreter', 'latex');
xlabel (sprintf...
('$1log_2(\\bigtriangleup{T})$'), 'fontsize', 10, 'interpreter','latex');

x1im([-6,1]);
ylim([-10,11);
set(gca, 'FontSize',8);
drawnow;

b

% quantile plot

h

subplot(3,2,5:6);

cla;

sp=sort (normalizedPosition);
plot(config.qp,sp, 'r."');

xlabel('quantile of normal distribution');

ylabel('quantile of final position');
title('Quantile-Quantile plot','fontsize',10);

hold on;

line([-4 4],[-4 41);

legend('data’', 'normal distribution','Location', 'NorthWest');
set(gca, 'FontSize',8);

x1im([-4,4]);

ylim([-4,41);

drawnow;

end

Tttt oo oo o ToToToToToTo oo

% Called to obtain the RMS error between the normal distibution

% and the current sample distribution

h

Dot oo oo oo ToToToToToToTo o

function [config,truePDF,estimatedPDF,estimatedFit,...
xForSimulation,xForNormal] =getRMSerrorInCurrentPDF (position,config,...
params,p,q,current_experiement_number)

mu=mean (position);
stdd=std(position);

xForSimulation = linspace(mu-4*stdd,...

mu+4+*stdd,config.nBins) ;
[estimatedPDF,config.xout] = hist(position,xForSimulation);
config.binWidth = abs( abs(config.xout(2))-abs(config.xout(1)));
currentArea config.binWidth*sum(estimatedPDF) ;
estimatedPDF estimatedPDF/currentArea;

if config.standarize

stdd = 1;
mu = 0;
else
stdd = params.trueStd;

5.5£8",...
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mu = params.trueMean;
end
xForNormal = linspace(mu-4*stdd, mu+4*stdd, config.nBins);
truePDF = pdf ('Normal',xForNormal,mu, stdd);

diffPDF = truePDF-estimatedPDF;

config.rmsError (current_experiement_number) = ...
norm(diffPDF) /sqrt (length (diffPDF)) ;

estimatedFit = pdf ('Normal',xForSimulation,params.trueMean,
stdd*sqrt (4*p*q)) ;

end

TololoTo oo ToTo 1o oo To o To oo o

b

b

ToTotoTo oo ToTo 1o oo To o to oo To o 1o o
function makeFigure()

figure;

set(gcf, 'Position', [200 100 700 600]);
set(gcf, 'Resize', 'off')

set (0, 'DefaultTextinterpreter', 'none');
axpos = get(gca, 'pos');

h = title{'',"'});

extent = get(h, 'extent');

% position is [left, bottom, width, height];
set(gca, 'pos', [axpos(1) axpos(2) axpos(3) axpos(4)-.3*extent(4)]);

end

To run, save it to your Matlab working directory and type the command nmaHW4math504 ()
from the console.

4.5 Wed 2/27/2008

Grade: 2/2.

Problem 3.9 from handouts (probability distribution related to record time distribution)
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4.5.1 Problem

f ;T)| Let X, Xs,--- be a sequence of independent, identically distributed, l.‘nminu:.':us
Tandom variables. A record is said to occur at time n > 2 if X, > maziX,, Xa,
v, Xoq ). The value of the first variable X, is considered a record at time n = 1.

Define the random variable I; to be 1 if a record occurs at time i, and to be zero

otherwise. (a) Show that P(I; = 1) = 1/i, fori = L Help: Fori = 2, P(l; =1) h

equal to P(X; < X Xa< Xi, Xioy < Xi). Condition on .-"L-?. to sultc this

equation.  (b) Let N, equal the number of records that occur up to time n. Find the
expected value and variance of N, . Help: Note that N, = f_|_ F-e .J'H . a_md assume
without proof that the variables I; are independent. (c) Let T be the first time greater
than 1 at which a record occurs. Find the probability distribution of T', and show that

P(T < oo} = 1, while E(T)=co. Help: Note that P(T">n)= Pi(X, = Xy,
Xy < Xy,---X, < X)), and condition on X.

Figure 4.2: problem 3.9 from lecture notes

4.5.2 Solution
Part (A)

We first covert the sequence of random variables X,, to sequence of random variables I; as
described. A diagram below will also help illustrate this conversion

Record

Record

Record @ n=10
Record @ n=6

Record @ n=1

{Xn} =

1 23 45 67 B 9 10 aus

Convert to new random
variables | as follows

{I.} = Bnnunmnnnmnunﬂunuunnun
1

23 4 5 67 89 10 ses

We need to show that P(I; = 1) = 1. Using the hint given, we write (for 7 > 2)

P(IZ = 1) ZP(Xl <Xi,X2 <XZ’,"~ 7Xz'—1 <Xz)

Conditioning on X;, and assuming the pdf of X is given by f(z) we write

P(IZ = 1) = /P(Xl <Xi,X2 <X7;,"' ,Xi—l < X1|Xz =.’E)f(l')dilf
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Since the X; random variables are independent from each others, we break the above ’and’
probabilities to products of probabilities.

But P(X; < X;|X; = ) = F(x), hence the above becomes

P(I,=1) = / F@)™ f()de (1)

But f(z) = F'(x), hence the above becomes

P(I,=1) = / (F()] F(z)de

Now do integration by parts (let dv = F'(z) and u = [F(z)]""

o0

P(I;=1) = [w]*_— /vdu
= [F@ @] - / F(z) (i = 1) [F(2)] F'(z) da
= [P@y]” -G-1) / (F(z)f! F'(z) da

But [F(a:)z] T oo1- (0) = 1 hence the above becomes

P(I;=1)

~

P(Li=1)=1—(i—1) / (F(2)]! F'(2) dz

But / [F(z)]"" F'(z)dz = P(I; = 1) since it is the integral we started with (see (1)), so

move it to the left side, and the above becomes

PI=1)=1-(i—1)P(I; =1)
PLi=1)+@G—-1)PLi=1)=1
PI;=1)i=1

Hence
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Part(B)
N,, is number of records up to time n. We need to find E(N,,) and Var(N,)

Nn=11+I2+"'+In
EN,)=E(L+L,+---+1,)
=FE(L)+ E(lL)+---+ E(I,)

But E(Il) =1x P(Il = ].) +0 x P(Il = 0) = P(Il = 1) and similarly, E(Iz) = .P(IZ = 1)
Hence

E(N,) =PI, =1)+P(Il,=1)+ -+ P(I, = 1)
1 1

1
=14+ -4+ 4.4
+2+3+ +n

"1
:;{

So E(N,,) is a harmonic number. In the limit, this sum is m Hence number of records
is infinite. i.e. if we wait long enough, we will always obtain a new record.

To find the variance of N,,, we use the hint and assume I; are independent of each others (i.e.
when a record occurs is independent of when previous record occurred), hence the covariance
terms drop out (since all zero) and we are left with the sum of variances

Var(N,) =Var(lLLi+ L +---+ 1)
=Var(l;)+Var(ly) +---+ Var(l,)

But
Var(L,) = E(I?) — E(I;)°

But EI)=12x P(I; =1)+0?x P(I; =0)=P([;=1) =1

Hence | E(I?) = 1|, therefore

7

therefore

n n
Since Z% = 00 as n gets very large, and Zz% = %2 as n gets very large, then
i=1 i=1

Var(N,) = oo as n gets very large.
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Part(C)

We need to find Pr (T = n) where T is the time of the first record (not counting n = 1 which
is always a record ofcourse).

Pr(T=2)=Pr(l=1)=:

Now

Pr (T = 3) = Pr (no record at T=2,record at T=3)

Since having no record at 7" = 2 and having a record at 7" = 3 are indepdent events the
above becomes

Pr (T = 3) = Pr (no record at T=2) Pr (record at T=3)
=(1-Pr(Iy=1) xPr(I3=1)

()0

1 1
= — X —
2 3
Similarly,
Pr (T = 4) = Pr (no record at T=2,no record at T=3,record at T=4)
=(1-Pr(l=1)x(1-Pr(I53=1)) xPr(ly=1)
=(1-2) (=3) 5)
RSV
2 3 4
_L 1l
374
Similarly,

Pr (T = 5) = Pr (no record at T=2,no record at T=3,no record at T=4,record at T=5)
=(1-Pr(lo=1)x(1—-Pr(Is5=1)x(1—-Pr(Iy=1)) xPr(l; =1)

-(1-3) (-3) (-3) )

—
I

DO |

N——

X

X
=W
X
NI

X
U =Wl N

e Bl N

Hence continuing this way, we see that
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Hence
L |
Pr(T<Oo)=kll>I§on:n(n—1)
] k—1
= e k
=1
and
ET)=2xPr(T=2)+3xPr(T=3)+4xPr(T=4)+---
1 1 1 1 1
—1+1+1+1+
N 2 3 4
_il
- Lap
=1
=00
Hence

E(T) =0

4.6 Computing Assignment #3. Monday 3/3/2008

Craps game and inventory problem. Markov chain Problem description is
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(/1. ™ _J..u-'z:’:{ - ,[_
- rxra JE nEex
Math 504 Assignment % 5 o [ poned

Maxch 3/?-/2‘»‘3

1. Consider the game of “eraps™ Two die are tossed. The player wins
if a sum of T or 11 appears, and loses if a sum of 2.3, or 12 appears.
Otherwise, the sum on the first toss is designated the plaver’s point
score. The player then continues to toss the two die until a sum of 7
appears, in which case the player loses, or a sum equal to the point
score appears, in which case the player wins. Model this game as an
absorbing Markov chain. Determine the one-step transition matrix P,

2. Write a program to form the one-step transition matrix P for the in-
ventory problem in Example 4.3.2. For the demand, use a function of
the form

dir)=clz+1), for z=0,1,2,---.5,

and
d{x) =06c(13 —x)/8, for x =6,7,---,13.

Choose the constant ¢ so that the function d is a probability distribu-
tion. Inputs to your program are the values of s and S. Output is the
one-step transition matrix P,

Experiment with each of these processes, and investigate what ean be said
about the long-run behavior. In particular, consider the following questions.
(a) Do the powers P" converge as n — oo? If so, what can you say about
the limit matrix? (b)) Is there a limiting state probability distribution in 975
all cases? 1f so, does this limiting distribution depend on the initial state
probability distribution? (¢) Assuming vour conclusions from parts (a) and
(b) are correct, show how the results of part (a) could be used to deduce the
conclusions of part (b).

In vour report, first summarize vour numerical results briefly and sue-
cinetly, Present these results in such a way that the reader can easily under-
stand the observations that you are drawing from vour experiments. Next
state vour observations based on the numerical results, and indicate any
seneral coneliusions that seem to be sneeested by the experiments.
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4.6.1 Problem description

Math 504 Assignment % ’5

1. Consider the game of “craps”: Two die are tossed. The plaver wins
if a sum of 7 or 11 appears, and loses if a sum of 2.3, or 12 appears.
Otherwise, the sum on the first toss is designated the player’s point
score. The plaver then continues to toss the two die until a sum of 7
appears, in which case the player loses, or a sum equal to the point
score appears, in which case the plaver wins. Maodel this game as an
absorbing Markov chain. Determine the one-step transition matrix P,

[ B

Write a program to form the one-step transition matrix I” for the in-
ventory problem in Example 4.3.2. For the demand, use a function of
the form
dix)=clzr+1), for x=0,1,2,---,5,

and

d{x) =6c(13—x) /8, for £ =6,7,---,13.
Choose the constant ¢ so that the function  is a probability distribu-
tion. Inputs to your program are the values of s and S. Output is the
one-step transition matrix /.

Experiment with each of these processes, and investigate what can be said
about the long-run behavior. In particular, consider the following questions.
(¢) Do the powers P" converge as n — oo? If so, what can you say about
the limit matrix? (b)) Is there a limiting state probability distribution in hri
all cases? If so, does this limiting distribution depend on the initial state
probability distribution?  (¢) Assuming your conclusions from parts (a) and
(b) are correct, show how the results of part (a) could be used to deduce the
conclusions of part ”1].

In vour report, first summarize vour numerical results briefly and sue-
cinctly, Present these results in such a way that the reader can easily under-
stand the observations that vou are drawing from vour experiments. Next
state vour observations based on the numerical results, and indicate any

seneral conclusions that seem to be snegested by the experiments.

4.6.2 craps game
Summary of numerical results

The state probability transition matrix was entered and then raised to higher powers. This
is the numerical result
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Initial P matrix
Winloss0 4 5 6 8 9 10
Wi 1 000 0 O O O O
n
Less |O 1 00 0 O O O O
2 1,11 5 51 1
0 9 9 12 9 36 36 9 12
5 1 3
4 = 202 0 0 0 0 O
3% 6 4
101 13
- =00 =0 0 0 O
5 9 6 18
5 1 25
G =200 0 Z0 0 0
36 6 36
S lo00 00 o o
8 % 6 18
101 13
9 - =00 O O 0 =0
9 6 18
101 3
10 — =00 0 0 0 0 =
12 6 4
N=10
1. 0 0. 0. 0. 0. 0. 0. 0.
0. 1. 0. 0. 0. 0. 0. 0. 0.
0.501363 0.491875 0. 0.00625706 0.00594012 0.00521681 0.00742515 0.00594012 0.00625706
0.52427 0.629124 0. 0.0563135 0. 0. 0. 0. 0.
0.384556 0.576834 0. 0. 0.0386108 0. 0. 0. 0.
0.442689 0.531227 0. 0. 0. 0.0260841 0. 0. 0.
0.480695 0.576834 0. 0. 0. 0. 0.0386108 0. 0.
0.384556 0.576834 0. 0. 0. 0. 0. 0.0386108 0.
0.314562 0.629124 0. 0. 0. 0. 0. 0. 0.0563135
N=40
1. 0 00 0 0 0 0 0
0 1. 00 0 0 0 0 0
0.517759 0.514644 0 1.1174x10° 3.41917 %1077 9.25828 x10° % 4.27396x1077 3.41917 %1077 1.1174 x10°°
0.55555 0.66666 0 0.0000100566 0 0 0 0 0
0.399999 0.599999 0 0 2.22246 x10°% 0 0 0 0
0.454545 0.545454 0 0 0 4.62914x1077 0 0 0
0.499999 0.599999 0 0 0 0 2.22246x107° 0 0
0.399999 0.599999 0 0 0 0 0 2.22246 x10°6 0
0.33333 0.66666 0 0 0 0 0 0 0.0000100566
mmm e mmmmn N=81
1. 0! 0000000
o _______1. 0000000
0.517761 0.514646 0 0 0 0 0 0 Q matrix
0.555556 0.666667,0 0 0 0 00
0.4 0.6 000000
0.454545 0.545455(0 0 0 0 0 0
0.5 0.6 000000
0.4 0.6 loooo0o0o0
0.333333 0.666667 |Lo 000000

To answer part (b) below, we need to run the system from different initial state vector (i.e.
different 7(?)) and observe if the system probability state vector after a long time (i.e. ()
will depend on the initial state vector or not. Here is the result for 3 different initial state
vectors. In diagram below we show the 7(? and to its right 7(>).
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Initial probability state vector .
)T'.\O;[_m
piInitial ={0, 0,1, 0,0, 0, 0,0, 0}; 0.517761
0.514646
Chop[N[piInitial.MatrixPower[A, 100]]] // MatrixForm 0
0
0
0
0
0
Initial probability state vector 0
piInitial ={0, 0,0,1,0,0,0,0, 0}; 0.555556
0.666667
Chop[N[piInitial.MatrixPower[A, 100]]] // MatrixForm 0
0
0
0
0
Initial probability state vector g
piInitial = {0, 0, o};‘, 1,0,0,0, 0}; 0.4
Chop [N[piInitial.MatrixPower[A, 100]]] // MatrixForm 0.6
0
0
0
0
0
0
0

Analysis of numerical results
part (a)

The powers of P" converges as n — oo. This is seen by looking at the above sequence
of the P matrix where we see that the matrix P converges to the following limiting matrix
at around n = 81

We can say the following about the limiting matrix: As n — oo the matrix P converges to a
fixed value shown above. The entries P} where j is a transient state goes to zero as n gets
large.

part (b)

From the above numerical result, we see that depending on the initial system probability
state vector 7(®) we obtain a different system probability state vector 7(™ as n gets very large.
This is because some states are transient (states {4,5,6,8,9,10}). In the inventory problem
below, we see that we obtained a different result for this part since the inventory problem
has no transient states.

part (c) Let I be the set of all the possible states the system can be in. Hence from definition,

(n) Zﬂ.(o) P'n

el

we write

Where 7rj(.n) means the probability that the system will be in state j after n steps and Fj; is

the n steps transition probability. Now take the limit of the above as n — oo we have
lim 7r = lim ZW(O)P”

n—00 n—00
i€l

=" lim (" P)

i€l
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Assume there are k states, we can expand

lim (P} + 7" Py + -+ m" By

n—o0

But from part(a) we observed that in the limit, entries of each columns are not equal. Hence
Pr; # Py, # - - - # P this means the above sum will produce a different value depending on
the initial state probability vector 7(?). (Compare this to the inventory problem below, where
each entry in a column is the same, and we could factor it out of the sum and we reached a
different conclusion than here).

Hence we showed depending on the initial 7© then lim, o 7rJ(~") goes to different value as

confirmed by the numerical result shown above in part(a). Hence part(a) results could be
used to deduce part(b) conclusion.

4.6.3 Inventory problem

Summary of numerical results

An inventory program was written in Mathematica (please see appendix for full source code)
which generated the P matrix for an increasing values of n. The specification of the inventory
model is described in the question shown above. The value [s = 3] and | S = 5] was used.

The following are few results of the P matrix for an increasing values of n and the histogram
of the demand distribution used.

Initial P matrix N=3
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.091026% 0.0672174 0.0434078 0.021191
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191
0.857143 0.0714286 0.047619 0.0238095 0. 0. 0.663454 0.114593 0.090783% 0.0669744 0.0431649 0.021029
0.761905 0.0952381 0.0714286 0.047619% 0.0238095 0. 0.662887 0.114715 0.0909054 0.0670959 0.0432864 0.02111
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191
N=5 N=10
0.662421 0.114815 0.0910054 0.067195%9 0.0433864 0.0211767 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910054 0.0671959 0.0433864 0.0211767 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910054 0.0671959 0.0433864 0.0211767 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662427 0.114814 0.0910042 0.0671946 0.0433851 0.0211759 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662424 0.114814 0.0910048 0.0671953 0.0433857 0.0211763 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910054 0.0671959 0.0433864 0.0211767 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
N=20 N=1000
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766 0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
denand fimction

o1 2 3 4 5 6 7 & 9 W 1 12 13

To answer part (b) below, we need to run the system from different initial state vector (i.e.
different 7(®)) and observe if the system probability state after a long time (i.e. 7(*)) will
depend on the initial state vector or not. Since we know that

20— O p
7@ — 0 p — 10 p@)
7@ — 2 p — 10 p@)

() — (0 p()
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And since P™ = P™, then all what we have do is pick few 7(®) vectors, and post multiply
them by P™ for large n and see if we obtain the same 7(). Below is the numerical result
for this part showing the initial 7(®) and the final 7(™. I used n = 30 in all cases as this
showed it is large enough from the above numerical results. Here are the results. Below we
show result of 6 tests. In each one, 7(¥) is shown and to its right 7(™.

il 0) it 30) gt 0) It 30) Il Q) P 30)
14y/0.662421 0.54y70.662421 0.4y/0.662421
0| o0.114815 0.5||0.114815 0.2 (] 0.114815
0| 0.0910053 0 0.0910053 0.4 0.0910053
0[] 0.0671958 0 0.0671958 0 0.0671958
0| 0.0433862 0 0.0433862 0 0.0433862
0/10.0211766 0 0.0211766 0 0.0211766

() o (30) (0) r(30) () r(30)
0.1 0.662421 0.2 0.662421 0 0.662421
0.1 0.114815 0.3 0.114815 1 0.114815
0.4 0.0910053 0.1 0.0910053 0 0.0910053
0.4 0.0671958 0.1 0.0671958 0 0.0671958
0 0.0433862 0.2 0.0433862 0 0.0433862
0 0.0211766 0.1 0.0211766 0 0.0211766

Analysis of numerical results
Part (a)

The powers of P" converges as n — oco. This is seen by looking at the above sequence
of the P matrix where we see that the matrix P converges to the following limiting matrix
at around n = 20

(0.662421 0.1146815 0.0910053 0.0671258 0.0433862 0.02117661
0.662421 0.114815 0.0210053 0.06715958 0.0433862 0.0211766
0.662421 0.114815 0.0210053 0.06715958 0.0433862 0.0211766
0.662421 0.11481> 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.11481> 0.0910053 0.06715958 0.0433862 0.0211766

\0.662421 0.114815 0.0%10053 0.06719568 0.0433862 0.0211766

We can say the following about the limiting matrix: As n — oo the matrix P converges to
a fixed value shown above. Each column has the same entries in its rows. In addition, all
entries are non-zero. This implies that the chain contains no transient states. And since all
the values on the converged P matrix are positive, then we have only one closed set in the
chain, which contains all the states.

part (b)

There is a limiting state probability distribution in all cases. This is show by looking at
the numerical result above that shows for different initial probability state vector 7(® we ob-
tain the same probability state vector 7™ when n is large. So the final 7(>) | does not depend
on which state the system starts from.

part (c)

In this part, we need to show given that P> converges to limiting fixed value, then the 7r,(c°o)

is the same for all states k.

Let I be the set of all the possible states the system can be in. Hence from definition, we
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write

(n) Zﬂ.(o) Pn
el

Where 71'](-”) means the probability that the system will be in state j after n steps and Fj; is
the n steps transition probability. Now take the limit of the above as n — oo we have

- ©) pn
Y " = i > m"ES

=" lim («"P)

i€l

Assume there are k states, we can expand

lim (7" P + 7 Py + -+ n" By

n—o0

But from part(a) we observed that lim,,_,, P} is a fixed value, which is the limit the transition
matrix converged to. In other words, Pj; = Py = --- = P since all entries in the j column
are the same. Call this entry in 7 column as k say. So k is a single number which represents
the one step transition probability from state ¢ to state 7 when the system has run for a long
time. So we write the above as

lim 7" = k( O 4 704y 77(0)>

n—oo J

now, ZWZ-(O) is the sum of the probabilities of the system being in all its states at time zero,
icl
which must be 1 hence

lim 7rj =k
n—oo

Hence we showed that regardless of the initial 7(© then lim,,_, 7TJ(-”) goes to some fixed values.

This shows that for any state j the probability that the system will be in that state after a long
time converges to a fixed value regardless of the initial state if the system transition matrix
converges in the limit. Hence part(a) results could be used to deduce part(b) conclusion.
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4.6.4 Graded assignment

. COMPUTING ASSIGNMENT 3 MATH 504. SPRING 2008.
CSUF

CRAPS AND INVENTORY PROBLEM

by Nasser Abbasi

March 2, 2008
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1 Problem description

Math 504 Assignment 2 7>

1. Consider the game of “craps™: Two die are tossed. The player wins

if a s of T or 11 appears, and loses if a sum of 2.3, or 12 appears.
Othe
score. The plaver then continues to toss the two die until a sum of 7

vise. the sum on the first toss is designated the plaver's point

appears, in which case the playver loses, or asum equal 1o the point

seore appears. in which case the player wins. Model this game as an

absorbing Markov chain. Determine the one-step transition matvix [,

Write o program to form the one-step transition matrix 2 for the in-
ventory problem in Example 13.20 For the demand. use a funetion of
the form

d(r) = cfa

and

d(r) = 6e(13 —r)/8 . for =6
Choose the constant ¢ so that the function o is a probability distribu-
tion. Inputs to vour program are the values of s and S, Ontput is the
one-step transition matrix .

Experiment with each of these processes, and investigate what can he said
about the long-run behavior. In particnlar, consider the following questions.
() Do the powers P converge as n— ~x? I so. what can vou say about

the limit matvix? (b)) Is there a limiting state probability distribution in 972

all eases?  If so, does this limiting distribution depend on the initial state
probability distribution?  (¢) Assuming your conclusions from parts (a) and
{h) are correct. show how the vesults of part (a) could be used to deduce the
conclusions of part ().

In vonr report. first swmmarize your numerical results briefly and sue-
cinetly, Present these resnlts in such a way that the reader can casily nnder-
stand the observations that you are drawing from vour experiments. Next
state yvour observations based on the numerical results, and indicate any

aeneral coneliusions that seem 1o be snevested by the experiments.



CHAPTER 4.

HWS

280

2 craps game

2.1 Summary of numerical results

-

The state probability transition matrix was entered and then

numerical result

00 O © © OO0 OM

.517759
.55555

.399999
.454545
.499999
.399999
.33333

.501363
.52427

.384556
.442689
.480695
.384556
.314562

OO0 O0OO0CO0O0OO0OOM

.514644
.66666

0

1

0

0
0.599999
0.545454
0.599999
0.599999
0.66666

OO0 00O 0O O

Initial P matrix

raised to higher powers. This is the

Win Loss 0 4 5 6 8 9 10
Win 1 000 O O O O O
loss |0 100 0 0 0 0 O
2 1 11 5 5 1 1
0 = =0 = = = = =
9 9 12 9 36 36 9 12
1 3
4 2T 0- 00 0 B
36 6 4
Rl G0 i gy D e . 50
5 9 6 18
g - 200 0 =4 0 6
3% 6 36
= 290 0 @ 20 @
8 36 6 18
13
s |= 200 0 0 0 o
9 6 18
1 3
0w (=200 0 0 0-0:32
12 6 4
N=10
0. 0. 0. 0. 0. 0. 0
05 0. 0. 0. 0. 0. 0.
.491875 0. 0.00625706 0.00594012 0.00521681 0.00742515 0.00594012 0.00625706
.629124 0. 0.0563135 0. 0. 0. 0 0.
.576834 0. 0. 0.0386108 0. 0. 0. 0
.531227 0. 0. 0. 0.0260841 0. 0. 0
.576834 0. 0. 0. 0. 0.0386108 0. 0
.576834 0. 0. 0. 0. 0. 0.0386108 0.
.629124 0. 0. 0. 0. 0. 0. 0.0563135
N=40
00 0 0 0 0 0
00 0 0 0 0 0
0 1.1174x107% 3.41917 %1077 9.25828 x10°8 4.27396 x10~7 3.41917 x10-7 1.1174 x10-5
0 0.0000100566 0 0 0 0 0
00 2.22246 x10°% 0 0 0 0
00 0 4.62914 x1077 0 0 0
00 0 0 2.22246 x107% 0 0
00 0 0 0 2.22246 x10-% 0
00 0 0 0 0 0.0000100566
mermse oo N=81
1. 0! 0000000
K LSO [‘0—0—0—0—99—0;
0.517761 0.514646 0 0 0 0 0 0 0, Q matrix
0.555556 0.666667 0 0 0 0 0 0 0, Py
0.4 0.6 000000 0y . :
0.454545 0.545455(0 0 0 0 0 0 O] P
0.5 0.6 0000 O0O0 Ol //
0.4 0.6 000000 ol :
0.333333 0.666667 'Lo 00000 0
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To answer part (b) below, we need to run the system from different initial state vector (i.e. different
7(®) and observe if the system probability state vector after a long time (i.e. 7(*)) will depend on the
initial state vector or not. Here is the result for 3 different initial state vectors. In diagram below we
show the 7@ and to its right w(*).

Initial probability state vector )
\\ /z—'\O;PY!
piInitial ={0,0,1,0,0,0,0,0, 0}; 0.517761
Chop [N[piInitial.MatrixPower[A, 100]]] // MatrixForm 3'514646
0
0
0
0
Initial probability state vector g
piInitial ={0, 0,0, 1,0,0,0,0, 0} 0.555556
Chop [N[piInitial.MatrixPower[A, 100]]] // MatrixForm 3'666667
0
0
0
0
Initial probability state vector g
piInitial ={0, 0,0,0%1,0,0,0, 0}; 0.4
Chop [N[piInitial.MatrixPower[A, 100]]] // MatrixForm 0.6
0
0
0 -
0
0
0
0
2.2 Analysis of numerical results
2.2.1 (a)
The powers of P" converges as n — oo. This is seen by looking at the above sequence of the P
matrix where we see that the matrix P converges to the following limiting matrix at around n = 81
We can say the following about the limiting matrix: As n — oo the matrix P converges to a fixed
value shown above. The entries Pj; where j is a transient state goes to zero as n gets large.
2.2.2 (b)
From the above numerical result, we see that depending on the initial system probability state vector
7 we obtain a different system probability state vector 7™ as n gets very large. This is because
some states are transient (states {4,5,6,8,9,10}). In the inventory problem below, we see that we

obtained a different result for this part since the inventory problem has no transient states.
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2.2.3 (¢

Let I be the set of all the possible states the system can be in. Hence from definition, we write

- o }@/

zeI

Where 7rJ(.") means the probability that the system will be in state j after n steps and P} is the n steps
transition probability. Now take the limit of the above as n — oo we have

i i = lim el F)
el

= E lim (WEO)Pg-y
n—oo
il
Assume there are k states, we can expand

( © fon n| W(0>Pn (0)}{5))

But from part(a) we observed that in the limit, entries of each columns are not equal. Hence P #
Py # - -+ # Py this means the above sum will produce a different value depending on the initial state
probability vector 7(?). (Compare this to the inventory problem below, where each entry in a column
is the same, and we could factor it out of the sum and we reached a different conclusion than here).

. Yence we showed depending on the initial 7)) then lim,, o 7r§-n) goes to different value as confirmed
““by the numerical result shown above in part(a). Hence part(a) results could be used to deduce part (b)
conclusion.

<
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3 Inventory problem

3.1 Summary of numerical results

An inventory program was written in Mathematica (please see appendix for full source code) which
generated the P matrix for an increasing values of n. The specification of the inventory model is
described in the question shown above. The value |s = 3| and | S = 5| was used.

The following are few results of the P matrix for an increasing values of n and the histogram of the
demand distribution used.

Initial P matrix N=3
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191
0.857143 0.0714286 0.047619 0.0238095 0. 0. 0.663454 0.114593 0.0907839 0.0669744 0.0431649 0.021029
0.761905 0.0952381 0.0714286 0.047619 0.0238095 0. 0.662887 0.114715 0.0909054 0.0670959 0.0432864 0.02111
0.642857 0.119048 0.0952381 0.0714286 0.047619 0.0238095 0.66232 0.114836 0.0910269 0.0672174 0.0434078 0.021191

N=5 N=10
0 662421 0.114815 0.0910054 0.0671959 0.0433864 0.0211767y ,0.662421 0.114815 0.0910053 0. 0671958 0.0433862 0.0211766
0 662421 0 114815 0 0910054 0 0671959 0 0433864 0.0211767 | |0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0 662421 0 114815 0 0910054 0 0671959 0 0433864 0 0211767 | |0.662421 0.114815 0.0910053 0 0671958 0.0433862 0.0211766
0 662427 0 114814 0.0910042 0 0671946 0 0433851 0.0211759 | |0 662421 0.114815 0.0910053 0. 0671958 0.0433862 0.0211766
0 662424 0 114814 0 0910048 0 0671953 0 0433857 0.0211763 | |0 662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0 662421 0 114815 0 0910054 0 0671959 0 0433864 0.0211767) \0 662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766

N=20 N=1000
0 662421 0 114815 0. 0910053 0.0671958 0 0433862 0. 0211766y (0. 662421 0.114815 0.0910053 0 0671958 0 0433862 0.0211766%
0 662421 0 114815 0 0910053 0 0671958 0 0433862 0 0211766 | |0 662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0 662421 0 114815 0 0910053 0. 0671958 0 0433862 0. 0211766 | |0 662421 0.114815 0.0910053 0. 0671958 0.0433862 0.0211766
0 662421 0 114815 0 0910053 0.0671958 0 0433862 0.0211766 | |0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0662421 0 114815 0 0910053 0 0671958 0 0433862 0 0211766 | |0.662421 0.114815 0.0910053 0. 0671958 0.0433862 0.0211766
0 662421 0 114815 0 0910053 0 0671958 0 0433862 0 0211766 ) \0.662421 0.114815 0 0910053 0.0671958 0.0433862 0.0211766

demnd fmction

o 1 2 3 4 5 6 7 & 9 10 11 12 13

To answer part (b) below, we need to run the system from different initial state vector (i.e. different
7(9) and observe if the system probability state after a long time (i.e. 7(°)) will depend on the initial
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3.2.2 (b)

There is a limiting state probability distribution in all cases. This is show by looking at the
wumerical result above that shows for different initial probability state vector 7(?) we obtain the same
““probability state vector 7™ when n is large. So the final 7(*) | does not depend | on which state the
system starts from.

3.2.3 (c)

In this part, we need to show given that P°° converges to limiting fixed value, then the 7r,(c°°) is the
same for all states k.

Let I be the set of all the possible states the system can be in. Hence from definition, we write
= Sr0OR)
i€l

Where 7r3(.") means the probability that the system will be in state j after n steps and Fj;
transition probability. Now take the limit of the above as n — oo we have

: () _ s (0)
lim ;"7 = nli.%zwi Pf;)

n—oo J -
el

=3 I (=1°#)
i€l

is the n steps

“wAssume there are k states, we can expand

. (0) (0) (0)
Jim ()4 mOH+ - + 0P

But from part(a) we observed that lim,_,., P} is a fixed value, which is the limit the transition matrix
converged to. In other words, P} = P, = --- = PJ; since all entries in the j column are the same.
Call this entry in j** column as k say. So k is a single number which represents the one step transition
probability from state i to state j when the system has run for a long time. So we write the above as

lim WJ(-") =k <7r§0) +ad 4+ WI(CO))

n—00

now, wao) is the sum of the probabilities of the system being in all its states at time zero, which
iel

must be 1 hence

lim 7r§") =i

n—o0
Hence we showed that regardless of the initial 7 then lim,, WJ(") goes to some fixed values. This
shows that for any state j the probability that the system will be in that state after a long time
converges to a fixed value regardless of the initial state if the system transition matrix converges in
the limit. Hence part(a) results could be used to deduce part(b) conclusion.

-
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state vector or not. Since we know that
0= ,0p
7@ = 7O p = 70 p2)
7@ — 7@ p — (0 p®d

7™ — 70 p)

And since P = P", then all what we have do is pick few 7(?) vectors, and post multiply them by
P™ for large n and see if we obtain the same ™. Below is the numerical result for this part showing
the initial 7(%) and the final 7™. I used n = 30 in all cases as this showed it is large enough from the
above numerical results. Here are the results. Below we show result of 6 tests. In each one, 7© is
shown and to its right 7(®).

(0 30 s r(30) (0 (30
1y/70.662421 0.5)/70.662421 0.4y/0.662421
0(]0.114815 0.5]|0.114815 0.2 ]10.114815
0| 0.0910053 0 0.0910053 0.4 ||0.0910053
0| 0.0671958 0 0.0671958 0 0.0671958
0| 0.0433862 0 0.0433862 0 0.0433862
0/10.0211766 0 0.0211766 0 0.0211766
i0; r30; 0 (30 0 (30
0.14y/0.662421 0.2y/0.662421 0y)/70.662421
0.1f|0.114815 0.3|]0.114815 1]]0.114815
0.4 0.0910053 0.1 0.0910053 0 0.0910053
0.4|]0.0671958 0.1(]0.0671958 0] 0.0671958
0 0.0433862 0.2|]0.0433862 0] 0.0433862
0 0.0211766 0.1/10.0211766 0/10.0211766

3.2 Analysis of numerical results
3.21 (a)

The powers of P™ converges as n — oo. This is seen by looking at the above sequence of the P
matrix where we see that the matrix P converges to the following limiting matrix at around n = 20

0.662421 0.1148150.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766
0.662421 0.114815 0.0910053 0.0671958 0.0433862 0.0211766

We can say the following about the limiting matrix: As n — oo the matrix P converges to a fixed
value shown above. Each column has the same entries in its rows. In addition, all entries are non-zero.
This implies that the chain contains no transient states. And since all the values on the converged P
matrix are positive, then we have only one closed set in the chain, which contains all the states.

7
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Inventory problem. Computing assignment 3. Math 504, spring 2008.
CSUF

by Nasser Abbasi

= Define constants for the problem (give in class to use)

8=3;
8=5;

= define demand function (note the use of conditions on arguments)
demand[x_] := (x+1) /; x<5
demand [x_] := % (13-x) /; 5<x513;
demand[x_] :=0;
points = Range [0, 13]

{0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13}

= define the and p (i, j) functions (see handout)

pli_, J_] :=Total[Table[c *demand[v], {v, S, Length[points]}]] /; (j =0&&i <8);
pli_, j_] :=Total[Table[c *demand[v], {v, i, Length[points]}]] /; (J =0&&i 28);
Pli_, j_] :=c+demand[S-3j] /; (1 <8&& (0<j=<8));

Pli_, j_] :=cxdemand[i-j] /; (12 s&& (0<j < 1i));

pli_, 3_]1:=0;

= define a function which determines the ' ¢’ constant by making at area = 1 under the demand
function

demandTable = Table[demand[x], {x, points[[1]], points[[-1]]}];

¢ =1/ Total [demandTable] ;

Print["c=", N[c]];

demandTable = demandTable » c (#normalize it to make it probabilitys)

c=0.0238095

Printed by Mathematica for Students
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2 | inventory.nb

= Print the demand function numerical values
t = TableForm[N[demandTable], TableHeadings - {Apply[ToString, points, 1]}]

.0238095
.047619
.0714286
.0952381
.1190438
.142857
.125
.107143
.0892857
.0714286
.0535714
.0357143
.0178571

H WO 0o 9 0 U1 s W N R o
0 0 0 0 O 00 0 O 0O O 0 0

= Make a histogram of the demand function

Needs["BarCharts™"]
t = Table[{x, demandTable[[x+1]], 1}, {x, points[[1]], points[[-1]]}];:
GeneralizedBarChart [t, AxesLabel -» {"x", "demand (x)"},
Frame - True, FrameTicks -» { {Automatic, Automatic}, {points, None}},
FrameLabel - {"x", "demand (x)", "demand function"}]

demand function

0.14

0.12

demand(x)

0.02

0.00

Printed by Mathematica for Students
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craps game markov chain P matrix

wii- A={{1, 0,0,0,0,0,0, 0, 0}, (0,1,0,0,0,0,0,0,0},

4 6
5 %

8 4

36 36

26
ol -

36

v

.

0, 0}, {:—s

MatrixForm|[

A]

sh‘u“‘:h ﬂ“ ol ﬂ“ vy ©

QR a|r a|H ok ok ok vk B O
o o o o o o o O o

OOOOOahnn-chO
»

3

v

26
0,0,
36

] 0
0 0
i s
9 36
0 0
13
s 0
25
0 3%
0 0
0 0
0 0

4

36 36

5 5 4 3 5 6
o A 22 S0 26 0,0,0 0],
36 36 36 36 36 36 36

27

5 6 25 5 6
,0,0,0, o}. {—, —,0,0,0, —, 0,0, o}. {—. —,0,0,0,
36 36 36 36 36

-—, 0,0,0,0,0,

6

36

© ©opgp © © ©y,o 0

°HIH°°°°D|H°°

o|w

b]uOOOOOHI”OO
1Y

= Raise the matrix for higher power

N[A] // MatrixForm

O O O 0O 0o O o

O O OO0 oo o K

.222222
.138889
.111111
.138889
.138889
.111111
.0833333

.363062
.321181
.249314
.302319
.311643
.249314
.192708

O O 000 o o r o

0

1.
0.111111
0.166667
0.166667
0.166667
0.166667
0.166667
0.166667

.302598
.385417
.373971
.362783

.373971

.373971

.385417

©O O 0O 0o o o o o

©O O OO0 oo o o

O O 0O 00 oo o o

N[MatrixPower [A, 3]] // MatrixForm

0. 0. 0. 0.
0. 0. 0. 0.
0.0833333 0.111111 0.138889 0.138889
0.75 0. 0. 0.
0. 0.722222 0. 0.
0. 0. 0.694444 0.
0. 0. 0. 0.722222
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0.
0. 0. .
.046875 0.0579561 0.0669796 0.0724451
.421875 0. 0. 0.
0.376715 0. 0.
0. 0.334898 0.
0. 0. 0.376715
0. 0. 0.
0. 0. 0.

Printed by Mathematica for Students

O O O 0O 0Ooo oo o

.111111 0

.722222

0.0579561

.376715

© © 0O o o o

o ©O O ©o o

:—:. o}. {;E % 0,0,0,0,0,0, g}}

0.
.0833333

o

.75
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2 ’ craps.nb

N[MatrixPower [A, 10]] // MatrixForm

1. 0. 0. 0. 0. 0. 0. 0. 0.

0. 1. 0. 0. 0. 0. 0. 0. 0.
0.501363 0.491875 0. 0.00625706 0.00594012 0.00521681 0.00742515 0.00594012 0.00625706
0.52427 0.629124 0. 0.0563135 0. 0. 0. 0. 0.
0.384556 0.576834 0. 0. 0.0386108 0. 0. 0. 0.
0.442689 0.531227 0. 0. 0. 0.0260841 0. 0. 0.
0.480695 0.576834 0. 0. 0. 0. 0.0386108 0. 0.
0.384556 0.576834 0. 0. 0. 0. 0. 0.0386108 0.
0.314562 0.629124 0. 0. 0. 0. 0. 0. 0.0563135

Chop [N[MatrixPower [A, 40]]] // MatrixForm

1 5 0 0 0 0 0 0 0 0
0 1. 0 0 0 0 0 0 0
0.517759 0.514644 0 1.1174x10°° 3.41917x1077 9.25828x10™° 4.27396x107 3.41917x1077 1.
0.55555 0.66666 0 0.0000100566 O 0 0 0 0
0.399999 0.599999 0 O 2.22246%107° 0 0 0 0
0.454545 0.545454 0 O 0 4.62914x1077 0 0 0
0.499999 0.599999 0 O 0 0 2.22246x10°° 0 0
0.399999 0.599999 0 O 0 0 0 2.22246x10°° 0
0.33333 0.66666 0 0 0 0 0 0 0.
Chop [N[MatrixPower [A, 81]]] // MatrixForm
ik 0 0O 0 0 0 0 0 O
0 1. 0 0 0 0 0 0 O
0.517761 0.514646 0 0 O 0 O O O
0.555556 0.666667 0 0 0 O O O O
0.4 0.6 0 0 0 00O 0 O
0.454545 0.545455 0 0 0 0 O O O
0.5 0.6 0 0 0 0 0 O O
0.4 0.6 0 0 0 0 0 0O O
0.333333 0.666667 0 0 0 0O O O O
piInitial = {0, 0, 1, 0, 0, 0, 0, 0, 0}; 7

Chop [N[piInitial.MatrixPower[A, 100]]] // MatrixForm

0.517761
0.514646
0

O O ©o o o o

Printed by Mathematica for Students
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piInitial = {0, 0, 0,1, 0, 0, 0, 0, 0};
Chop [N[piInitial.MatrixPower [A, 100]]] // MatrixForm

0.555556
0.666667
0

© ©o 0o oo o

piInitial = {0, 0, 0, 0, 1, 0, O, O, 0};
Chop[N[piInitial.MatrixPower[A, 100]]] // MatrixForm

0.4
0.6

piInitial = {0, 0, 0, 0, .5, .5, 0, 0, 0};
Chop[N[piInitial.MatrixPower[A, 100]]] // MatrixForm

0.427273
0.572727
0

© O ©o 0o oo

Printed by Mathematica for Students

craps.nb [ 3
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4.6.5 Appendix
Source code for craps problem

(Mathematica notebookl

source code for inventory problem

(Mathematica notebookl

4.7 Practice problems

Grade: 2/2.

These are 5 problems to practice using method of characteristics to solve first order liner pde.
The problems are listed in the handout

{_ Method of Characteristics - Practice Problems

Use the method of characteristics to solve the following initial value problems for

t>0and —oo < z < oo.
1. w+4u, =0, and u(z,0) = e
2. u+ (zt)uy =0, and u(z,0) = 2z.
3. wuy+ (zsint)uy =0, and u(z,0) = 1/(1 + z?).
4. wu— (tr*)uy =0, and u(z,0) =1 +z.

5. u; — uy = zu, and u(z,0) = 2z.

€


HWs/computing_assignment_3_craps_and_inventory/code/craps.nb
HWs/computing_assignment_3_craps_and_inventory/code/inventory.nb
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4.7.1 Problem 2

Solve

us + (zt) up = 0 (1)

u(z,0) =2z

Solution

Seek solution where u(s) = u(t(s),z(s)) = constant,hence
du_oudt | Ouds
ds Otds Oxds

dz

7 = xs, and

Compare to (1) we see that % =1 or t = s and % = ¢, but since ¢ = s then

this has solution z = zyexp (%) but s =t , hence

T = T exp (g) (2)

Now at ¢ = 0, the solution is 2z, but this solution is valid any where on this characteristic
line and not just when ¢t = 0. hence

u(z,t) = 2xg
But zyp = xexp (‘Tt2> from (2), hence

u(z,t) = 2x exp <72)
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4.8 Problem 3

Solve
us + (zsint) u, =0
U’(xv 0) = l-i-%

Solution

Seek solution where u(s) = u(t(s),z(s)) = constant,hence

du Oudt Oudx _

—=——4+——F=0
ds Otds + Ox ds
Compare to (1) we see that % =1 or ¢t = s and 9 = zsint, but since ¢ = s then % = gsins,
and this has solution
Inz = /sin (s)ds
x = xoexp(—cos (s))
but s =t hence
x = xg exp(— cos (t)) (1)
Hence
xo = zexp(cos (1)) (2)
Att=0,
x =xzoexp(—1)
i —0ic 1 1 : L .
Now we are told the solution at ¢ = 0 is 177, or ; T exp(_1)]2but this solution is valid any

where on this characteristic line and not just when £ = 0. hence

1

wet) =17 (20 exp (=12

Replace the value of z, obtained in (2) we obtain

u(z,t) = ! 5
1+ exp(cosl(t)) exp (—1)]
T 1422 exp(2cos (t)) exp (—2)
Hence
w(a 1) = exp (2)

exp (2) + z2 exp(2 cos (t))
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4.8.1 Problem 4

Solve

ug — (tx?) up = 0
u(z,0)=1+z
Solution

Seek solution where u(s) = u(t(s),z(s)) = constant,hence

du Oudt Oudx B

—=——— 4+ ——=0
ds Otds + or ds
Compare to (1) we see that % =1lort=sand % = —tz?, but since t = s then % = —s1°
hence we need to solve
dx
2 —sds
L_ s +x
z 2 0
but s =t hence
1 t2 N 1)
S €z
T 2 0
Hence . )
t
=—|—-=—= 2
o (z 2) 2
Att=0,
1
To = ——
x

Now we are told the solution at t=0is 1+ z, or 1 — %but this solution is valid any where
on this characteristic line and not just when ¢ = 0. hence

1
)=1- —
u(et)=1-
Replace the value of z, obtained in (2) we obtain
1
u(x7t) = 1 - 1 $2
-(G-7%)
2z
=1
+ 2 —at?
Hence 0 2, o
—xt® + 2z
=" T

To avoid a solution u which blow up, we need 2 — xt? # 0, hence zt? # 2 , for example, z = 2
and ¢t = 1 will not give a valid solution. so all region in x — ¢ plane in which zt? = 2 is not a
valid region to apply this solution at.

The solution breaks down along this line in the x — ¢ plane
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L5

Lot

Out[55 =

0.5t

To see it in 3D, here is the u(z,t) solution that includes the above line, and we see that the
solution below the line and the above the line are not continuous across it. ( I think there
is a name to this phenomena that I remember reading about sometime, may be related to
shockwaves but do not now know how this would happen in reality)
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ou[51]

out[54]

4.8.2 Problem 5

Uy — Uy = TU

2z

u(z, 0)

Solution

Nonhomogeneous pde first order.

(TO DO)
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4.9 Monday 3/10/2008

Grade: 2/2.

Problem 5.7 from lecture notes (Irreducible matrix, analytical problem)

4.9.1 Problem

i
5.7\ Consider an irreducible Markov chain with a finite number of states {0, 1,2, ---,m
Let Q, = P(visit state m before state 0 | start in state 7). Then ¢ 0and Q,, = 1

i

a) Find a system of m — 1 linear equations that is satisfied by @1, @2, ", @m-1-
Help: Condition on the next state. (b) Show that the matrix which arises in part (a) 1S
nonsingular. Help: Assume this matrix, say A, is singular so that there exists a vector
v # 0 such that Av = 0. Normalize v so that one component is 1, and the restare < 1.

You will need the irreducible property.

4.9.2 Answer
PART (A) First note that Qo =0 and @, = 1.

Let us define § as the event {visit state m before state 0}, then we write

But by conditioning on state of the chain at time 1 instead of time 0, we writd]]

k=m

Pr(B|Xo =14) = »_Pr(8|X, =k)Pr(X; = k| X, = i)
k=0

But Pr(8|X; = k) = Qx by definition, and Pr (X; = k| X, = i) = P, Therefore the above
becomes

k=m
Qi = ZQkPik
k=0

Since Q)r = 0 and @),,, = 1, we can rewrite the above as follows

k=m—1

Qi=0+Pm+ Y QP
k=1
k=m-—1

= P + Z QrPix

k=1
If we examine the sum more closely, we see it is a product of a vector and a matrix. Since if
we expand for few terms we see that

Q1 =P+ Q1P+ QPia+ -+ Qu_1Pim—1)
Q2= Poy+ (Q1Pog + Q2Poo+ -+ Qm-1Pom—1)

Qm-1=Pr—1m + (Q1Pr-11+ Q2Pn-12+ -+ Qm-1Prn_1m-1)
1Given an event 3 it is clear we can say

Pr(8|Xo=4)= Y  Pr(8Xi=k)Puy

keall states

since Pj; is the probability of going from state 7 to state k in one step. This works since we assume the
Markov property which says the probability of transition to next state depends only on current state and
not on any earlier state (for an order 1 Markov chain).
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Which can be written as

Q1 P, P Py -+ Pipma Q1
Q2 _ P, n P, Py oo Py Q-
Qm—l Pm—l,m Pm—l,m Pm—1,2 e Pm—l,m—l Qm—l
Q1 P Py -+ Py P,
P, P, Y B,
Let x = 92 and let B = 21 ?’2 2mt ,and let b = 2 ,
Qm—l Pm—l,m Pm—1,2 e Pm—l,m—l Pm—l,m
then the above can be written as
r=b+ Bx
r—Bx=b»
(I-B)z=5b

Where I is the identity matrix of order m — 1. Now let A = (I — B). hence

Az =1b
Therefore we can find z (which is the @’s) if we can solve the above. i.e. if we can invert the
matrix A.(i.e. A is non-singular)
PART(B)

Now we need to show that (I — B) is invertible. Recall that a Matrix A is not invertible if
we can find a vector v # 0 such that Av = 0.

Let us assume that (I — B) is not invertible. Hence there exist a vector v # 0 such that

(I-B)v=0

In other words
v =Bv (1)

Now we show that it is not possible to find such a vector v, showing that (I — B) must
therefore has an inverse.

We can always normalized the vector v in (1) without changing this relation, hence we assume
v is normalized such that its largest component v; has length 1 (we do this by dividing the
vector by the largest component it had). Now (1) can be written in component form as follows
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m—1
vi= > pijv; (2)
j=1

Since v is normalized, it will have at least one component which is 1 in value, and it can
have components which are less than 1 in value (we proof this part below). Let the set of the
indices of those components of v which are 1 be the set J and let the set of the indices of
those components which are less than 1 be the set S. In other words

J={i:v, =1}
S={i:v <1}

First, we show that the set S can not be empty: Proof by contradiction. Assume S is empty.
Hence every element in the vector v is 1. Let us pick one of these elements v; = 1 such that
i corresponds to a row number in the matrix B where this row happens to sum to a value
less than ond?l Then we write

m—1 m—1 m—1
1= Zpijvi = sz‘j(l) = Zpij
j=1 j=1 j=1

But since this row sums to less than one, then the RHS above is less than 1. Hence this is a
contradiction, hence ‘the set S can not be empty ‘

Now that we showed the set S is not empty, we can write (2) as a sum over the set J and
the set S of indices. (We know the set J is not empty by definition, since the vector v is
normalized, so it will have at least one element in the set J). Hence (2) becomes

v = Zpij’vj + Zpij'vj 3)

JjEK jES

Let us again pick one of those v; components which has value 1 (we know there is at least
one of these), and try to see if this equality holds for this row i. So (3) becomes

1= Zpij'l)j + Zpijvj

jeJ Jjes

2We know that we can find such a row in B using the following argument: Assume that there is no row
in B which sums to less than 1. This means B is an irreducable transitional probability matrix. However
this is a submatrix of an original probability transition matrix which is irreducable, meaning it has no closed
subsets. Hence B can not be irreduacble (closed). Therefore, we can find at least one row in B which sums
to less than 1. (Matrix B is similar to a @ matrix, it has at least one row which sums to less than 1).
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But all the v; in the set J have value 1, so the above can be simplified

/——K——\
1= sz‘j + Zpij’vj (4)

jeJ jeSs

Now each v; in the term labeled Y above is less than 1 (since it is the set S), so this means

Zpijvj < sz-j, therefore the sum in (4) could never add to 1 if there are values p;; that are

jES jES

non-zero when j is in the set S. (since the sum Z pi; is being reduced from its original
je{JuS}

row sum). So for (4) to be satisfied, we need to have all the p;; = 0 when j is in the set S.

| Hence the sum labeled Y is zero .

What this means is that if v; = 1, then the i*"row in the matrix B must have zero entries in
the columns which correspond to the indices in the set S. As shown in this diagram as an
example

1 PrafP1z0 |0 1
Set J

1 PPz 0 0 1

Set S < Pij| Pij| Pig | P <1
< Pip| Fig| Pig | Piag <1
v B v

In the above diagram, I showed one example of the conclusion of above argument. Of course
the set J the way I drawn it does not have to be 'contiguous’, it could be in any pattern, as
say the following

1 Pl 0 P13 0 1

SetJ <1 Pij | Pig| P | Pig <1
SetS 1 pii| 0 |p3z| O 1
<1 Pi | Py Pij|Pig <1

v B v

Therefore, we see that p;; = 0 when j correspond to a state whose number is the same as the
index value in the set J, and s is a state whose number correspond to a state whose number
is the same as the index value in the set S.

What this means is that it is not possible to reach states that correspond to indices in the
set J from states which correspond to indices in the set S.

Hence, once the chain is in a state in the set J it is not possible to leave this set.
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But this is the same as saying the matrix B contains a closed subset. In other words, B is
reducible. However, this is not possible, since the matrix B is taken from a subset of a chain
which is irreducible, i.e. it contains no closed subsets, but we found at least one such subset.

Therefore, we conclude that our assumption which lead to this is invalid. Therefore, there
exist no vector v # 0 such that (I — B) v =0. Hence (I — B) does have an inverse. QED

4.9.3 Key solution

S 3/ )z /oy

‘h.(":/?;,‘/’/ﬁ a4 7797 ! LA

Chapter 5: Some Solutions

5.7 Consider an irreducible Markov chain with a finite number of states
{0,1,2,---,m}. Let E denote the event that the process reaches state
m before it reaches state 0. Set Q; = P(E | X, = 7). Then @y = 0 and
Qn =1. (a) Find a system of m — 1 linear equations that is satisfied
by Q1,Q2, +*,Qm_1. (b) Show that the matrix in this linear system of
equations is nonsingular.

Solution (a) Conditioning on the next state gives us

m m—1

621 == ZP(E[XL = J‘)pzv]' == Z CJ]]’U + Pim ,
J=0 J=1

forie I ={1,2,---,m—1}. Note that the Markov property was used to get

the second equation. (b) If the matrix in this linear system of equations is

singular, then there is a nonzero vector v € R™~! such that

m—1

vi= D Upij

Jj=1

for + € I. Normalize v so that each component is less than or equal to one,
and at least one component is equal to one. Set J = {¢ € [|v; = 1} and
S={iel|v <1}

Suppose first that S # (). Assume there is a nonzero p;, for some i € .J
and some r € S. It then follows that

m—1

1l=9y= Zv]pij + Z’“ﬂ’l] £ Z pij <1,
Jj=1

JjEeJs Jj€S

which is impossible. Therefore, for any ¢ € J, and any r € S, we must have
pir = 0. But then, for each ¢ € J,

1l=w= ZU]pi]’ = Zpu .

Jj€d jeJ
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This result tells us that once the process enters a state ¢ € J, it must travel
to another state in J. Thus, in the original chain, the set of states .J, which
is not empty, must be a closed set. However, this result is impossible, since
the original chain is irreducible. Therefore, S = ().

It now follows that J = {1,2,---,m — 1}. But then, for each i € J,
l=w= vp =D Pij,
jed jed

since v; = 1 for each j € J. Thus, as before, the set J is seen to be a closed
set, which is a contradiction.
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4.10 Monday 3/17/08

Grade: 2/2.

Problems 6.3 and 6.5 from the handout

4.10.1 Problems

@ For an absorbing Markov chain, let V;; denote the number of visits made to transient
state j before absorption, given that the process starts in transient state i. Let B be the
matrix whose (1, j)-th entry is b;; = E(V;). (a) Show that B=N = (I - Q).
Help: Condition on the next state X;. Write out the resulting equations for each (i, 7),
and then appeal to matrix multiplication to get the result. For ¢ = 7, include this initial
condition as one of the visits 1o state j, among possibly others before absorption. (b)
Given that the process starts in transient state ¢, give a formula for the expected number
of steps until absorption.

6.4 Regarding the proof of Theorem 6.3.1, derive equation (6.3.1) and show that
0 < d < 1/2. Further, verify the results listed in the paragraph after the statement of
Theorem 6.3.1.

6.5 Consider a regular Markov chain, and denote by 7;; the first entrance time into state
j, given that the process starts in state i. Set m;; = E(T};). (a) Show that
mi; = 14 ), i piernk; . Help: Use conditional expectation, and condition on the next
state. (b) Let (wy,w,, ---, w,) be the stationary probability vector for the process. Show
that m;; = 1/wj, for each state 5. Help: Use the result of (a). Multiply the i-th
equation by w;, and then sum over i. (¢) Give a heuristic argument to justify the result
of part (b).

4.10.2 Problem 6.3
PART(A)

Let I,, be an indicator variable defined as

I - 1 when (X, =j|Xo=1)
"1 0 otherwise
Hence
E(I,) = P(X, = j|Xo=1)
Now we see that
E(V;;) = E(ZIn> = ZE(In) = ZP(Xn = j|Xo =1)
n=0 n=0 n=0

Now, let b;; be entry in matrix B where b;; = E(V;;), then the above can be written as

(1)

Which is the same as writing
_ pO 1) @) ®3)
bz]—-PU +H] +‘Pz_7 +-P,L] + -
When i = j, then Pi(jo) = 1 otherwise it is 0. Hence

4
by =8+ Py + P + Py + P (2)
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Let the set of transient states be 7', and using chapman-kolmogorov, the above can be
written as

P, 1(32) P, 1(J3) Pi(;l)
1 D1 @ 1) . X B 1)
keT keT keT

2
P

—
But ZPZ.(,:)P,S.) is multiplying the i** row of the Q matrix by the j** column of the Q) matrix.
keT
25

——N—

which is the (i, j) entry of the matrix @2, and ZPi(,f)P,S) is multiplying the ** row of the
keT

Q? matrix we just obtained, by the j** column of the Q matrix, which is the (4, j) entry of

the matrix Q3. Continue this way, we obtain that Pi(f) is the entry i, j in matrix Q* and so
on.

Hence we see that b;; is the (i,J) entry of a matrix resulting from I + Q + Q>+ @Q* + - --
QED.

PART(B) From part(A), we obtained that E(V;;) is the (¢, j) entry in the matrix resulting
from the sum I +Q + Q%+ @3+ - - -. Since this is a () matrix, then we know its elements will

all go to zero an n gets very large, so this is a convergent sum, hence I +Q+Q*+Q3+---.—
(I — Q)" . Therefore

E(V;;) is the (4, ) entry in the matrix (I — Q).
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Problem 6.5

PART(A) I solve this part in 2 ways, first by conditioning on next state, as required, and
then by the counting method explained in the lecture.

by conditioning on next state. Let I be the set of all states. Then

E(Ty) = Y E(Tyl X1 =k, Xo = i) P(X1 = k| Xo = i) (1)

kel

But by Markov property, chain state on next step depends only on current state. Hence
E(Ti;| X1 =k, Xo = 1) = E(T;;| X1 = k) and also since P(X; = k|X, = i) = P, then (1) can
be written as

E(Ty;) = > E(Tk;) Pi (2)

kel
Now, when X; = j, then E(T;;) = 1 since chain already in state j after one step. Therefore
(2) can be rewritten as
E(Ty) =14 Y E(T;|X1 = k) Py

kel
k#j

But E(T;;| X1 = k) is the same as writing E(Ty;) , so the above becomes

E(T;) =1+ ) E(Tx;) P
kel
ki
Using the notation shown in the problem, the above becomes
my; =1+ kajpki

kel
k#j

QED.

Now solve part(a) using first a counting argument, and using the following diagram as a
guide

N Statei (==~
A el Ck¢\{““~~= Statek N Py (E(Tk;)+ 1)

\\::H““H Statej N PU(I )
. r-1
a0

Then we write (letting E(T;;) = m;; and E(Ty;) = my;)

N(Py) + ZN-Pik(mkj +1)
ki
N

mi]‘ =

= Py+ ) Pl +1)
oy

= P + ZPz'kmkj + ZPz'k
ki ki
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But F;; + ZP““ = 1 hence the above becomes
k#j

mi; =1+ Zpikmkj (1)

k#j

PART(B) We start from the result of part (A) which is
mi; =1+ Zpikmkj
k#3j
Multiply both sides by w; and obtain
w; My; = w; + ’wizpikmkj
k#j

Sum over all possible states ¢ and obtain

;wi mij = sz + Z (wZZP,kmkj) (2)

i=1 k#j

But sz =1 and Z (szPkmk]> = 2”: (Zwif’ikmkj> = kaj (Xr:wiPik>, hence
i=1 k#j i=1 \k#j k] i=1
(2) becomes

sz m;; =1+ ka] <sz zk) (3)

k#j i=1
Now, since w = {w,ws, - -+ ,w,} is the stationary state vector, then it satisfies the following
relation
w=wP

Where P is the one step probability transition matrix. The solution to the above is given by

Wy = Zwipik (4)
=1

Where k is any state. Using (4) into RHS of (3), we can rewrite (3) as

sz m;; =1+ kajwk

k#J
A B

sz mij — ka]wk =1 (5)

k#J

Now looking at the LHS, we see that the first sum labeled A counts for all the w’s and the
second sum labeled B also counts for all the w’s except for the j term. Hence if we subtract
B from A, only the term m,;w; will survive. Hence (5) becomes

mjjw; = 1
or

mjj = w%
QED.
Part (C)

If we wait for the chain to arrive at its steady state (i.e. we the chain probability state vector
does not change, or w = wP), then we observe the chain from that point on, for a long
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period of time, say T'. The number of times the chain will be in state j during this time 7T is
then given by w;T, since w; is the probability of the chain being in state j. So, to find the
average number of time units (steps) it took for the chain for go from state j back to state j
we need to divide T' by the number of times the chain was in state j during this time, which
we just found as w;T

Hence
T 1
m.,, = — = —
1 ’LU]'T ’LU]'

Intuitively this makes sense. Since the smaller the probability that the chain will be in state
J we would expect the time between the events that the chain is in state j to become larger,
So the relation should be an inverse one, as was found. QED

4.10.3 Key solution

7%7:14’%% Meveh fﬁ/ 205

Chapter 6 Some Solutions

6.3 For an absorbing Markov chain, let Vj; denote the number of visits
to transient state j before absorption, given that the process starts
in transient state i. Let B denote the matrix whose (z,j)-th entry is
bij = E(V;;). (a) Show that B =N = (I —Q)~'. (b) Given that
the process starts in state 7, give a formula for the expected number of
steps until absorption.

Solution (a) Condition on the next state to get
E(Vi;) =Y. BE(Vy| X1 = k)pir + D E(Vi; | X1 = k)pix
keA keT
where A denotes the set of absorbing states, and T" denotes the set of transient
states. Let 0;; be the Kronecker delta, which equals one when i = j, and
equals zero otherwise. Then, in the first sum, E(V;; | X| = k) = 0;; , since k is
an absorbing state. For the second sum, making use of the Markov property,
E(Vij| X1 = k) = 6;; + E(Vi;) , since here k is a transient state. Thus,
E(L;]) = Z ’Lﬂhk + Z[(Szj + E(‘/k'/)][)zk = O‘L] + Z I)vk,E(VA,_;) .
keA keT keT

Therefore, for each pair of states ¢ and j in T,

b= Z Pikbrj = 045 .

keT /A

In matrix form, these equations are expressed as B — QB = I, where I is qﬁ:d +h +
the identity matrix. Note that this result shows that I — @ is invertible, and /7 é .

that B = (I — Q)" (1-®)

~

Here is another proof. Note first that Iﬁfo///"iél“
T [oe]
E(V,)=F (Z I | Xo = /I) ,
n=0
where I, = 1 i)f X, =7 and [, = 0 otherwise. Thus,
o0 o0 oc
E(Vi)=E (Z I | Xo = i> =3P =8+3 ¢,
n=0 n=0 n=1

1
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where ql(]n ) is the (i, j)-th element of the matrix Q™. Therefore, E(Vi;) is the
(4, 7)-th element of the matrix

T4y @ =(-Q .
n=1

(b) The sum of the elements in the i-th row of B is the expected value of
the random variable

jer
which is the number of visits to transient states before absorption, given that
the process started in transient state .

6.5 Consider a regular Markov chain, with state space I = {1,2,---,r}.
Denote by T;; the first entrance time into state j, given that the process
starts in state i. Set m;; = E(T};). (a) Show that

mig =1+ pixmu; .
k#j

(b) Let (wy,ws,---,w,) be the stationary probability state vector for
the process. Show that m;; = 1/w;, for each state j. (¢) Give a
heuristic argument to justify the result of part (b).

Solution (a) Conditioning on the next state yields

E(Ty) = Y E(Ty | X1 = K)pa = E(T; | X1 = §)pi + Y E(Ty | X1 = E)pax .
kel k#j
This equation then becomes
E(Ty) =1-pij+ > (1+ E(T))pi =1+ > pi E(Tj)
k#j k#j

which is the result to be shown. (b) In the last equation above, for a fixed
J, multiply the ¢-th equation by w;, and sum over 7 to get

Y wiE(Ty) =Y wi+ Y > wipkE(Ti;) -
=1 =1

i=1 h#j
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We have that w = wP, and the sum of the components of w is one. Therefore,
interchanging the order of summation, we get

S wE(Ty;) =14 wpE(Ty) -
1=1 k#j

Cancelling like terms on each side of this equation yields w;E(T};) = 1, as
required. (¢) Over a long number of time steps 7, the average number
of times the process is in state j is w;7T. But the average duration between
these times that the process is in state j is m,;. Hence, in the long-run,

(w;T)m;; = T. Thus, dividing by T, yields m;; = 1/wj.
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4.11 Wed 4/16/2008

Grade: 2/2.

These problem related to Hastings-Meropolis algorithm. And Proofing a Markov chain is
irreducible, regular and time inverse. Implemented the simulation using Mathematica

4.11.1 Problem 8.4

S.4\Let G V', E) be an undirected, connected graph, with the property that each vertex

is connected to at most r vertices. Let f be a positive function defined on V', and let =
denote the probability distnbution
JI‘
5 Iv‘ 1
E, define the transition probability
1 fl f(y) )
mins 1, = b,
U (@) )
with p(z,y ) otherwise, except that p(z, z) is determined so that the rows sum 1o
one. (i) Show that the Markov chain determined by p is irreducible. (it) Determine
conditions under which the chain is regular. (iii) Show the chain is time reversible with

respect 10 7

Part (i)
P(x.y)
vertex x vertex ¥
O O State x State y
edge (x.y)

Ply.x)

Undirected Graph Markov Chain

representation representation

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices z,y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state
y to = which is also not zero. By showing this, we conclude that the M.C. will switch (in
some number of steps) to any state from any other state, which implies there is no closed
subset, hence P is irreducible.

But from the definition of p(x,y) we see that if there is an edge (z,y) then p(z,y) exist and
is not zero, and p(y, x) exist and is not zero (since r is finite). This completes the proof.
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Part (ii)
A finite M.C. is regular when, for some integer m, P™ contains only positive elements.

This implies that the one step transition matrix P must have at least one entry along the
diagonal P,; that is none-zero (If all elements along the diagonal are zero, then P™ will always
contain at least one zero element no matter how large m is). But a diagonal element not
being zero is the same as saying that at least one state must be aperiodic (if P; > 0 then
the period is one).

Hence the condition for the M.C. to be regular is that at least one state must be aperiodic

[¥)

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

’This is the proof ‘:

Since at most a vertex can have r edges, then we can find a vertex x with r edges con-
necting it to vertices y;, %2, -,y With corresponding one step probability transitions of
p(z,y1),p(x,y2),- -, p(z,y-). (If we can’t find such a vertex, the argument will apply to any
other vertex, just replace r with the number of edges on that vertex and the argument will
still apply).

Now let us consider f(z) and compare it to each of the f(y;) where the y; is the vertex with
direct edge from z. There are 2 cases to consider:

1. f(z) > at least one of the f(y;), i =1---r
2. f(z) <allof f(y;),i=1---7r
3. f(z) = all of f(y),i=1---r

Consider case (1): Since f(z) > f(y;) for some ¢, then for this specific y;, p(z,y;) =
%min {1, %} = 1k where k < 1, hence p(z,y;) = a where a < % Lets assume there was

—r
only one y; such that the above is true. l.e. at least one of the vertices connected to z
had f(y;) < f(z) (if more if found, it will not change the argument). Now we add all the

(r—1) wvertices
N

1 1 1
probabilities p(z,y;) and we found that this sum is — + - + --- + = + a where the a is for
roT T

that vertex which had f(y;) < f(z). Now since a < % then this sum will be LESS THAN
ONE. But the sum of the one step probability transition from each state must be 1, hence

to compensate, we must then have p(z,z) added to make up for the difference. Hence we
showed that under case (1) we can find p;; which is not zero. This diagram illustrate this case

3In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state com-
municate with each other state, hence all states must be of the same type since all states are in the same
communication class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate
with it must also be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic,
then all states are aperiodic as well.
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State x

Sum of
probabilities < 1

Now we consider case (2).
In this case since f(z) < f(y;) for each i, then p(z,y;) = % min {1, J}(gﬁ))} = I, then the

r vertices
"

1 1 1
sum of the probabilities of transitions from z is — + — + -+ + — = land we do not need to
T

compensate by adding p(z,z) to make up for thTe de%cit. However since now f(y;) > f(x)
then if we view y; as the z vertex and the x vertex as the y, and consider the probability
transitions out of y;, then we are back to case (1) above. Hence in case (2) as well ,we can
find a state in which p(z,z) > 0, Hence the chain is aperiodic, and since it is irreducible,
then it is regular in this case as well.

Now consider case (3):

In this case f(z) = f(y;) for ¢ = 1---7. In other words, f(z) is CONSTANT. In this case

p(z,y;) = %min {1, ’}((i))} = % ,then the sum of the probabilities of transitions from z is

r vertices
"

1 1 1
-+ = +---+ = = land we do not need to compensate by adding p(z, z) to make up for the

r T T
deficit. This will be true for any node. Therefore, it is not possible to find at least one node
with the probabilities attached to edges leaving it is less than one. Hence there are no state
with p(z,z) > 0, hence in this case, the chain is not aperiodic, and hence the chain is NOT
regular.

Conclusion: Condition for chain not to be regular is that f(x) be constant.
Part (iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

_ m(y) p(y, =)
7‘(113, ) - T (.’IZ) (1)

This diagram helps me remember these formulas
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m(v) -

n(x)r(x,v) =n(v)plv.x)

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r(z,y) = p(z, y),
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.
S .I'.I" ""-.-1 -
]
—_—
e T
J'ﬂh'l-
- T,
- T
.-Fr_,.l- -l.l_.‘.‘-l
-l'ﬂ h'I-

N - time  nq

H(x,v) = plx,v)

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

m(z) p(z,y) = 7(y) p(y, ) (2)
Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7(z) p(x,y) and let RHS of (2) be 7(y) p(y, ). Then we will show that
LHS=RHS for the following 3 cases:

L f(z)=fy)
2. f(z) < f(y)
3. f(z) > f(y)
Case(1): Since f(z) = f(y) let these be some value, say z

LHS = n(z)p(z,y)

- s (e 75

veV
z 1

S fwr

veV

3)
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and

RHS = n(y) p(y, z)

SN )

fy)

Y fw

veV
z

veV

We see that (3) is the same as (4), hence

case(2): f(z) < f(y)

1

S f@)r

LHS=RHS for case (1)|.

LHS = 7(z) p(z,y)

f(z)

- G 75 )

veV

f(z)

1

Y fw)r

veV

and

RHS = 7(y) p(y, z)

Lo ol 1)

fy)

IYIC

veV

_ f)

1 f(x)

IYIC

veV

f(z)

yrf ()

1

YL

veV

Hence we see that (5) is the same as (6). Hence | RHS=LHS for case(2) |.

case (3):f(z) > f(y)

LHS = 7(z)p(z,y)

f(=)

veV

f(=)

-5 G 765}

1 f(y)

> fw)rf@)

veV

fy)

veV

and

1

S f@r

RHS = m(y) p(y, z)

f()

veV

f(y)

51 76

> fw

1

> fw

veV

)7‘

(4)

(5)

(6)

(7)
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We see that (7) is the same as (8), hence | LHS=RHS for case (3) as well |.

Hence we showed the balance equation for the time reversible condition is satisfied. QED.

4.11.2 Problem 8.5

[8.5)Suppose G = (V, E) is an undirected, connected graph. For each vertex v ¢ V, let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V', and let = denote the probability distribution

f\_rl

-'_)_: v f(v)

(@) Implement the Hastings-Metropolis method to find a regular Markov chain whose
limiting distribution is 7. Start with the initial irreducible chain defined by

1

whenever (z,y) € E .
edge(x)

qlz,y)
Note that the Markov chain with this one-step transition matrix is traversed by selecting
at random one of the edges connected to z, and then making the transition to the
corresponding node. (al) Show the Markov chain is irreducible. (a2) Determine
conditions under which the chain is regular. (a3) Show the chain is time reversible with
respect to 7. (b) Write a MATLAB program that determines the one-step probability
matrix resulting from this method. The input to this program is the function f, and the
graph, represented by an adjacency matrix. An adjacency matrix is an n X n matrx,
where n is the number of nodes in the graph, and where entry (1, 7) is one if there is an
edge connecting nodes i and j, and is zero otherwise. Use this adjacency matrix to
cmhnpnlc the function edge(v) at each node. Apply your program to the graph
G = (V.,E), where V = {1,2,3,4}, and E = {(1,2), (1,3), (2,3), (2,4), (3,4)},

and where f(1) =2, f(2) =8, f(3) =6, and f(4) = 4. Vcrify(usin.g_;\*l.»\jl‘ll..i\B).lhal
the resulting chain is regular and has the required limiting state probability distribution.

Part(a)
The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given

an irreducible M.C. (called g or the original chain) and given a stationary distribution 7 for
that chain.

Desired stationary Time re?versible
probability distribution ’ ) ) Irreducible Markov
Hastings-Metropolis | — - Chain (P) whose
Original Irreducible algorithm stationary distribution
Markov Chain (q) » is the supplied
distribution.

Input: f(z) defined over the states x, and edge(x) which represents the number of edges
connected to z

1. For each state z calculate 7(z) = Ef:(—x) and for each state = calculate edge(z)
vevf(v)

2. compute q(z,y) = #@(w) whenever edge(x) # 0 else set g(z,y) =0

3. Select a state x by random to start from.

4. Letn=1and let X; ==z

5. Let S be the set of all states that can be reached in one step from z. These will be the
states y in which ¢(z,y) # 0
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6. Select a state y from S by random (using a uniform U[0, 1] random number generator)

! m(z)q(z,y)

7. Calculate 5(z,y) = min {1 7T(y)q(y,m)}
8. Generate a random number u from UJ0, 1]
9. Letn=n+1

10. Compare u to S(z,y).

11. IF u < B(z,y) THEN X,, = y (select the new state) ELSE X,, = X,,_; (stay in same
state) ENDIF

12. Let z = X,

13. If n > some Max number of iterations or if we reached some convergence limit Then
go to 15

14. GOTO 5
15. Algorithm is complete. Now generate the time reversible MC as follows

(a) Scan the state path generate X,, and count how many times state z switches to
state y in one step

(b) Do the above for all the states
(c) Divide the above number by the total number of steps made to generate p(x,y)

Since the problem now asks to implement Hastings-Metropolis, then I used the data given
at the end of the problem and implemented the above simulation using that dataf] Please
see appendix for code and final P matrix generated.

Part (al)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds
in the chain representation of the final p matrix a non-zero p(z,y) and also a non-zero p(y, z).
This will insure that the each state can transition to each other state, just as each vertex
can be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say z,y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p(z,y) and
p(y, z) are non-zero

Consider p(z,y) first. Since

p(w,y) = q(a:,y) ﬂ(flf,y)
1 {1 (y) q(y,w)}

= mln y T 7 N 7\
edge (z) ™ (z) g (z,y)
( f@) 1 )
Z o) edge(y)
— # min< 1 K-
= ’ f(z) 1
edge (.’13) Zj(v) edge(zx)
\ VeV )
Hence
1 . f(y)edge(z)
p(xa y) ~ edge(x) min {1’ m} (1)

41 allready had the code for the simulation written, just needed to feed the new data for this problem.
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Then it is clear that whenever there is an edge between z,y then p(z,y) # 0 since both f(z)
and f(y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p(x,y) # 0. Similar argument shows that p(y, z) # 0.

This shows that M.C. represented by P is irreducible.
Part (a2)

The condition for regular chain P is that there exist at least one state = such that p(z,z) >
0.From (1) above we can decide under what conditions this will occur.

Consider a vertex x with edge(z) edges from it connected to vertices yi,¥s,- - ,¥.. Then
from (1) we see that

Ly fedsee)
p(z,yi) = edge () {1’ f (z) edge (yz)}
f

1 S (y(z‘) )
— . 1 eage(y;
edge (.’L') min { ! f(w) }

edge(z)

f(ys)
The condition for having p(z,z) > 0 is that min {1, %} < 1, since this will cause

edge(x)

p(z,y;) to be some quantity less than % and so when summing over all r there will be a

deficit in the sum and we have to compensate for it to make it 1 by adding p(z, z). But for

edge(y;) edge(z)

edge(zx)

f(ys)
min {1, edgels) } to be less than ONE means that L&) < /@)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above
holds for one of the vertices y; this vertex is directly connected to. For example, if y; had the
same number of edges from it as does z, then the condition will be that f(y;) < f(x). And

if y; has less or more edges from it than = has, then we need the ratio ({(—()) to be less than
f(z)

edge(z) *

The above is the same as saying % must be constant for the p not to be regular.

Part(A3)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

_ m(y) p(y, z)
T(.’L’, y) - T (x) (2)

Now if the chain the time reversible as well, then r(z,y) = p(z, y), Then the balance equation
(1) becomes

m(z) p(,y) = (y)p(y, )

F@) N Bl ) =
Zf(’“)q( ,y) B(z,y) Zf z) By, z)
flz) 1 . fy)edge(x) \\ _ fly) 1 [ . [, flz)edge(y)
S f (v) edge (z (mm{l f(z) edge(y)}) S f (v) edge (y ( {1’f(y) edge(w)})
f@) 1 () _ W) L (s e
e 2)) s ) ©

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:
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flyy _ _fl=)

" edge(y) ~ edge(x)
f) f(=z)

: edgg(y) < eﬂlggc(w)
() f(z)

* edge(y) edge(z)

For case (1), LHS of equation (3) simplifies to

:§:jf T

veV

but since

fy) _ _f=@)

edge(y)

edge(z)’

Zf( )

veV

then LHS=RHS.

Hence balance equation (3) is satisfied for case (1).

For case(2), LHS of (3) simplifies

simplifies to

veV

Zf( ) edgE(y) ’

f(@)

veV

then LHS=RHS.

()
. (edge<y>)
Zf( ) edge(x) L

Hence balance equation (3) is satisfied for case (2) |

For case (3), LHS of (3)

_f=)

Zf edg (z

veV

simplifies

_f=®m 1

veV

,then LHS=RHS.

Zf edge(x)

and RHS of (3) simplifies to

Hence balance equation (3) is satisfied for case (3) |.

; and the RHS of (3 (3) simplifies to

)

veV

Hence in all 3 cases we showed the balance equation is satisfied.

Hence M.C. is time reversible.

Part(b)

f(y) 1

and RHS of (3)

f(z)

edge(x)

Z @) edge(y)

veV

(2

_fy)

edge(y)

A small program written to construct the P matrix directly following instructions on page
8.4 of lecture notes. The following is the resulting P matrix

0.

0.0625
0.0833333 0.333333

0.

0.5

0.4375

0.5

E:IE:IE:IE:I

i_ﬂ[\_‘,l[\_‘,l'i_ﬂ
o

o S e T e Y
LJJM
Ly N

3333

Now to check that the final chain P is regular, it was raised to some high power to check
that all entries in the P™ > (. This is the result

In[17]:=

MatrixPower[p, 50] // N // MatrixForm

out[17)/MatrixForm=

- 0.0526316 0.
0.0526316 0.
0.0526316 0.

L 0.0526316 0.

421053 0
421053 0
421053 0
421053 0

.315789 0.
.315769 0
.315789 0
.315789 0

210526

210526
.210526
.2105Z26

)_
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The above verifies that the final matrix p is regular.

Using the Hastings-Metropolis simulation algorithm, the convergence to the above matrix
was slow. Had to make 2 million observation to be within 3 decimal points from the above.
Here is the P matrix generated from Hastings algorithm for N = 2,000, 000

0. 0.500114 0.459886 0.
0.06258537 0.4371720.2459734 0.250448
0.06831875 0.333962 0.248524 0.334326

0. 0.495297 0.500703 0.

4.11.3 Appendix (Implementation of part(a) and part(b))
The graph for part(a) and part(b) is the following

Graph for problem 8.5
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4.11.4 code
[Mathematica notebookl

(Mathematica notebookl

4.11.5 Key solution

I)<0vi SG\WHC'Y\. T~ f])f‘«b'\ma.— 55} 84’

Chapter 8: Markov Chain Monte Carlo Methods - Solutions to
Selected problems

8.4 Let G = (V,E) be an undirected, connected graph with the property that each
vertex is connected to at most r vertices. Let f be a positive function defined on
V and let 7 denote the probability distribution

7(z) = —f(i— .
Zoev f(v)
If (z,y) € E, define the transition probability
L[ f (y)}
p(z,y) = —min 1, ==~ .
)= fmin {1,585
with p(z,y) = 0 otherwise, except that p(z,z) is determined so that the rows

sum to one. (i) Show that the Markov chain determined by p is irreducible. (i)
Determine conditions under which the chain is regular. (i74) Show the chain is time
reversible with respect to 7.

Solution (i) To show that the chain is irreducible, note first that G is connected. In
other words, in G there is a path from any one node to any other; that is, given any two
nodes, say a and b in V| there is a sequence of nodes, say x1,xs, -+, 2,, in V such that
(a,z,) € E, (2;,7;41) € E, for each i =1,2,---,n, and (z,,b) € E. While the graph G is
undirected, the graph of the Markov chain is directed. However, corresponding to each
arc in GG there are two arcs in the graph of the Markov chain, one in each direction, and
each with nonzero probability. Indeed, if (z,y) € E, then there is an arc in the graph
of the Markov chain that points from z to y with associated probability p(z,y) > 0,
determined by the formula above, and there is another arc that points from y to x with
associated probability p(y, z) > 0, again determined by the formula above. It follows that
in the graph of the Markov chain, between any two nodes (now states of the chain), there
is a path between these states that can be traversed following the arcs in the required
directions. In other words, any two states of the Markov chain communicate. Hence, the
chain is irreducible.

(74) Although the Markov chain is irreducible, it may be periodic, and hence not
regular. As a simple example, consider the graph G = (V, E) with vertex set V = {1, 2}
and edge set E = {(1,2)}. Then r = 1. Suppose that f is the constant function. Then
the associated Markov chain has one-step probability transition matrix

-[23]


HWs/HW6_MCMC_problem_8_4_and_8_5/code/problem_8_5_part_b.nb
HWs/HW6_MCMC_problem_8_4_and_8_5/code/nma_hastings_problem_8_5_part_a.nb
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This chain is periodic with period 2. Suppose however that f is not constant. For
example, let f(1) = 1 and f(2) = 3. Then the associated Markov chain has one-step
probability transition matrix
0 1
P = .
[ 1/3 2/3 ]

This chain is aperiodic. However, more generally, whenever f is not the constant function,
the associated Markov chain will be aperiodic, and hence regular. To see this result, note
that there must be some vertex = such that (z,y) € E, and f(y) < f(z). For this state
x, the sum of the off-diagonal elements will be less than one, since there are at most r
nonzero off diagonal entries. Hence, for this row, p(z,z) # 0. Thus, state x is aperiodic,
and since the chain is irreducible, all states are aperiodic, and so the chain is aperiodic.

0 As another condition which implies regularity, suppose that at least one node of the
graph G is connected directly to fewer than r nodes. Then, whether f is the constant
function or not, that node will become a state in the chain that is aperiodic. Indeed, in
the one-step transition matrix, the row corresponding to this state will be such that the
sum of the off-diagonal elements will be less than one, and hence the diagonal element
will be nonzero. Thus, since the chain is irreducible, and one state is aperiodic, all states
are aperiodic.

(24i) To show that the balance equations hold, we need to show that = (z)p(z,y) =
7(y)p(y, z) for each pair of states x and y. First, if p(z,y) = 0, then p(y,z) = 0 also,
since p(z,y) = 0 only when there is no edge of the graph G that connects z and y. Next,
when (z,y) € E,

@) = Lmin {1, HOY = Lomin (7601, 503

rC f(z)
where C is the sum appearing in the denominator of 7. Similarly, we have
m(y)p(y, ) = f’(—g)mm{ ,%} = %mm {f(), f(z)},

These two expressions are the same, which is the desired conclusion.

8.5 |Suppose G = (V, F) is an undirected connected graph. For each vertex v € V| let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V, and letw denote the probability distribution

f(z)

m(zr) = =———— .

ZvGV f('l))

(a) Implement the Hastings-Metropolis method to find a regular Markov chain
whose limiting distribution is 7. Start with the initial irreducible chain defined by

q(z,y) = M , Whenever (z,y)€E.
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Note that the Markov chain with this one-step transition matrix is traversed by se-
lecting at random one of the edges connected to z, and then making the transition
to the corresponding node. (al) Show that the Markov chain determined by this
method is irreducible. (a2) Determine conditions under which the chain is regular.
(a3) Show the chain is time reversible with respect to 7. (b) Write a MATLAB pro-
gram that determines the one-step probability matrix resulting from this method.
The input to this program is the function f and the graph, represented by an ad-
jacency matrix. An adjacency matrix is an n X n matrix, where n is the number
of nodes in the graph, and where entry (i, j) is one if there is an edge connecting
nodes ¢ and j, and is zero otherwise. Use this adjacency matrix to compute the
function edge(v) at each node. Apply your program to the graph G = (V, E) where
V =1{1,2,3,4}, and E = {(1,2),(1,3),(2,3),(2,4),(3,4)}, and where f(1) = 2,
f(2) =38, f(3) =6, and f(4) = 4. Verify (using MATLAB) that the resulting chain
is regular and has the required limiting state probability distribution.

Solution (a) The one-step transition probabilities are

B(z,y) for (z,y) € E, with p(z,z)=1-) p(z,y),

| y#Fx

1

p(z,y) = e}

where 3(z,y) is given by
B(z,y) = min {1, 7

Otherwise p(z,y) = 0.

(al) These formulas show that for each arc (z,y) € E, we have p(z,y) > 0 and
p(y,z) > 0. Thus, between any two nodes that are connected by an arc in G, the re-
sulting Markov chain has two corresponding states, x and y, and there are two arcs
connecting these states which point in opposite directions. Hence, since the original
graph is connected, it is therefore possible, in the Markov chain, to travel from any one
state to any other. Thus, the chain is irreducible.

(a2) For the setting of this problem, the Markov chain produced by the Hasting-
Metropolis algorithm may be periodic, and hence not regular. For example, consider the
graph G = (V, E) with vertex set V' = {1,2} and edge set E = {(1,2)}. Suppose that
f is the constant function. Then the resulting Markov chain has one-step probability
transition matrix | -

P=[1a].

and the chain is periodic with period 2.
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However, when f(z)/edge(x) is not the constant function on V, the chain is aperiodic.
To see this result, note first that since the graph is connected, there must be two vertices
x and y such that (z,y) € E, and f(y)/edge(y) < f(x)/edge(x). For these states z and
y we will have 3(x,y) < 1. Therefore, in the one step transition matrix for the Markov
chain, the sum of the off-diagonal elements in the row for state x is less than one. Hence,
state z is aperiodic. Since the chain is irreducible, the chain is therefore also aperiodic.
Thus, in this case when f(z)/edge(z) is not the constant function on V, the chain is
irreducible and aperiodic, and hence regular.

(a3) To show that the balance equations hold, the same argument used for the
previous problem carries over. we need to show that m(z)p(z,y) = 7(y)p(y, x) for each
pair of states z and y. First, if p(x,y) = 0, then p(y,2) = 0 also, since p(z,y) = 0 only
when there is no edge of the graph G that connects z and y. Next, when (z,y) € E,

o @) f()edge) @) )
@) = e {1’ f(w)edge(y)} {edgeu)’ edge(:w} ’

where C' is the sum appearing in the denominator of 7. Similarly, we have

I 1) f(@ledge(y)| _ 1 . | fly) fl2)
m(y)p(y,z) = edge(y)Cmm {1’ f(y)edge(a;)} o™ {edge(y)’ edge(:v)}

= —min

C

These two expressions are the same, which is the desired conclusion.
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4.11.6 my graded solution

HW problems 8.4 and 8.5, Mathematics 504

CSUF, spring 2008

by Nasser Abbasi

April 16, 2008
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1 Problem 8.4

S lLet G = (V. E) be an undirected, connected graph, with the property that cach vertex
is connected to at most r vertices. Let f be a positive function defined on V', and let 7
denote the probability distribution

f(z)

m(z) = i—‘,-,yf(z')- )
If (z.y) € E, define the transition probability
L1 f(y)
p(&y) = ;mm{l. f-(.r)} y
with p(z,y) = 0 otherwise, except that p(z, z) is determined so that the rows sum to

one. (i) Show that the Markov chain determined by p is irreducible. (i7) Determine
conditions under which the chain is regular. (iii) Show the chain is time reversible with

respect to .

1.1 Part(i)
P(xy)
vertex x vertex ¥
@ @ State x State y
edge (x.y)
Ply.) /
. / .
Undirected Graph Markov Chain -
representation representation

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices z,y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state y
to z which is also not zero. By showing this, we conclude that the M.C. will switch (in some
number of steps) to any state from any other state, which implies there is no closed subset,
hence P is irreducible.

But from the definition of p(z,y) we see that if there is an edge (z,y) then p(z,y) exist and
is not zero, and p(y, z) exist and is not zero (since 7 is finite). This completes the proof.



CHAPTER 4. HWS

327

\

2 Y ; .
L Y a4 "
X ] ! ¢ o L. | o
1.2 Part(ii r: L@ | P > 0
L va 2 o]/

A ﬁnit&M.C. is regular when, for some integer m, P™ contains only positive elements.

| This implies that the one step transition matrix P must have at least one entry along the

dlago"'éTPn at is none-zero (If all elements along the diagonal are zero, then P™ will always

contain at least one zero element no matter how large m is). But a diagonal element not ot being |,
ero is the same as saying that at least one state must be aperlodlc (1f P;; > 0 then the period !

[Hence the condition for the M.C. to be regular is that at least one state must be aperiodic |1.

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

This is the proof I: —— (,L:‘(ULT 9 aﬁoudb LA A(’TL[\/\ A

M/ Since at most a vertex can have r edges, then we can find a vertex z with r edges con-
s ° mecting it to vertices y1,%2, - ,y, with corresponding one step probability transitions of
bnc p(x,y1),p(z,92), - ,p(x,y.). (If we can’t find such a vertex, the argument will apply to

any other vertex, just replace r with the number of edges on that vertex and the argument
o T will still apply).

\,_57 ‘ot/‘(té

~ Now let us consider f (z) and compare it to each of the f (y;) where the y; is the vertex with
F\ﬂ’bé . direct edge from z. There are 2 cases to consider:

/

1. f(z) > at least one of the f (y;),i=1---r
2. f(z) <allof f(y;),s=1---r
3. f(z)=allof f(y;),i=1---71

|Consider case (1) i: Since f(z) > f(y;) for some i, then for this specific y;, p(z,y;) =

—mln{l, f(x)} = 1k where k < 1, hence p(z,;) = a where a < 1. Lets assume there was
only one y; such that the above is true. l.e. at least one of the vertices connected to x

had f (v;) < f(z) (if more if found, it will not change the argument). Now we add all the

(r—1) vertices

1 1 1
probabilities p (z,y;) and we found that this sum is — + + - + + a where the a is for

that vertex which had f (y;) < f(z). Now since a < 1 then this sum will be LESS THAN
ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p (z,z) added to make up for the difference. Hence we
showed that under case (1) we can find p; which is not zero. This diagram illustrate this case

In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state communicate
with each other state, hence all states must be of the same type since all states are in the same communication
class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate with it must also
be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic, then all states are
aperiodic as well.
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state 11 state 171
O 1 ~O
l \ / //
/ p(\ v 2) state 13 / _l_ state 12
State'x State x \LO
\ ‘ i) ! A\ 1
~— a < =
e PEH LT,
/)/\ state 1 i
b N state v;
- /‘/
e, 0
r
state_\',-
{ ) state v,
Sum of
probabilities < 1

[Now we consider case (2) | In this case since f(z) < f(y;) for each i, then p(z,y:;) =

T vertices

e e

1 1 1
- mm {1, % } ., then the sum of the probabilities of transitions fromzis — + — +--- 4+ — =

1and we do not need to compensate by adding p (z,z) to make up for the deﬁmt However
since now f (y;) > f (z) then if we view y; as the z vertex and the z vertex as the y, and
consider the probability transitions out of y;, then we are back to case (1) above. Hence in
case (2) as well ,we can find a state in which p (z,z) > 0, Hence the chain is aperiodic, and
since it is irreducible, then it is regular in this case as well.

|Now consider case (3):]111 this case f(x) = f(y;) for ¢ = 1---7. In other words, f(z) is

CONSTANT. In this case p (z,y;) = 1 min {1, %(%)2} ,then the sum of the probabilities of

T vertices

1
transitions from z is — + — + - - - + — = land we do not need to compensate by adding p (z, x)
T T r
to make up for the deficit. This will be true for any node. Therefore, it is not possible to find
at least one node with the probabilities attached to edges leaving it is less than one. Hence
there are no state with p (z,z) > 0, hence in this case, the chain is not aperiodic, and he
the chain is NOT regular. /

Condition for chain not to be regular is that f (z) be constant.

1.3 Part(iii

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

7 (y)p(y,z) (1)

’I‘(.’E, y) 7 7'l'(£L‘)

This diagram helps me remember these formulas

4
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m(x)

N —»time N+1

r(x)r(x.v) = r(v)p(r.x)

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r (z,y) = p (z, y),

x|. oa | x
-

N ———» time N+1

r(x.v) = p(x.v) -

e S i}

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

m(z)p(z,y) =7 (y)p(y,2) (2)
Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7 (z)p(z,y) and let RHS of (2) be 7 (y) p(y,z). Then we will show
that LHS=RHS for the following 3 cases:

L f(z)=f(y)
2. f(z) < f(y)
3. f(=z)> f(y)
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Case(1): Since f (z) = f (y) let these be some value, say z

LHS =7 (z)p(z,y)

- K G £5))

VeV
z 1

= 3
> f)r i

veV

and

RHS =7 (y)p (y, z)

- st (e 73))

veV
Z 1

S f)T

veV

~

(4)

We see that (3) is the same as (4), hence [LHS:RHS for case (1) |
case(2): f(z) < f(y)

LHS =7 (z)p(z,y)

- s G o £8)

_ f@ 1
ST

veV

(®)

and

RHS =7 (y)p (y,z)

)

__Jf@) 1f(@
S fwrf)

veV

__f@ 1
IOL

~—

(6)
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Hence we see that (5) is the same as (6). Hence [R,HS:LHS for case(2) ‘

case (3):f (z) > f (y)
LHS =

and

We see that (7) is the same as (8), hence [LHS:RHS for case (3) as wellJ.

™ (z)p (2, y)

> fw)

veV

- (1

flz) 17y
Zf(v)rf(x)

veV

f(y 1

S f@)r

VeV

7 (y)p (v, z)

f(y) (1
> f )

r
veV

fly 1

S F@r

veV

min{l,

f
f

(z

S

(y)

)

/ (8)

[Hence we showed the balance equation for the time reversible condition is satisfied l QED.
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2 Problem 8.5

[3.5,Suppose GG = (V. E) is an undirected, connected graph. For cach vertex v € V. let
edge(v) denote the number of edges that are connected to v. Let f be a positive

function defined on V', and let = denote the probability distribution
_ @)
thl’;""f(v)

(a) Implement the Hastings-Metropolis method to find a regular Markov chain whose
limiting distribution is 7. Start with the initial irreducible chain defined by

: 1
q(x,y) = edgel®) '

7(x)

whenever (r,y) € E .

Note that the Markov chain with this one-step transition matrix is traversed by selecting
at random onec of the edges connected to z, and then making the transition to the
corresponding node. (al) Show the Markov chain is irreducible. (a2) Determine
conditions under which the chain is regular. (a3) Show the chain is time reversible with
respect to 7. (b) Write a MATLAB program that determines the one-step probability
matrix resulting from this method. The input to this program is the function f, and the
graph, represented by an adjacency matrix. An adjacency matrix is an n X n matrix,
where n is the number of nodes in the graph, and where entry (i, j) is onc if there is an
edge connecting nodes ¢ and j, and is zero otherwise. Use this adiacency matrix to
compute the function edge(v) at cach node. Apply your program (o the graph
G = (V.E), where V ={1,2,3,4}, and E = {(1,2), (1,3), (2,3), (2,4), (3,4)}.

and where f(1) = 2, f(2) =8, f(3) =6, and f(4) = 4. Verify (using MATLAB) that
the resulting chain is regular and has the required limiting state probability distribution.

2.1 Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given
an irreducible M.C. (called g or the original chain) and given a stationary distribution 7 for

that chain.
Desired stationary Time reversible /
probability distribution . . _ Irreducible Markov :
Hashngs—Metropolls — Chain (P) whose
Original Irreducible algorithm stationary distribution
Markov Chain (q) is the supplied
distribution.
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Input: f(x) defined over the states z, and edge () which represents the number of edges
connected to x

1.

DA

10.
11

12.
13.

14.
15.

f(z)

f(v)
veV

For each state z calculate 7 (z) = and for each state z calculate edge(x)

compute ¢ (z,y) = whenever edge (z) # 0 else set ¢ (z,y) =0

1
edge(z)
Select a state z by random to start from.

Let n=1andlet X; =z

Let S be the set of all states that can be reached in one step from z. These will be the
states y in which ¢ (z,y) #0

Select a state y from S by random (using a uniform U [0, 1] random number generator)

Calculate 8 (z,y) = min {1 Z@M}

> m(z)q(z,y)

Generate a random number » from U [0, 1]

.Letn=n+1

Compare u to 3 (z,y).

IF u < B (z,y) THEN X,, = y (select the new state) ELSE X,, = X,,_; (stay in same
state) ENDIF

Let z = X,

If n > some Max number of iterations or if we reached some convergence limit Then go
to 15

GOTO 5

Algorithm is complete. Now generate the time reversible MC as follows
(a) Scan the state path generate X,, and count how many times state z switches to
state y in one step
(b) Do the above for all the states
(c) Divide the above number by the total number of steps made to generate p (z, y)

= N

% N
d,'/) ) Since the problem now asks to z/plement gastlngs—Metropohs then I used the data given at
. _the end of the problem anglnﬁplemented the above su{lulatlon using that data®. Please see
appendix for code and-final P matrix generated.
= >

’1 aHrea@haﬂ/ the code for the simulation written, just needed toYQed the new data for this problem.

-

e N
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2.1.1 Part (al)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds in
the chain representation of the final p matrix a non-zero p (z,y) and also a non-zero p (y, z).
This will insure that the each state can transition to each other state, just as each vertex can
be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say z,y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p (z,y) and
p (y,x) are non-zero

Consider p (z,y) first. Since

p(z,y) =q(z,y) B (z,y)
__ v @)y 2)
= edge (@) {1’w(x)q(z,y)} Lo
fy) 1 s A UA
Zf('v) edge(y) T . ’ s

1 < veV | Lk H‘ 1ﬁt

———— min —
edge (z) ' S 1 / _ \ (. /
E fv) EageLE) (%) A4 \co ¢ 7 ‘/L 5

veV h A (A
= St @)
Hence #/ N
(y)edge(z)
P(2,9) = e mm{l’ f<z>ed§e(y>} M

Then it is clear that whenever there is an edge between z,y then p (z,y) # 0 since both f ()
and f (y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p (z,y) # 0. Similar argument shows that p (y, z) # 0.

|Thjs shows that M.C. represented by P is irreducible].

2.1.2 Part (a2)
_~The condition for regular chain P is that there exist at least one state  such that p (z, z) > S
"\ 0.From (1) above we can decide under what conditions this will occur. %

“Consider a vertex z with edge () edges from it connected to vertices y;, ¥z, - - , ¥-. Then from
(1) we see that

1 : f (y:) edge () }
T,Y;) = ———min< 1, —/———"—F—=
p(z,9) edge (z) { f (z) edge (y;)
1 a{ y(i )
o= b R Gk, AL
edge (x) n{ J—l—e dfg :(z) }

10
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77\

AVE SR )
£(vi)

The condition for having p (z, a:) > 0 is that min < 1, %j } < 1, sinice this will cause p (z, y;)
edge(x) /

to be some quantity less than 1 and so when summmg over all r there will be a deficit in the

- F(vs)
sum and we have to compensate for it to make it 1 by adding p (z, ). But for min {1, fd—i—ﬁy—l}
edge(x)

to be less than ONE means that | - dg (;"l(i,-) < 2 c{q &

|Hence the condition for finding an Aperiodic state is finding a vertex z such that the above holds|
for one of the vertices y; this vertex is directly connected to. For example, if y; had the same
number of edges from it as does z, then the condition will be that f (y;) < f (z). And if y; has

less or more edges from it than x has, then we need the ratio J%L to be less than L&
o (vi) edge(z) *

— /\'j

The above is thé same as saylng ( ) (@ must be constant for the p not to be regular{ /

i/ / : o { >

—

2.1.3 Part(A3) -/

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

7 (y)p (y,x) @)

T(xay)= ’/T(.Z')

Now if the chain the time reversible as well, then r (z,y) = p (z, y), Then the balance equation
(1) becomes

7 (z)p(z,y) =7 (y)p(y,)

f (z) f ()
———q(z,y) B (z,y) = =—""— ,x) B (y,x
S o) BV = S5 (50050,
fl@ 1 (. f@edge@) ) _ fl) 1 ( . [ f(z)edge(y)
Zf(v)Edge(x)( {1’f(x)edge(y)}) Zf(v)edge(y)( {1’f(y)edge(:v)}>
fl@) 1 (mm{lﬁe%})_ [ 1 (min{le—c{;ﬁ%}) -
> f () edae ) e ) ) D w)edoely o) |

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:

1 f(y2 — f(CC)

" edge(y) ~ edge(z)

2 f) f(z)

* edge(y) edge(z)

11
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3 f) > f(z)
* edge(y) edge(z)

For case (1), LHS of equation (3) simplifies to <L%—_—L__ and the RHS of (3) simplifies to

Z @ )edge(z)

veV

JQL 1 . f(yz : ;
Zf(v) edge(y)’ but since edge(y) edge(a:)7 then LHS=RHS.
veV

’Hence balance equation (3) is satisfied for case (1)|

S
For case(2), LHS of (3) simplifies <% - i( ) (e"gz(v)) - _Iw - dgt( 5 and RHS of (3)
D 1w e it > rw) e
vev vev
simplifies to <L) then LHS=RHS.

Z ) edge(y) i

veEV

IHence balance equation (3) is satisfied for case (2) I

For case (3), LHS of (3) simplifies <£&)—

and RHS of (3) simplifies to S W) 1 ( o i) )

Zf( )edge(m) Z ) °%°W) \ s
veV veV
_fl=®)
Ll L then LHS=RHS.
> 1w
veV

lHence balance equation (3) is satisfied for case (3) I

Hence in all 3 cases we showed the balance equation is satisfied.

|Hence M.C. is time reversible |

2.2 Part(b)

A small program written to construct the P matrix directly following instructions on page 8.4
of lecture notes. The following is the resulting P matrix

e 5 9 0.5 o.
(/\\Cl (o 0”625(15§8~4375> 0.25 0.25
L 0.08333330.333333 0.25 0.333333
%/ 5 0

X0. 0.5 0.

Now to check that the final chain P is regular, it was raised to some high power to check that
all entries in the P™ > 0. This is the result

12
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in[17):= MatrixPower[p, 50] // N // MatrixForm

Qut[17)/MatrixForm=
1 0.05263160.421053 0.315789 0.210526
0.0526316 0.421053 0.315789 0.210526
,zg{/ 0.0526316 0.421053 0.315789 0.210526
L 0.0526316 0.421053 0.315789 0.210526

The above verifies that the final matrix p is regular.

Using the Hastings—Metrorpolis simulation algorithm, the convergence to the above matrix was
slow. Had to make 2 million observation to be within 3 decimal points from the above. Here
is the P matrix generated from Hastings algorithm for N = 2,000,000

i () 0.500114 0.499886 0. )
0.0625897 0.4371790.249784 0.250448 /,;',,_
0.0831875 0.333962 0.248524 0.334326 _~
L 0= 0.499297 0.500703 0.
N \\ , e b
De i | ) (T
G S\ 4
~ B \;{\L‘O "*ﬁ) %
\QE '
,'”ﬂ 0 > ;\\
T = "/’ \ ‘«rf;_) % C’ ) [7 /
0) N /
40 i



CHAPTER 4. HWS 338

3 Appendix (Implementation of part(a) and part(b))

The graph for part(a) and part(b) is the following

Graph for problem 8.5

14
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Hastings - Metropolis Algorithm implementation For Problem 8.5
part(a)

This below is an implementation of the Hastings - Metropolis algorithm. A simple GUI interface allows the user to specify the
number of steps to run the algorithm for. At each step, the current P matrix and the current calculated stationary distribution for
this P matrix are shown to help observe the convergence.

The input to this run below is that of problem 8.5 part(b)

Few seed the random number generator and display the q and the n distribution used

SeedRandom[121212];

Define the data given in the problem

v={1; 2, 3,4);
edges = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}:

ffﬁ? 8, 6, 4);
f\

Define the functions #(x) and q(x,y) to use in the implementation

£[x]

pi[x_, £_] := m
q[x_, y_] := Module[{r},
r = Count [edges, {x, any_}] + Count[edges, {any_, x}];
If[(Count[edges, {x, y}] >0 || Count[edges, {y, x}] >0), 1/x, 0]
1

Find the stationary distribution

w = Table[pi[x, £], {x, 1, v[-1]}]

Printed by Mathematica for Students
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2 | nma_hastings_problem_8_5_part_a.nb

Generate the original q matrix

o%%o
1

: 0 5E
Pio}
o 2 2o

(originalMatrix = Table[q[x, y], {x, 1, v[-1]1}, {y. 1, v[-1]}]) // MatrixForm

Bring up the user interface

Appearance - "Labeled"},
AutorunSequencing - {{1, 300}}
]

number of steps G 273401

0. 0.502771
0.0637317 0.435999
0.0843336 0.331767
0. 0.502369

Current P Matrix=

0.497229
0.251526
0.250466
0.497631

m = Manipulate[First@{x = hastings [maxN]; Grid[{{"stationary distribution w=", N[w]},
{ "current stationary distribution=", MatrixPower [N[x], 100] [1, A1ll]},
{, }, {"Current P Matrix=", N[MatrixForm[x]]}}, Alignment - Left]},
{{maxN, 1, "number of steps"}, 1, 2000000, 100, ContinuousAction - False,

stationary distribution w= {0.0526316, 0.421053, 0.315789, 0.210526}
current stationary distribution= {0.053453, 0.420567, 0.316001, 0.209979}

0.
0.248743
0.333434
0.

Define a function for cummuiative sum

cumSum([list_] := Module[{i, sum, s, k},
sum = 0;
k = Length[list];
8 = Table[0, {k}];
For[i=1, i< k, i++,
{
sum = sum + list[[i];
s[[i] = sum;
}
1:
s

1

Printed by Mathematica for Students




CHAPTER 4. HWS 341

nma_hastings_problem_8_5_part_a.nb | 3

Function to calculate 8 (x, y)

beta[x_, y_, pi_, q_] := Module[{},
pillyl ally, x] ]

Min|1,
[ pillx] allx, y]

]

Function called at the end of the run to generate P from the path of states travelled

generatePMatrixFromStatePath [nStates_, x_] := Module[{i, j, p, allPairs, n, m},

n = Length[x] ;
(*Print["X=",x];*)
p = Table[0, {nStates}, {nStates}];
allPairs = Partition([x, 2, 1];
For[i =1, i s nStates, i++,

{

m = Count[allPairs, {i, y_}]:

For[j =1, j s nStates, j++,

If[m# 0, p[i, j] = Count[allPairs, {i, j}] /m, p[i, jl =0]

Function to sample from q using uniform distribution

sampleFromQConditional [q_, x_] := Module[{s, found, j, k, sample, y},
s = Flatten[Position[g[[ x, A11l]], Except[0], 1, Heads - False] ];
sample = q[ x, s];
sample = cumSum[sample] ;

y = RandomReal[];
found = False;
For[j =1, j < Length[sample], j++,
If[ Not[found], If[y < sample[[j], {k = j; found = True}]]
1:

y = s[k]
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4 | nma_hastings_problem_8_5_part_a.nb

The Hastings algorithm main loop

hastings[maxN_] := Module[{i, j, nStates, n, s, y, a, u, x, sample, pts, sum, k, found},
nStates = Length[originalMatrix];
n=l;
x = Table[0, {maxN}];
x[n]] =1; (*pick any state to start from«)
1 =1
While[i < maxN,
{
y = sampleFromQConditional [originalMatrix, x[n]];
a = beta[x[[n], y, w, originalMatrix];
u = RandomReal[];
n++;
If[us a, x[n] =y, x[n] =x[n-1]]; (*acceptance stepx)
i++;
}
1:

generatePMatrixFromStatePath [nStates, x]
1
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Problem 8.5 part(b)
by Naser Abbasi. Mathematics 504, Spring 2008. CSUF

This below construct the P matrix using direct computation of the Hasting-Meropolis method

Define the data given in the problem

v=1{1, 2, 3, 4};
edges = ({1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}};
£={1, 8, 6, 4};

Define the functions n(x) to use in the implementation

£[x]

pi[x_, £] :z= —m8m ——
m ™ eray

Define the functions q(x,y) to use in the implementation. This does something similar to the
adjcancy matrix normally used. | used the Count[] function in Mathematica which automatically
counts the edges from the edges list above, so there is really no need to construct an adjancy
matrix as such.

q[x_, y_] :=Module[{r},
r = Count [edges, {x, any_}] + Count[edges, {any_, x}];
If[ (Count[edges, {x, y}] >0 || Count[edges, {y, x}] >0), 1/r, 0]
1

Find the stationary distribution

w = Table[pi[x, £], {x, 1, v[-1]}]

Printed by Mathematica for Students
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2 | problem_8_5_part_b.nb

Generate the original q matrix

(originalMatrix = Table[q[x, y], {x, 1, v[-1]}., {y. 1, v[-1]}]) // MatrixForm

o : 2o
o33
N
o 2 2o

define Beta function

beta[x_, y_, pi_, q_] := Hodule[{},
pillyl ally. x] ]

Min[l,
pilx] qllx, y1

|

define a function to calculate a non - diagonal entry in the P matrix

makeEntryInPMatrix([x_, y , pi_, q_] := Module[{},
If[qx, y] == 0, 0, qllx, y] beta[x, y, pi, ql]
1

Construct the P matrix for the off-diagonal elements only

nStates = Length[originalMatrix];
p = Table[0, {nStates}, {nStates}];

For[i =1, i < nStates, i++,
For[j =1, j s nStates , j++,
If[i# j, p[i, j] = makeEntryInPMatrix[i, j, w, originalMatrix]]
]
1:

Now calculate the diagonal elements of the P matrix

For[i =1, i < nStates, i++,
For[j =1, j <snStates , j++,
If[i= j, p[i, j] =1-Total[p[[i, All]]]
1
1:

Printed by Mathematica for Students



CHAPTER 4. HWS

345

Print the P matrix

problem_8_5_part_b.nb | 3

0.

0.0625
0.0833333
Q.

p// N // MatrixForm

0.5
0.4375
0.333333
0.5

+5 0.
.25 0.25
;25 0.33
<5 (818

o ©O O O

3333

Raise the final p matrix to some large power to verify it is regular

.0526316
.0526316
.0526316
.0526316

o o o o

0.421053
0.421053
0.421053
0.421053

0.315789
0.315789
0.315789
0.315789

MatrixPower [p, 50] // N // MatrixForm

0.210526
0.210526
0.210526
0.210526
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HW problems 8.4 and 8.5, Mathematics 504
CSUF, spring 2008
by Nasser Abbasi
May 8, 2008
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1 Problem 8.4

8.4\ Let G = (V. E) be an undirected, connected graph, with the property that cach vertex
is connected to at most r vertices. Let f be a positive function defined on V, and let =

denote the probability distribution

) ‘_. Jlt
If (z,y) € E, define the transition probability
] f \Y)
plz,y min< 1, :
r Jr\ xI)
with p(z,y 0 otherwise, except that p(z, z) is determined so that the rows sum to

one. (i) Show that the Markov chain determined by p is irreducible. (i7) Determine
conditions under which the chain is regular. (iii) Show the chain is time reversible with

respectto =

1.1 Part(i)

P(xy)
vertex x vertex ¥
State x State y
edge (x.y)
P(y,x}
Undirected Graph Markov Chain
representation representation

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices z,y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state y
to x which is also not zero. By showing this, we conclude that the M.C. will switch (in some
number of steps) to any state from any other state, which implies there is no closed subset,
hence P is irreducible.

But from the definition of p(z,y) we see that if there is an edge (z,y) then p(z,y) exist and
is not zero, and p(y, x) exist and is not zero (since r is finite). This completes the proof.
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1.2 Part(ii)

A finite M.C. is regular when, for some integer m, P™ contains only positive elements.

This implies that the one step transition matrix P must have at least one entry along the
diagonal P;; that is none-zero (If all elements along the diagonal are zero, then P™ will always
contain at least one zero element no matter how large m is). But a diagonal element not being
zero is the same as saying that at least one state must be aperiodic (if P; > 0 then the period
is one).

’Hence the condition for the M.C. to be regular is that at least one state must be aperiodic |.

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

’This is the proof ‘:

Since at most a vertex can have r edges, then we can find a vertex x with r edges con-
necting it to vertices yi,¥s, - ,y, With corresponding one step probability transitions of
p(x,y1),p(z,92), - ,p(z,y.). (If we can’t find such a vertex, the argument will apply to
any other vertex, just replace r with the number of edges on that vertex and the argument
will still apply).

Now let us consider f (z) and compare it to each of the f (y;) where the y; is the vertex with
direct edge from . There are 2 cases to consider:

1. f(z) > at least one of the f (y;),i=1---r
2. f(z) <allof f(y;),i=1---r

3. f(x)=allof f(y),i=1---r

‘Consider case (1) ‘: Since f(xz) > f(y;) for some i, then for this specific v;, p(x,y;) =

%min {1, %} = %k where k < 1, hence p(z,y;) = a where a < % Lets assume there was
only one y; such that the above is true. l.e. at least one of the vertices connected to =

had f (y;) < f(z) (if more if found, it will not change the argument). Now we add all the

(r—1) wvertices

1 1 1
probabilities p (x,y;) and we found that this sum is — + — +--- + — + a where the a is for
ror r

that vertex which had f (y;) < f(z). Now since a < I then this sum will be LESS THAN
ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p(x,x) added to make up for the difference. Hence we
showed that under case (1) we can find p; which is not zero. This diagram illustrate this case

In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state communicate
with each other state, hence all states must be of the same type since all states are in the same communication
class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate with it must also
be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic, then all states are
aperiodic as well.
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State x

p(x,v;)

statej-‘g

state 1»

Sum of
probabilities < 1

‘Now we consider case (2) ‘ In this case since f(x) < f(y;) for each i, then p(x,y;) =

r vertices

v 1 1 1

% min {1, J;c((%:)) } = %., then the sum of the probabilities of transitions from zis — + — + -+ 4+ — =
ror

land we do not need to compensate by adding p (z,z) to make up for the deficit. However

since now f (y;) > f(x) then if we view y; as the x vertex and the = vertex as the y, and

consider the probability transitions out of y;, then we are back to case (1) above. Hence in

case (2) as well ,we can find a state in which p (z,2) > 0, Hence the chain is aperiodic, and

since it is irreducible, then it is regular in this case as well.

‘Now consider case (3): ‘In this case f(z) = f(y;) for i = 1---r. In other words, f (z) is
CONSTANT. In this case p (z,y;) = %min {1, f(yi)} = % ,then the sum of the probabilities of

f(=)

r vertices

1 1 1
transitions from z is — + — + - - - + — = land we do not need to compensate by adding p (z, x)

to make up for the derﬁcit?n This Willr be true for any node. Therefore, it is not possible to find
at least one node with the probabilities attached to edges leaving it is less than one. Hence
there are no state with p (z,x) > 0, hence in this case, the chain is not aperiodic, and hence
the chain is NOT regular.

Condition for chain not to be regular is that f (x) be constant.

1.3 Part(iii

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

(o) = TWP (Y )
(z,y) (@) (1)

This diagram helps me remember these formulas

4
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m(x)
o] X
W
)’f(‘lf) ’;//I;,
Y[ e®

N —= time N+1

r(xrx,y) = n(v)p(v.x)

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r (x,y) = p (x,y),

N — = time N+1

rx.y) = pl.y)

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

m(x)p(x,y) =7 (Y)p(y, ) (2)
Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7 (z) p(x,y) and let RHS of (2) be 7 (y)p(y,z). Then we will show
that LHS=RHS for the following 3 cases:

L f(z)=f(y)
2. f(x) < f(y)
3. f(z)> f(y)
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Case(1): Since f (z) = f (y) let these be some value, say z

LHS =7 (z)p(z,y)

o)

UGVZ .
— - 3
IOL ¥

and

RHS =7 (y)p (y, )

s (e 56)

ve\/z .
— - 4
FIOL W

We see that (3) is the same as (4), hence ‘LHS:RHS for case (1) ‘
case(2): f(x) < f(y)

LHS =m(z)p(z,y)

s (78

_ f@) 1
d Fw)r

veV

and

RHS =m(y)p(y,x)

s G 763)

_ W) 17 (=)
S fw)rf©)

veV

flz) 1

S )

veV
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Hence we see that (5) is the same as (6). Hence ‘RHS:LHS for case(2) ‘

case (3):f (z) > [ (y)
LHS =

and

RHS =

YK

() p(2,y)
_ J@) 1S W)
T ( 1)
f() lf(y)
S rwrfie)
veV
fly) 1 .
d fwr g
veV
™ (y) p (y, )
fly (1 . [ @
Zf (v) <7" {1’ f(y)}>
fly) 1 (8)

veV

We see that (7) is the same as (8), hence ‘ LHS=RHS for case (3) as well ‘

Hence we showed the balance equation for the time reversible condition is satisfied ‘ QED.
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2 Problem 8.5

MSupmsc G = (V, E) is an undirected, connected graph. For each vertex v € V/, let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V, and let 7 denote the probability distribution

f(z)
Zrﬁ L"f(t")
(a) Implement the Hastings-Metropolis method to find a regular Markov chain whose
limiting distribution is . Start with the initial irreducible chain defined by

1
edge(z) '

TT(I) =

q(z,y) = whenever (z,y) € E .

Note that the Markov chain with this one-step transition matrix is traversed by selecting
at random one of the edges connected to z, and then making the transition to the
corresponding node. (al) Show the Markov chain is irreducible. (a2) Determine
conditions under which the chain is regular. (a3) Show the chain is time reversible with
respect to 7. (b) Write a MATLAB program that determines the one-step probability
matrix resulting from this method. The input to this program is the function f, and the
graph, represented by an adjacency matrix. An adjacency matrix is an n X n matrx,
where n is the number of nodes in the graph, and where entry (4, 7) is one if there is an
edge connecting nodes i and j, and is zero otherwise. Use this adjacency matrix to
compute the function edge(v) at each node. Apply your program to the graph
G = (V,E), where V = {1,2,3,4}, and E = {(1,2), (1,3), (2,3), (2,4), (3,4)},

and where f(1) = 2, f(2) =8, f(3) =6, and f(4) = 4. Verify (using MATLAB) that
the resulting chain is regular and has the required limiting state probability distribution.

2.1 Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given
an irreducible M.C. (called ¢ or the original chain) and given a stationary distribution 7 for
that chain.

Desired stationary Time reversible
probability distribution > . . Irreducible Markov
Hastlngs—Metropo\ls ——— Chain (P) whose
Original Irreducible algorithm stationary distribution
Markov Chain (q) > is the supplied
distribution.
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Input: f (z) defined over the states z, and edge () which represents the number of edges
connected to x

1.

10.
11.

12.

13.

14.

15.

For each state z calculate 7 (z) = <LZ— and for each state z calculate edge(z)
fv)
veV
. compute ¢ (z,y) = Wle(x) whenever edge (r) # 0 else set ¢ (z,y) =0

. Select a state x by random to start from.
.Letn=1andlet X; ==

. Let S be the set of all states that can be reached in one step from z. These will be the

states y in which ¢ (x,y) # 0

. Select a state y from S by random (using a uniform U [0, 1] random number generator)

Calculate 8 (z,y) = min {1’ W(y)Q(y,x)}

m(x)q(z,y)

. Generate a random number v« from U [0, 1]

.Letn=n+1

Compare u to 3 (z,y).

IF v < B (x,y) THEN X,, = y (select the new state) ELSE X,, = X,,_; (stay in same
state) ENDIF

Let x = X,

If n > some Max number of iterations or if we reached some convergence limit Then go
to 15

GOTO 5

Algorithm is complete. Now generate the time reversible MC as follows

(a) Scan the state path generate X,, and count how many times state = switches to
state y in one step

(b) Do the above for all the states x

(c) Divide the above number by the total number of steps made to generate p (z,y)

Since the problem now asks to implement Hastings-Metropolis, then I used the data given at
the end of the problem and implemented the above simulation using that data?. Please see
appendix for code and final P matrix generated.

21 allready had the code for the simulation written, just needed to feed the new data for this problem.
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2.1.1 Part (al)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds in
the chain representation of the final p matrix a non-zero p (x,y) and also a non-zero p (y, x).
This will insure that the each state can transition to each other state, just as each vertex can
be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say z,y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p (x,y) and
p (y, z) are non-zero

Consider p (z,y) first. Since

p(oc,y) = Q(Iay)ﬁ(ajay)

1
R S {1, ﬂy)q(w)}
edge () T (z)q(z,y)
f(y) 1
edge(1
Zf(”) ge(y)
S S S A
edge (x) e d 1( )
> e
veV
Hence
. edge(x
p(l’,y) = edgle(z) mln{l’%} (1)

Then it is clear that whenever there is an edge between x,y then p (z,y) # 0 since both f (x)
and f (y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p (x,y) # 0. Similar argument shows that p (y, z) # 0.

’This shows that M.C. represented by P is irreducible ‘

2.1.2 Part (a2)

The condition for regular chain P is that there exist at least one state = such that p (z,x) >
0.From (1) above we can decide under what conditions this will occur.

Consider a vertex x with edge () edges from it connected to vertices y1, Y2, - - - , . Then from
(1) we see that

i) edge <x>}

) — ;min I
p (I7yz) = edge (l‘) {1’ f( )edge (Z/z)
I (i)

1 . edge(y:)
= — 1 °
edge (x) mm{ T @)

edge(z)

10
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(i)
The condition for having p (z, z) > 0 is that min {1, (dizg”) } < 1, since this will cause p (x, y;)

edge(x)

to be some quantity less than and so when summing over all r there will be a deficit in the

f(vi)
sum and we have to compensate for it to make it 1 by adding p (z, ). But for min {1, d?((’j)}

edge(x)

to be less than ONE means that | L&) ~ /@)
edge(y;) ~ edge(z)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above holds‘
for one of the vertices y; this vertex is directly connected to. For example, if y; had the same

number of edges from it as does z, then the condition will be that f (y;) < f (x). And if y; has

S(wi) f(x)
edge(y;) edge(z)

to be less than

less or more edges from it than x has, then we need the ratio

f(=)
edge(z)

The above is the same as saying must be constant for the p not to be regular|.

2.1.3 Part(A3)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

’I“(l’,y) =

Now if the chain the time reversible as well, then r (z,y) = p (z,

(1) becomes

() p(v,y) =
q(x,y) B (z,y) =

f(z)
> f(v)

veV

f(w)
1 edge
/(@) 7 (min {1, Cif(w()y) })
Zf 6 ge edge(x)

veV

flz) 1
Zf edge

veV

7 (y)p (y, )

y), Then the balance equation

T (y)p(y, )
f ()

S/ ) q(y,z) B (y, )

veV

f () 1

Zf ) edge (y <mm {1’ WD

veV

_ S 1 . o)
_Zf (v)edge(y)< {1 ej;(f&,) (3)

veV

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:

1 fly) _ _fl@)
" edge(y)  edge(x)

f) f(x)
2. < edge(z)
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f(y) f(z)
3. edge(y) > edge(z)

For case (1), LHS of equation (3) simplifies to

edge(x and the RHS of (3) simplifies to
E f(v
veV

but since Jg(e()) = - dge z), then LHS=RHS.

Z o T

veV

‘Hence balance equation (3) is satisfied for case (1). ‘

_fl)
For case(2), LHS of (3) simplifies <L) 1 <eda<;(y)>
> 1) W \ i Zf )
veV veV

then LHS=RHS.

and RHS of (3)

simplifies to

Zf( >ed"e

veV

‘Hence balance equation (3) is satisfied for case (2) ‘

f(x)
For case (3), LHS of (3) simplifies Zf:(j)(v) cdger and RHS of (3 (3) simplifies to Zf( )edge(y (qu(z()z)) -

edge(y)

veV veV

,then LHS=RHS.

Zf edge(z

veV

‘Hence balance equation (3) is satisfied for case (3) ‘

Hence in all 3 cases we showed the balance equation is satisfied.

‘Hence M.C. is time reversible ‘

2.2 Part(b)

A small program written to construct the P matrix directly following instructions on page 8.4
of lecture notes. The following is the resulting P matrix

0. 0.5 0.5 0.
0.0625 0.437> 0.250.25
0.0833333 0.333333 0.25 0.333333
0. 0.5 0.5 0.

Now to check that the final chain P is regular, it was raised to some high power to check that
all entries in the P™ > 0. This is the result

12



CHAPTER 4. HWS 358

In[17]:= MatrixPower[p, 50] // N // MatrixForm

Qut[17)/MatrixForm=
- 0.0526316 0.421053 0.315789 0.210526
0.0526316 0.421053 0.315789 0.210526
0.0526316 0.421053 0.315789 0.210526
. 0.0526316 0.421053 0.31578%9 0.210526

The above verifies that the final matrix p is regular.

Using the Hastings-Metropolis simulation algorithm, the convergence to the above matrix was
slow. Had to make 2 million observation to be within 3 decimal points from the above. Here
is the P matrix generated from Hastings algorithm for N = 2,000, 000

0. 0.500114 0.499886 0.
0.0625897 0.4371750.245%784 0.250448
0.08318750.333962 0.248524 0.334326
0. 0.495297 0.500703 0.

13
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3 Appendix (Implementation of part(a) and part(b))

The graph for part(a) and part(b) is the following

Graph for problem 8.5

14
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Hastings - Metropolis Algorithm implementation For Problem 8.5
part(a)

This below is an implementation of the Hastings - Metropolis algorithm. A simple GUI interface allows the user to specify the
number of steps to run the algorithm for. At each step, the current P matrix and the current calculated stationary distribution for

this P matrix are shown to help observe the convergence.

The input to this run below isthat of problem 8.5 part(b)

Few seed the random number generator and display the g and the x distribution used

SeedRandom[121 212];

Define the data given in the problem

v = {1, 2, 3, 4%,
edges = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}};
f ={1, 8, 6, 4};

Define the functions x(x) and g(x,y) to use in the implementation

. f IxT

pi[x_, f_1:= P ——
sat i

g[X_, y_1:=NMdule[{r},

r = Count [edges, {x, any_}] + Count [edges, {any_, X}1;
I f [ (Count [edges, {X, y}] >0 || Count [edges, {y, x}]>0), 1/r, O]

1

Find the stationary distribution

w=Table[pi [x, f1, {x, 1, V[-11}]

Printed by Mathematica for Students
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2 | nma_hastings_problem_8_5_part_a.nb

Generate the original g matrix

(original Matrix =Table[q[X, yI, {X, 1, V[-1T}, {y, 1, v[-11}1) // Matri xForm

O w|r wr O

NP Wk O Nk
Nk O wik Nk
O w|r wr O

Bring up the user interface

m= Mani pul ate [First @{x = hastings[maxN]; Gid[{{"stationary distribution w=", N[w]},
{"current stationary distribution=", Matri xPower [N[x], 100][1, Al ]},
{, }, {("Current P Matrix=", N[MatrixForm[x]]1}}, Alignnent -»Left]},
{{maxN, 1, "nunber of steps"}, 1, 2000000, 100, Conti nuousAction - Fal se,
Appear ance - " Label ed" },
Aut or unSequenci ng » {{1, 300}}
]

number of steps D 273401

stationary distribution w= {0. 0526316, 0.421053, 0.315789, 0.210526}
current stationary distribution= {0.053453, 0.420567, 0.316001, 0.209979}

0. 0.502771 0.497229 0.
0.0637317 0.435999 0.251526 0.248743
0. 0843336 0.331767 0.250466 0.333434
0. 0.502369 0.497631 0.

Current P Matrix=

Define a function for cummulative sum

cunSum[list _]:=Mdule[{i, sum s, k},
sum= 0;
k = Length[list];
s = Tabl e[0, {k}1;
For[i =1, i < k, | ++,
{
sum=sum+list[iJ;
SIi ] =sum

Printed by Mathematica for Students
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nma_hastings_problem_8_5_part_a.nb

Function to calculate B8 (x, y)

3

beta[x_, y_, pi _, g_]: = Mdul e[{),
pi Iyl aly, xI1 ]

Mn|1,
[ pi IXI 9x, yI

]

Function called at the end of the run to generate P from the path of states travelled

generat ePMatri xFronSt at ePat h [nStates_, x_]:=Mdule[{i, j, p, allPairs, n, m},
n =Length[x];
(xPrint ["X=", X]; %)
p = Tabl e[0, {nStates}, {nStates}];
allPairs = Partition[x, 2, 1];
For[i =1, i =nStates, i ++,
{
m= Count [al | Pairs, {i, y_}1;
For[j =1, j snStates, j ++,
If [m#0, p[i, j1=Count[allPairs, {i, j}I/m pl, jl=0]

Function to sample from g using uniform distribution

sanpl eFronmCondi tional [g_, X_]:=Mdule[{s, found, j, k, sanple, y},
s=Flatten[Position[q[x, All], Except [0], 1, Heads - Fal se] ];
sanmple =q[ X, sI;
sanpl e = cunSum[sanpl e];

y = RandonReal [1];
found = Fal se;
For[j =1, ] <Length[sanplel, j ++,
I f [ Not [found], If [y <sanple[jl, {k=]j; found = True}]]

1

y = skl
1

Printed by Mathematica for Students
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4 | nma_hastings_problem_8_5_part_a.nb

The Hastings algorithm main loop

hastings[maxN_] : = Modul e[{i, j, nStates, n, s, y, a, u, X, sanple, pts, sum k, found},
nStates =Length[original Matrix];
n=1;
x = Tabl e [0, {maxN}1;
XIn] =1; (xpick any state to start from)
i =1;
Wil e[i < maxN,
{
y = sanpl eFromQCondi ti onal [origi nal Matrix, X[InI1;
a =beta[x[n], ¥y, w, original Matrix];
u = RandonReal [1;
n++,
I1f[us a X[IN] =Yy, XIn] =x[n-1]]; (*acceptance stepx)
i ++;
}
1

gener at ePMat ri xFronSt at ePat h [nSt at es, Xx]
1

Printed by Mathematica for Students
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Problem 8.5 part(b)
by Naser Abbasi. Mathematics 504, Spring 2008. CSUF

This below construct the P matrix using direct computation of the Hasting-Meropolis method

Define the data given in the problem

v ={1, 2, 3, 4};
edges = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}};
f ={1, 8, 6, 4};

Define the functions n(x) to use in the implementation

ot f [x1
pi[x_, f ]is ——M——
noet g

Define the functions q(x,y) to use in the implementation. This does something similar to the
adjcancy matrix normally used. | used the Count[] function in Mathematica which automatically
counts the edges from the edges list above, so there is really no need to construct an adjancy

matrix as such.

q[x_, y_]:=Nodulef[{r},
r = Count [edges, {X, any_}] + Count [edges, {any_, X}1;
I f [ (Count [edges, {X, Y}] >0 || Count [edges, {y, X}]1>0), 1/r, 0]
1

Find the stationary distribution

w=Table[pi [x, f1, {X, 1, v[-1]}]

Printed by Mathematica for Students
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2 | problem_8_5_part_b.nb

Generate the original g matrix

(original Matrix =Table[q[x, Y], {X, 1, v[-1T}, {y, 1, vI-11}]1) // Matri xForm

O w|r wr O
NiF Wk O N[k
Nk O wik N[k
O wr wr O

define Beta function

beta[x_, y_, pi _, q_]: = Mdul e[{),
pi [yl ally, xI ]

Mn|1, -
[ pi IXT ax, yI

]

define a function to calculate a non - diagonal entry in the P matrix

makeEntrylnPMatrix [x_, y_, pi _, q_]:=Mdule[{},
I f [q[[xv Y]] = O! O! CHIXy y]] beta[xr Y, p|1 q]]
1

Construct the P matrix for the off-diagonal elements only

nStates = Length[original Matrix];
p =Tabl e[0, {nStates}, {nStates}];

For[i =1, i < nStates, i ++,
For[j =1, j <nStates, | ++,
If[i #j, pIi, j1=makeEntrylnPMatrix [i, j, w, original Matrix]]
1

1,

Now calculate the diagonal elements of the P matrix

For[i =1, i < nStates, i ++,
For[j =1, ] <nStates, | ++,
If[i = j, pLi, jI1=21-Total [p[i, All]]]
1

1;

Printed by Mathematica for Students
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Print the P matrix

problem_8_5_part_b.nb

3

0
0. 0625

0

p//N// MatrixForm

0.5
0. 4375

0. 0833333 0.333333 0.25

0.5

0.5 0.
0.25 0.25

0. 333333
0.5 0.

Raise the final p matrix to some large power to verify it is regular

0. 0526316
0. 0526316
0. 0526316
0. 0526316

0. 421053
0. 421053
0. 421053
0. 421053

0. 315789
0. 315789
0. 315789
0. 315789

Mat ri xPower [p, 50] // N// Matri xForm

0. 210526
0. 210526
0. 210526
0. 210526

Printed by Mathematica for Students
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4.12

Wed 4/16/2008

Grade: 4/4.

4.12.1 Problem 8.4

Part (i)
P(x.y)
vertex x vertex ¥
O O State x State y
edge (x.y)

P(y.x)

Undirected Graph Markov Chain

representation representation

A\Let G V. E) be an undirected, connected graph, with the property that each vertex
is connected to at most r vertices. Let f be a positive function defined on V', and let #
denote the probability distribution
¢
- J
S flq

E, define the transition probability

fl ; v 1

ST f(@) )
with plz, v ) otherwise, except that p(x,z) 15 determined so that the rows sum 1o
one. (i) Show that the Markov chain determined by p is irreducible. (it) Determine
conditions under which the chain is regular. (iii) Show the chain is time reversible with

respect 10 @

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices x,y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state
y to = which is also not zero. By showing this, we conclude that the M.C. will switch (in
some number of steps) to any state from any other state, which implies there is no closed

subset, hence P is irreducible.

But from the definition of p(x,y) we see that if there is an edge (z,y) then p(z,y) exist and
is not zero, and p(y, =) exist and is not zero (since r is finite). This completes the proof.
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Part (ii)
A finite M.C. is regular when, for some integer m, P™ contains only positive elements.

This implies that the one step transition matrix P must have at least one entry along the
diagonal P,; that is none-zero (If all elements along the diagonal are zero, then P™ will always
contain at least one zero element no matter how large m is). But a diagonal element not
being zero is the same as saying that at least one state must be aperiodic (if P; > 0 then
the period is one).

Hence the condition for the M.C. to be regular is that at least one state must be aperiodic

[$11

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

’This is the proof ‘:

Since at most a vertex can have r edges, then we can find a vertex x with r edges con-
necting it to vertices y;, %2, -,y With corresponding one step probability transitions of
p(z,y1),p(x,y2),- -, p(z,y-). (If we can’t find such a vertex, the argument will apply to any
other vertex, just replace r with the number of edges on that vertex and the argument will
still apply).

Now let us consider f(z) and compare it to each of the f(y;) where the y; is the vertex with
direct edge from z. There are 2 cases to consider:

1. f(z) > at least one of the f(y;), i =1---r
2. f(z) <allof f(y;),i=1---7r
3. f(z) = all of f(y),i=1---r

Consider case (1): Since f(z) > f(y;) for some ¢, then for this specific y;, p(z,y;) =
%min {1, %} = 1k where k < 1, hence p(z,y;) = a where a < % Lets assume there was

—r
only one y; such that the above is true. l.e. at least one of the vertices connected to z
had f(y;) < f(z) (if more if found, it will not change the argument). Now we add all the

(r—1) wvertices
N

1 1 1
probabilities p(z,y;) and we found that this sum is — + - + --- + = + a where the a is for
roT T

that vertex which had f(y;) < f(z). Now since a < % then this sum will be LESS THAN
ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p(z,z) added to make up for the difference. Hence we
showed that under case (1) we can find p;; which is not zero. This diagram illustrate this case

°In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state com-
municate with each other state, hence all states must be of the same type since all states are in the same
communication class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate
with it must also be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic,
then all states are aperiodic as well.
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State x

Sum of
probabilities < 1

Now we consider case (2).
In this case since f(z) < f(y;) for each i, then p(z,y;) = % min {1, J}(gﬁ))} = I, then the

r vertices
"

1 1 1
sum of the probabilities of transitions from z is — + — + -+ + — = land we do not need to
T

compensate by adding p(z,z) to make up for thTe de%cit. However since now f(y;) > f(x)
then if we view y; as the z vertex and the x vertex as the y, and consider the probability
transitions out of y;, then we are back to case (1) above. Hence in case (2) as well ,we can
find a state in which p(z,z) > 0, Hence the chain is aperiodic, and since it is irreducible,
then it is regular in this case as well.

Now consider case (3):

In this case f(z) = f(y;) for ¢ = 1---7. In other words, f(z) is CONSTANT. In this case

p(z,y;) = %min {1, ’}((i))} = % ,then the sum of the probabilities of transitions from z is

r vertices
"

1 1 1
-+ = +---+ = = land we do not need to compensate by adding p(z, z) to make up for the

r T T
deficit. This will be true for any node. Therefore, it is not possible to find at least one node
with the probabilities attached to edges leaving it is less than one. Hence there are no state
with p(z,z) > 0, hence in this case, the chain is not aperiodic, and hence the chain is NOT
regular.

Conclusion: Condition for chain not to be regular is that f(x) be constant.
Part (iii)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

_ m(y) p(y, =)
7‘(113, ) - T (.’IZ) (1)

This diagram helps me remember these formulas
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m(v) -

n(x)r(x,v) =n(v)plv.x)

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r(z,y) = p(z, y),
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.
S .I'.I" ""-.-1 -
]
—_—
e T
J'ﬂh'l-
- T,
- T
.-Fr_,.l- -l.l_.‘.‘-l
-l'ﬂ h'I-

N - time  nq

H(x,v) = plx,v)

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

m(z) p(z,y) = 7(y) p(y, ) (2)
Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7(z) p(x,y) and let RHS of (2) be 7(y) p(y, ). Then we will show that
LHS=RHS for the following 3 cases:

L f(z)=fy)
2. f(z) < f(y)
3. f(z) > f(y)
Case(1): Since f(z) = f(y) let these be some value, say z

LHS = n(z)p(z,y)

- s (e 75

veV
z 1

S fwr

veV

3)
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and

RHS = n(y) p(y, z)

SN )

fy)

Y fw

veV
z

veV

We see that (3) is the same as (4), hence

case(2): f(z) < f(y)

1

S f@)r

LHS=RHS for case (1)|.

LHS = 7(z) p(z,y)

f(z)

- G 75 )

veV

f(z)

1

Y fw)r

veV

and

RHS = 7(y) p(y, z)

Lo ol 1)

fy)

IYIC

veV

_ f)

1 f(x)

IYIC

veV

f(z)

yrf ()

1

YL

veV

Hence we see that (5) is the same as (6). Hence | RHS=LHS for case(2) |.

case (3):f(z) > f(y)

LHS = 7(z)p(z,y)

f(=)

veV

f(=)

-5 G 765}

1 f(y)

> fw)rf@)

veV

fy)

veV

and

1

S f@r

RHS = m(y) p(y, z)

f()

veV

f(y)

51 76

> fw

1

> fw

veV

)7‘

(4)

(5)

(6)

(7)
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We see that (7) is the same as (8), hence | LHS=RHS for case (3) as well |.

Hence we showed the balance equation for the time reversible condition is satisfied. QED.

4.12.2 Problem 8.5

[8.5)Suppose G = (V, E) is an undirected, connected graph. For each vertex v ¢ V, let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V', and let = denote the probability distribution

f\_rl

-'_)_: v f(v)

(@) Implement the Hastings-Metropolis method to find a regular Markov chain whose
limiting distribution is 7. Start with the initial irreducible chain defined by

1

whenever (z,y) € E .
edge(x)

qlz,y)
Note that the Markov chain with this one-step transition matrix is traversed by selecting
at random one of the edges connected to z, and then making the transition to the
corresponding node. (al) Show the Markov chain is irreducible. (a2) Determine
conditions under which the chain is regular. (a3) Show the chain is time reversible with
respect to 7. (b) Write a MATLAB program that determines the one-step probability
matrix resulting from this method. The input to this program is the function f, and the
graph, represented by an adjacency matrix. An adjacency matrix is an n X n matrx,
where n is the number of nodes in the graph, and where entry (1, 7) is one if there is an
edge connecting nodes i and j, and is zero otherwise. Use this adjacency matrix to
cmhnpnlc the function edge(v) at each node. Apply your program to the graph
G = (V.,E), where V = {1,2,3,4}, and E = {(1,2), (1,3), (2,3), (2,4), (3,4)},

and where f(1) =2, f(2) =8, f(3) =6, and f(4) = 4. Vcrify(usin.g_;\*l.»\jl‘ll..i\B).lhal
the resulting chain is regular and has the required limiting state probability distribution.

Part(a)
The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given

an irreducible M.C. (called g or the original chain) and given a stationary distribution 7 for
that chain.

Desired stationary Time re?versible
probability distribution ’ ) ) Irreducible Markov
Hastings-Metropolis | — - Chain (P) whose
Original Irreducible algorithm stationary distribution
Markov Chain (q) » is the supplied
distribution.

Input: f(z) defined over the states x, and edge(x) which represents the number of edges
connected to z

1. For each state z calculate 7(z) = Ef:(—x) and for each state = calculate edge(z)
vevf(v)

2. compute q(z,y) = #@(w) whenever edge(x) # 0 else set g(z,y) =0

3. Select a state x by random to start from.

4. Letn=1and let X; ==z

5. Let S be the set of all states that can be reached in one step from z. These will be the
states y in which ¢(z,y) # 0
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6. Select a state y from S by random (using a uniform U[0, 1] random number generator)

! m(z)q(z,y)

7. Calculate 5(z,y) = min {1 7T(y)q(y,m)}
8. Generate a random number u from UJ0, 1]
9. Letn=n+1

10. Compare u to S(z,y).

11. IF u < B(z,y) THEN X,, = y (select the new state) ELSE X,, = X,,_; (stay in same
state) ENDIF

12. Let z = X,

13. If n > some Max number of iterations or if we reached some convergence limit Then
go to 15

14. GOTO 5
15. Algorithm is complete. Now generate the time reversible MC as follows

(a) Scan the state path generate X,, and count how many times state z switches to
state y in one step

(b) Do the above for all the states
(c) Divide the above number by the total number of steps made to generate p(x,y)

Since the problem now asks to implement Hastings-Metropolis, then I used the data given
at the end of the problem and implemented the above simulation using that data| Please
see appendix for code and final P matrix generated.

Part (al)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds
in the chain representation of the final p matrix a non-zero p(z,y) and also a non-zero p(y, z).
This will insure that the each state can transition to each other state, just as each vertex
can be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say z,y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p(z,y) and
p(y, z) are non-zero

Consider p(z,y) first. Since

p(w,y) = q(a:,y) ﬂ(flf,y)
1 {1 (y) q(y,w)}

= mln y T 7 N 7\
edge (z) ™ (z) g (z,y)
( f@) 1 )
Z o) edge(y)
— # min< 1 K-
= ’ f(z) 1
edge (.’13) Zj(v) edge(zx)
\ VeV )
Hence
1 . f(y)edge(z)
p(xa y) ~ edge(x) min {1’ m} (1)

61 allready had the code for the simulation written, just needed to feed the new data for this problem.
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Then it is clear that whenever there is an edge between z,y then p(z,y) # 0 since both f(z)
and f(y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p(x,y) # 0. Similar argument shows that p(y, z) # 0.

This shows that M.C. represented by P is irreducible.
Part (a2)

The condition for regular chain P is that there exist at least one state = such that p(z,z) >
0.From (1) above we can decide under what conditions this will occur.

Consider a vertex x with edge(z) edges from it connected to vertices yi,¥s,- - ,¥.. Then
from (1) we see that

Ly fedsee)
p(z,yi) = edge () {1’ f (z) edge (yz)}
f

1 S (y(z‘) )
— . 1 eage(y;
edge (.’L') min { ! f(w) }

edge(z)

f(ys)
The condition for having p(z,z) > 0 is that min {1, %} < 1, since this will cause

edge(x)

p(z,y;) to be some quantity less than % and so when summing over all r there will be a

deficit in the sum and we have to compensate for it to make it 1 by adding p(z, z). But for

edge(y;) edge(z)

edge(zx)

f(ys)
min {1, edgels) } to be less than ONE means that L&) < /@)

Hence the condition for finding an Aperiodic state is finding a vertex x such that the above
holds for one of the vertices y; this vertex is directly connected to. For example, if y; had the
same number of edges from it as does z, then the condition will be that f(y;) < f(x). And

if y; has less or more edges from it than = has, then we need the ratio ({(—()) to be less than
f(z)

edge(z) *

The above is the same as saying % must be constant for the p not to be regular.

Part(A3)

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

_ m(y) p(y, z)
T(.’L’, y) - T (x) (2)

Now if the chain the time reversible as well, then r(z,y) = p(z, y), Then the balance equation
(1) becomes

m(z) p(,y) = (y)p(y, )

F@) N Bl ) =
Zf(’“)q( ,y) B(z,y) Zf z) By, z)
flz) 1 . fy)edge(x) \\ _ fly) 1 [ . [, flz)edge(y)
S f (v) edge (z (mm{l f(z) edge(y)}) S f (v) edge (y ( {1’f(y) edge(w)})
f@) 1 () _ W) L (s e
e 2)) s ) ©

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:
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flyy _ _fl=)

" edge(y) ~ edge(x)
f) f(=z)

: edgg(y) < eﬂlggc(w)
() f(z)

* edge(y) edge(z)

For case (1), LHS of equation (3) simplifies to

:§:jf T

veV

but since

fy) _ _f=@)

edge(y)

edge(z)’

Zf( )

veV

then LHS=RHS.

Hence balance equation (3) is satisfied for case (1).

For case(2), LHS of (3) simplifies

simplifies to

veV

Zf( ) edgE(y) ’

f(@)

veV

then LHS=RHS.

()
. (edge<y>)
Zf( ) edge(x) L

Hence balance equation (3) is satisfied for case (2) |

For case (3), LHS of (3)

_f=)

Zf edg (z

veV

simplifies

_f=®m 1

veV

,then LHS=RHS.

Zf edge(x)

and RHS of (3) simplifies to

Hence balance equation (3) is satisfied for case (3) |.

; and the RHS of (3 (3) simplifies to

)

veV

Hence in all 3 cases we showed the balance equation is satisfied.

Hence M.C. is time reversible.

Part(b)

f(y) 1

and RHS of (3)

f(z)

edge(x)

Z @) edge(y)

veV

(2

_fy)

edge(y)

A small program written to construct the P matrix directly following instructions on page
8.4 of lecture notes. The following is the resulting P matrix

0.

0.0625
0.0833333 0.333333

0.

0.5

0.4375

0.5

E:IE:IE:IE:I

i_ﬂ[\_‘,l[\_‘,l'i_ﬂ
o

o S e T e Y
LJJM
Ly N

3333

Now to check that the final chain P is regular, it was raised to some high power to check
that all entries in the P™ > (. This is the result

In[17]:=

MatrixPower[p, 50] // N // MatrixForm

out[17)/MatrixForm=

- 0.0526316 0.
0.0526316 0.
0.0526316 0.

L 0.0526316 0.

421053 0
421053 0
421053 0
421053 0

.315789 0.
.315769 0
.315789 0
.315789 0

210526

210526
.210526
.2105Z26

)_
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The above verifies that the final matrix p is regular.

Using the Hastings-Metropolis simulation algorithm, the convergence to the above matrix
was slow. Had to make 2 million observation to be within 3 decimal points from the above.
Here is the P matrix generated from Hastings algorithm for N = 2,000, 000

0. 0.500114 0.459886 0.
0.06258537 0.4371720.2459734 0.250448
0.06831875 0.333962 0.248524 0.334326

0. 0.495297 0.500703 0.

4.12.3 Appendix (Implementation of part(a) and part(b))
The graph for part(a) and part(b) is the following

Graph for problem 8.5
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4.12.4 code
[Mathematica notebookl

(Mathematica notebookl

4.12.5 Key solution

I)<0vi SG\WHC'Y\. T~ f])f‘«b'\ma.— 55} 84’

Chapter 8: Markov Chain Monte Carlo Methods - Solutions to
Selected problems

8.4 Let G = (V,E) be an undirected, connected graph with the property that each
vertex is connected to at most r vertices. Let f be a positive function defined on
V and let 7 denote the probability distribution

7(z) = —f(i— .
Zoev f(v)
If (z,y) € E, define the transition probability
L[ f (y)}
p(z,y) = —min 1, ==~ .
)= fmin {1,585
with p(z,y) = 0 otherwise, except that p(z,z) is determined so that the rows

sum to one. (i) Show that the Markov chain determined by p is irreducible. (i)
Determine conditions under which the chain is regular. (i74) Show the chain is time
reversible with respect to 7.

Solution (i) To show that the chain is irreducible, note first that G is connected. In
other words, in G there is a path from any one node to any other; that is, given any two
nodes, say a and b in V| there is a sequence of nodes, say x1,xs, -+, 2,, in V such that
(a,z,) € E, (2;,7;41) € E, for each i =1,2,---,n, and (z,,b) € E. While the graph G is
undirected, the graph of the Markov chain is directed. However, corresponding to each
arc in GG there are two arcs in the graph of the Markov chain, one in each direction, and
each with nonzero probability. Indeed, if (z,y) € E, then there is an arc in the graph
of the Markov chain that points from z to y with associated probability p(z,y) > 0,
determined by the formula above, and there is another arc that points from y to x with
associated probability p(y, z) > 0, again determined by the formula above. It follows that
in the graph of the Markov chain, between any two nodes (now states of the chain), there
is a path between these states that can be traversed following the arcs in the required
directions. In other words, any two states of the Markov chain communicate. Hence, the
chain is irreducible.

(74) Although the Markov chain is irreducible, it may be periodic, and hence not
regular. As a simple example, consider the graph G = (V, E) with vertex set V = {1, 2}
and edge set E = {(1,2)}. Then r = 1. Suppose that f is the constant function. Then
the associated Markov chain has one-step probability transition matrix

-[23]


HWs/HW6_MCMC_problem_8_4_and_8_5/code/problem_8_5_part_b.nb
HWs/HW6_MCMC_problem_8_4_and_8_5/code/nma_hastings_problem_8_5_part_a.nb
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This chain is periodic with period 2. Suppose however that f is not constant. For
example, let f(1) = 1 and f(2) = 3. Then the associated Markov chain has one-step
probability transition matrix
0 1
P = .
[ 1/3 2/3 ]

This chain is aperiodic. However, more generally, whenever f is not the constant function,
the associated Markov chain will be aperiodic, and hence regular. To see this result, note
that there must be some vertex = such that (z,y) € E, and f(y) < f(z). For this state
x, the sum of the off-diagonal elements will be less than one, since there are at most r
nonzero off diagonal entries. Hence, for this row, p(z,z) # 0. Thus, state x is aperiodic,
and since the chain is irreducible, all states are aperiodic, and so the chain is aperiodic.

0 As another condition which implies regularity, suppose that at least one node of the
graph G is connected directly to fewer than r nodes. Then, whether f is the constant
function or not, that node will become a state in the chain that is aperiodic. Indeed, in
the one-step transition matrix, the row corresponding to this state will be such that the
sum of the off-diagonal elements will be less than one, and hence the diagonal element
will be nonzero. Thus, since the chain is irreducible, and one state is aperiodic, all states
are aperiodic.

(24i) To show that the balance equations hold, we need to show that = (z)p(z,y) =
7(y)p(y, z) for each pair of states x and y. First, if p(z,y) = 0, then p(y,z) = 0 also,
since p(z,y) = 0 only when there is no edge of the graph G that connects z and y. Next,
when (z,y) € E,

@) = Lmin {1, HOY = Lomin (7601, 503

rC f(z)
where C is the sum appearing in the denominator of 7. Similarly, we have
m(y)p(y, ) = f’(—g)mm{ ,%} = %mm {f(), f(z)},

These two expressions are the same, which is the desired conclusion.

8.5 |Suppose G = (V, F) is an undirected connected graph. For each vertex v € V| let
edge(v) denote the number of edges that are connected to v. Let f be a positive
function defined on V, and letw denote the probability distribution

f(z)

m(zr) = =———— .

ZvGV f('l))

(a) Implement the Hastings-Metropolis method to find a regular Markov chain
whose limiting distribution is 7. Start with the initial irreducible chain defined by

q(z,y) = M , Whenever (z,y)€E.
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Note that the Markov chain with this one-step transition matrix is traversed by se-
lecting at random one of the edges connected to z, and then making the transition
to the corresponding node. (al) Show that the Markov chain determined by this
method is irreducible. (a2) Determine conditions under which the chain is regular.
(a3) Show the chain is time reversible with respect to 7. (b) Write a MATLAB pro-
gram that determines the one-step probability matrix resulting from this method.
The input to this program is the function f and the graph, represented by an ad-
jacency matrix. An adjacency matrix is an n X n matrix, where n is the number
of nodes in the graph, and where entry (i, j) is one if there is an edge connecting
nodes ¢ and j, and is zero otherwise. Use this adjacency matrix to compute the
function edge(v) at each node. Apply your program to the graph G = (V, E) where
V =1{1,2,3,4}, and E = {(1,2),(1,3),(2,3),(2,4),(3,4)}, and where f(1) = 2,
f(2) =38, f(3) =6, and f(4) = 4. Verify (using MATLAB) that the resulting chain
is regular and has the required limiting state probability distribution.

Solution (a) The one-step transition probabilities are

B(z,y) for (z,y) € E, with p(z,z)=1-) p(z,y),

| y#Fx

1

p(z,y) = e}

where 3(z,y) is given by
B(z,y) = min {1, 7

Otherwise p(z,y) = 0.

(al) These formulas show that for each arc (z,y) € E, we have p(z,y) > 0 and
p(y,z) > 0. Thus, between any two nodes that are connected by an arc in G, the re-
sulting Markov chain has two corresponding states, x and y, and there are two arcs
connecting these states which point in opposite directions. Hence, since the original
graph is connected, it is therefore possible, in the Markov chain, to travel from any one
state to any other. Thus, the chain is irreducible.

(a2) For the setting of this problem, the Markov chain produced by the Hasting-
Metropolis algorithm may be periodic, and hence not regular. For example, consider the
graph G = (V, E) with vertex set V' = {1,2} and edge set E = {(1,2)}. Suppose that
f is the constant function. Then the resulting Markov chain has one-step probability
transition matrix | -

P=[1a].

and the chain is periodic with period 2.
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However, when f(z)/edge(x) is not the constant function on V, the chain is aperiodic.
To see this result, note first that since the graph is connected, there must be two vertices
x and y such that (z,y) € E, and f(y)/edge(y) < f(x)/edge(x). For these states z and
y we will have 3(x,y) < 1. Therefore, in the one step transition matrix for the Markov
chain, the sum of the off-diagonal elements in the row for state x is less than one. Hence,
state z is aperiodic. Since the chain is irreducible, the chain is therefore also aperiodic.
Thus, in this case when f(z)/edge(z) is not the constant function on V, the chain is
irreducible and aperiodic, and hence regular.

(a3) To show that the balance equations hold, the same argument used for the
previous problem carries over. we need to show that m(z)p(z,y) = 7(y)p(y, x) for each
pair of states z and y. First, if p(x,y) = 0, then p(y,2) = 0 also, since p(z,y) = 0 only
when there is no edge of the graph G that connects z and y. Next, when (z,y) € E,

o @) f()edge) @) )
@) = e {1’ f(w)edge(y)} {edgeu)’ edge(:w} ’

where C' is the sum appearing in the denominator of 7. Similarly, we have

I 1) f(@ledge(y)| _ 1 . | fly) fl2)
m(y)p(y,z) = edge(y)Cmm {1’ f(y)edge(a;)} o™ {edge(y)’ edge(:v)}

= —min

C

These two expressions are the same, which is the desired conclusion.
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4.12.6 my graded solution

HW problems 8.4 and 8.5, Mathematics 504

CSUF, spring 2008

by Nasser Abbasi

April 16, 2008
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1 Problem 8.4

S lLet G = (V. E) be an undirected, connected graph, with the property that cach vertex
is connected to at most r vertices. Let f be a positive function defined on V', and let 7
denote the probability distribution

f(z)

m(z) = i—‘,-,yf(z')- )
If (z.y) € E, define the transition probability
L1 f(y)
p(&y) = ;mm{l. f-(.r)} y
with p(z,y) = 0 otherwise, except that p(z, z) is determined so that the rows sum to

one. (i) Show that the Markov chain determined by p is irreducible. (i7) Determine
conditions under which the chain is regular. (iii) Show the chain is time reversible with

respect to .

1.1 Part(i)
P(xy)
vertex x vertex ¥
@ @ State x State y
edge (x.y)
Ply.) /
. / .
Undirected Graph Markov Chain -
representation representation

M.C. is irreducible if there exist no proper closed subset in the state space. Since we are
given that the graph G is connected, then this means it is possible to visit each vertex from
any other vertex in the graph. But does a connected graph implies no proper closed subset
of the corresponding M.C.? The answer is YES. If we view each vertex as state, we just need
to show that for each edge in G between 2 vertices z,y, there corresponds a probability of
transition from state x to y which is not zero, and also a probability of transition from state y
to z which is also not zero. By showing this, we conclude that the M.C. will switch (in some
number of steps) to any state from any other state, which implies there is no closed subset,
hence P is irreducible.

But from the definition of p(z,y) we see that if there is an edge (z,y) then p(z,y) exist and
is not zero, and p(y, z) exist and is not zero (since 7 is finite). This completes the proof.
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\

2 Y ; .
L Y a4 "
X ] ! ¢ o L. | o
1.2 Part(ii r: L@ | P > 0
L va 2 o]/

A ﬁnit&M.C. is regular when, for some integer m, P™ contains only positive elements.

| This implies that the one step transition matrix P must have at least one entry along the

dlago"'éTPn at is none-zero (If all elements along the diagonal are zero, then P™ will always

contain at least one zero element no matter how large m is). But a diagonal element not ot being |,
ero is the same as saying that at least one state must be aperlodlc (1f P;; > 0 then the period !

[Hence the condition for the M.C. to be regular is that at least one state must be aperiodic |1.

To proof that the above chain is regular, we then need to show that at least one state is
aperiodic.

This is the proof I: —— (,L:‘(ULT 9 aﬁoudb LA A(’TL[\/\ A

M/ Since at most a vertex can have r edges, then we can find a vertex z with r edges con-
s ° mecting it to vertices y1,%2, - ,y, with corresponding one step probability transitions of
bnc p(x,y1),p(z,92), - ,p(x,y.). (If we can’t find such a vertex, the argument will apply to

any other vertex, just replace r with the number of edges on that vertex and the argument
o T will still apply).

\,_57 ‘ot/‘(té

~ Now let us consider f (z) and compare it to each of the f (y;) where the y; is the vertex with
F\ﬂ’bé . direct edge from z. There are 2 cases to consider:

/

1. f(z) > at least one of the f (y;),i=1---r
2. f(z) <allof f(y;),s=1---r
3. f(z)=allof f(y;),i=1---71

|Consider case (1) i: Since f(z) > f(y;) for some i, then for this specific y;, p(z,y;) =

—mln{l, f(x)} = 1k where k < 1, hence p(z,;) = a where a < 1. Lets assume there was
only one y; such that the above is true. l.e. at least one of the vertices connected to x

had f (v;) < f(z) (if more if found, it will not change the argument). Now we add all the

(r—1) vertices

1 1 1
probabilities p (z,y;) and we found that this sum is — + + - + + a where the a is for

that vertex which had f (y;) < f(z). Now since a < 1 then this sum will be LESS THAN
ONE. But the sum of the one step probability transition from each state must be 1, hence
to compensate, we must then have p (z,z) added to make up for the difference. Hence we
showed that under case (1) we can find p; which is not zero. This diagram illustrate this case

In addition, since we showed in part (i) that this chain is an irreducible chain, hence each state communicate
with each other state, hence all states must be of the same type since all states are in the same communication
class (Theorem 5.3.2). Then if one state is aperiodic, then the all states that communicate with it must also
be aperiod (to be of the same type). Hence in an irreduible chain, if one state is aperiodic, then all states are
aperiodic as well.
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state 11 state 171
O 1 ~O
l \ / //
/ p(\ v 2) state 13 / _l_ state 12
State'x State x \LO
\ ‘ i) ! A\ 1
~— a < =
e PEH LT,
/)/\ state 1 i
b N state v;
- /‘/
e, 0
r
state_\',-
{ ) state v,
Sum of
probabilities < 1

[Now we consider case (2) | In this case since f(z) < f(y;) for each i, then p(z,y:;) =

T vertices

e e

1 1 1
- mm {1, % } ., then the sum of the probabilities of transitions fromzis — + — +--- 4+ — =

1and we do not need to compensate by adding p (z,z) to make up for the deﬁmt However
since now f (y;) > f (z) then if we view y; as the z vertex and the z vertex as the y, and
consider the probability transitions out of y;, then we are back to case (1) above. Hence in
case (2) as well ,we can find a state in which p (z,z) > 0, Hence the chain is aperiodic, and
since it is irreducible, then it is regular in this case as well.

|Now consider case (3):]111 this case f(x) = f(y;) for ¢ = 1---7. In other words, f(z) is

CONSTANT. In this case p (z,y;) = 1 min {1, %(%)2} ,then the sum of the probabilities of

T vertices

1
transitions from z is — + — + - - - + — = land we do not need to compensate by adding p (z, x)
T T r
to make up for the deficit. This will be true for any node. Therefore, it is not possible to find
at least one node with the probabilities attached to edges leaving it is less than one. Hence
there are no state with p (z,z) > 0, hence in this case, the chain is not aperiodic, and he
the chain is NOT regular. /

Condition for chain not to be regular is that f (z) be constant.

1.3 Part(iii

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

7 (y)p(y,z) (1)

’I‘(.’E, y) 7 7'l'(£L‘)

This diagram helps me remember these formulas

4
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m(x)

N —»time N+1

r(x)r(x.v) = r(v)p(r.x)

BALANCE EQUATION FOR AN IRREDUCIBLE CHAIN

Now if the chain the time reversible as well, then r (z,y) = p (z, y),

x|. oa | x
-

N ———» time N+1

r(x.v) = p(x.v) -

e S i}

Condition for a time reversible irreducible chain

Then the balance equation (1) becomes

m(z)p(z,y) =7 (y)p(y,2) (2)
Hence we need to show that the equation above holds to show the chain is time reversible.

Let the LHS of (2) be 7 (z)p(z,y) and let RHS of (2) be 7 (y) p(y,z). Then we will show
that LHS=RHS for the following 3 cases:

L f(z)=f(y)
2. f(z) < f(y)
3. f(=z)> f(y)
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Case(1): Since f (z) = f (y) let these be some value, say z

LHS =7 (z)p(z,y)

- K G £5))

VeV
z 1

= 3
> f)r i

veV

and

RHS =7 (y)p (y, z)

- st (e 73))

veV
Z 1

S f)T

veV

~

(4)

We see that (3) is the same as (4), hence [LHS:RHS for case (1) |
case(2): f(z) < f(y)

LHS =7 (z)p(z,y)

- s G o £8)

_ f@ 1
ST

veV

(®)

and

RHS =7 (y)p (y,z)

)

__Jf@) 1f(@
S fwrf)

veV

__f@ 1
IOL

~—

(6)
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Hence we see that (5) is the same as (6). Hence [R,HS:LHS for case(2) ‘

case (3):f (z) > f (y)
LHS =

and

We see that (7) is the same as (8), hence [LHS:RHS for case (3) as wellJ.

™ (z)p (2, y)

> fw)

veV

- (1

flz) 17y
Zf(v)rf(x)

veV

f(y 1

S f@)r

VeV

7 (y)p (v, z)

f(y) (1
> f )

r
veV

fly 1

S F@r

veV

min{l,

f
f

(z

S

(y)

)

/ (8)

[Hence we showed the balance equation for the time reversible condition is satisfied l QED.
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2 Problem 8.5

[3.5,Suppose GG = (V. E) is an undirected, connected graph. For cach vertex v € V. let
edge(v) denote the number of edges that are connected to v. Let f be a positive

function defined on V', and let = denote the probability distribution
_ @)
thl’;""f(v)

(a) Implement the Hastings-Metropolis method to find a regular Markov chain whose
limiting distribution is 7. Start with the initial irreducible chain defined by

: 1
q(x,y) = edgel®) '

7(x)

whenever (r,y) € E .

Note that the Markov chain with this one-step transition matrix is traversed by selecting
at random onec of the edges connected to z, and then making the transition to the
corresponding node. (al) Show the Markov chain is irreducible. (a2) Determine
conditions under which the chain is regular. (a3) Show the chain is time reversible with
respect to 7. (b) Write a MATLAB program that determines the one-step probability
matrix resulting from this method. The input to this program is the function f, and the
graph, represented by an adjacency matrix. An adjacency matrix is an n X n matrix,
where n is the number of nodes in the graph, and where entry (i, j) is onc if there is an
edge connecting nodes ¢ and j, and is zero otherwise. Use this adiacency matrix to
compute the function edge(v) at cach node. Apply your program (o the graph
G = (V.E), where V ={1,2,3,4}, and E = {(1,2), (1,3), (2,3), (2,4), (3,4)}.

and where f(1) = 2, f(2) =8, f(3) =6, and f(4) = 4. Verify (using MATLAB) that
the resulting chain is regular and has the required limiting state probability distribution.

2.1 Part(a)

The following is the Hastings-Metrpolois algorithm implementation.

This algorithm generates a time-reversible M.C. (referred to as p in the lecture notes) given
an irreducible M.C. (called g or the original chain) and given a stationary distribution 7 for

that chain.
Desired stationary Time reversible /
probability distribution . . _ Irreducible Markov :
Hashngs—Metropolls — Chain (P) whose
Original Irreducible algorithm stationary distribution
Markov Chain (q) is the supplied
distribution.
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Input: f(x) defined over the states z, and edge () which represents the number of edges
connected to x

1.

DA

10.
11

12.
13.

14.
15.

f(z)

f(v)
veV

For each state z calculate 7 (z) = and for each state z calculate edge(x)

compute ¢ (z,y) = whenever edge (z) # 0 else set ¢ (z,y) =0

1
edge(z)
Select a state z by random to start from.

Let n=1andlet X; =z

Let S be the set of all states that can be reached in one step from z. These will be the
states y in which ¢ (z,y) #0

Select a state y from S by random (using a uniform U [0, 1] random number generator)

Calculate 8 (z,y) = min {1 Z@M}

> m(z)q(z,y)

Generate a random number » from U [0, 1]

.Letn=n+1

Compare u to 3 (z,y).

IF u < B (z,y) THEN X,, = y (select the new state) ELSE X,, = X,,_; (stay in same
state) ENDIF

Let z = X,

If n > some Max number of iterations or if we reached some convergence limit Then go
to 15

GOTO 5

Algorithm is complete. Now generate the time reversible MC as follows
(a) Scan the state path generate X,, and count how many times state z switches to
state y in one step
(b) Do the above for all the states
(c) Divide the above number by the total number of steps made to generate p (z, y)

= N

% N
d,'/) ) Since the problem now asks to z/plement gastlngs—Metropohs then I used the data given at
. _the end of the problem anglnﬁplemented the above su{lulatlon using that data®. Please see
appendix for code and-final P matrix generated.
= >

’1 aHrea@haﬂ/ the code for the simulation written, just needed toYQed the new data for this problem.

-

e N
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2.1.1 Part (al)

This is similar the problem 8.4 part(I). To show that the p (final M.C.) is irreducible, we need
to show that there exist no closed proper subsets. Since the graph G is connected, then we
just need to show whenever there is an edge between vertex x and y then there corresponds in
the chain representation of the final p matrix a non-zero p (z,y) and also a non-zero p (y, z).
This will insure that the each state can transition to each other state, just as each vertex can
be visited from each other vertex (since it is a connected graph).

Let us consider any 2 vertices say z,y with a direct edge between them (this is the only case
we need to consider due to the argument above). We need to show the resulting p (z,y) and
p (y,x) are non-zero

Consider p (z,y) first. Since

p(z,y) =q(z,y) B (z,y)
__ v @)y 2)
= edge (@) {1’w(x)q(z,y)} Lo
fy) 1 s A UA
Zf('v) edge(y) T . ’ s

1 < veV | Lk H‘ 1ﬁt

———— min —
edge (z) ' S 1 / _ \ (. /
E fv) EageLE) (%) A4 \co ¢ 7 ‘/L 5

veV h A (A
= St @)
Hence #/ N
(y)edge(z)
P(2,9) = e mm{l’ f<z>ed§e(y>} M

Then it is clear that whenever there is an edge between z,y then p (z,y) # 0 since both f ()
and f (y) are positive (not zero) and also edge(x) and edge(y) are non-zero as well. Hence we
see that p (z,y) # 0. Similar argument shows that p (y, z) # 0.

|Thjs shows that M.C. represented by P is irreducible].

2.1.2 Part (a2)
_~The condition for regular chain P is that there exist at least one state  such that p (z, z) > S
"\ 0.From (1) above we can decide under what conditions this will occur. %

“Consider a vertex z with edge () edges from it connected to vertices y;, ¥z, - - , ¥-. Then from
(1) we see that

1 : f (y:) edge () }
T,Y;) = ———min< 1, —/———"—F—=
p(z,9) edge (z) { f (z) edge (y;)
1 a{ y(i )
o= b R Gk, AL
edge (x) n{ J—l—e dfg :(z) }

10



CHAPTER 4. HWS 392

77\

AVE SR )
£(vi)

The condition for having p (z, a:) > 0 is that min < 1, %j } < 1, sinice this will cause p (z, y;)
edge(x) /

to be some quantity less than 1 and so when summmg over all r there will be a deficit in the

- F(vs)
sum and we have to compensate for it to make it 1 by adding p (z, ). But for min {1, fd—i—ﬁy—l}
edge(x)

to be less than ONE means that | - dg (;"l(i,-) < 2 c{q &

|Hence the condition for finding an Aperiodic state is finding a vertex z such that the above holds|
for one of the vertices y; this vertex is directly connected to. For example, if y; had the same
number of edges from it as does z, then the condition will be that f (y;) < f (z). And if y; has

less or more edges from it than x has, then we need the ratio J%L to be less than L&
o (vi) edge(z) *

— /\'j

The above is thé same as saylng ( ) (@ must be constant for the p not to be regular{ /

i/ / : o { >

—

2.1.3 Part(A3) -/

Since the chain is irreducible, then there is a reverse Markov chain (proof is on page 8.1 and
8.2 of lecture notes). Hence for an irreducible chain the balance equations hold

7 (y)p (y,x) @)

T(xay)= ’/T(.Z')

Now if the chain the time reversible as well, then r (z,y) = p (z, y), Then the balance equation
(1) becomes

7 (z)p(z,y) =7 (y)p(y,)

f (z) f ()
———q(z,y) B (z,y) = =—""— ,x) B (y,x
S o) BV = S5 (50050,
fl@ 1 (. f@edge@) ) _ fl) 1 ( . [ f(z)edge(y)
Zf(v)Edge(x)( {1’f(x)edge(y)}) Zf(v)edge(y)( {1’f(y)edge(:v)}>
fl@) 1 (mm{lﬁe%})_ [ 1 (min{le—c{;ﬁ%}) -
> f () edae ) e ) ) D w)edoely o) |

Hence we need to show that the equation (3) above holds to show the chain is time reversible.

There are 3 cases to consider:

1 f(y2 — f(CC)

" edge(y) ~ edge(z)

2 f) f(z)

* edge(y) edge(z)

11
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3 f) > f(z)
* edge(y) edge(z)

For case (1), LHS of equation (3) simplifies to <L%—_—L__ and the RHS of (3) simplifies to

Z @ )edge(z)

veV

JQL 1 . f(yz : ;
Zf(v) edge(y)’ but since edge(y) edge(a:)7 then LHS=RHS.
veV

’Hence balance equation (3) is satisfied for case (1)|

S
For case(2), LHS of (3) simplifies <% - i( ) (e"gz(v)) - _Iw - dgt( 5 and RHS of (3)
D 1w e it > rw) e
vev vev
simplifies to <L) then LHS=RHS.

Z ) edge(y) i

veEV

IHence balance equation (3) is satisfied for case (2) I

For case (3), LHS of (3) simplifies <£&)—

and RHS of (3) simplifies to S W) 1 ( o i) )

Zf( )edge(m) Z ) °%°W) \ s
veV veV
_fl=®)
Ll L then LHS=RHS.
> 1w
veV

lHence balance equation (3) is satisfied for case (3) I

Hence in all 3 cases we showed the balance equation is satisfied.

|Hence M.C. is time reversible |

2.2 Part(b)

A small program written to construct the P matrix directly following instructions on page 8.4
of lecture notes. The following is the resulting P matrix

e 5 9 0.5 o.
(/\\Cl (o 0”625(15§8~4375> 0.25 0.25
L 0.08333330.333333 0.25 0.333333
%/ 5 0

X0. 0.5 0.

Now to check that the final chain P is regular, it was raised to some high power to check that
all entries in the P™ > 0. This is the result

12
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in[17):= MatrixPower[p, 50] // N // MatrixForm

Qut[17)/MatrixForm=
1 0.05263160.421053 0.315789 0.210526
0.0526316 0.421053 0.315789 0.210526
,zg{/ 0.0526316 0.421053 0.315789 0.210526
L 0.0526316 0.421053 0.315789 0.210526

The above verifies that the final matrix p is regular.

Using the Hastings—Metrorpolis simulation algorithm, the convergence to the above matrix was
slow. Had to make 2 million observation to be within 3 decimal points from the above. Here
is the P matrix generated from Hastings algorithm for N = 2,000,000

i () 0.500114 0.499886 0. )
0.0625897 0.4371790.249784 0.250448 /,;',,_
0.0831875 0.333962 0.248524 0.334326 _~
L 0= 0.499297 0.500703 0.
N \\ , e b
De i | ) (T
G S\ 4
~ B \;{\L‘O "*ﬁ) %
\QE '
,'”ﬂ 0 > ;\\
T = "/’ \ ‘«rf;_) % C’ ) [7 /
0) N /
40 i
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3 Appendix (Implementation of part(a) and part(b))

The graph for part(a) and part(b) is the following

Graph for problem 8.5

14
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Hastings - Metropolis Algorithm implementation For Problem 8.5
part(a)

This below is an implementation of the Hastings - Metropolis algorithm. A simple GUI interface allows the user to specify the
number of steps to run the algorithm for. At each step, the current P matrix and the current calculated stationary distribution for
this P matrix are shown to help observe the convergence.

The input to this run below is that of problem 8.5 part(b)

Few seed the random number generator and display the q and the n distribution used

SeedRandom[121212];

Define the data given in the problem

v={1; 2, 3,4);
edges = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}:

ffﬁ? 8, 6, 4);
f\

Define the functions #(x) and q(x,y) to use in the implementation

£[x]

pi[x_, £_] := m
q[x_, y_] := Module[{r},
r = Count [edges, {x, any_}] + Count[edges, {any_, x}];
If[(Count[edges, {x, y}] >0 || Count[edges, {y, x}] >0), 1/x, 0]
1

Find the stationary distribution

w = Table[pi[x, £], {x, 1, v[-1]}]

Printed by Mathematica for Students
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2 | nma_hastings_problem_8_5_part_a.nb

Generate the original q matrix

o%%o
1

: 0 5E
Pio}
o 2 2o

(originalMatrix = Table[q[x, y], {x, 1, v[-1]1}, {y. 1, v[-1]}]) // MatrixForm

Bring up the user interface

Appearance - "Labeled"},
AutorunSequencing - {{1, 300}}
]

number of steps G 273401

0. 0.502771
0.0637317 0.435999
0.0843336 0.331767
0. 0.502369

Current P Matrix=

0.497229
0.251526
0.250466
0.497631

m = Manipulate[First@{x = hastings [maxN]; Grid[{{"stationary distribution w=", N[w]},
{ "current stationary distribution=", MatrixPower [N[x], 100] [1, A1ll]},
{, }, {"Current P Matrix=", N[MatrixForm[x]]}}, Alignment - Left]},
{{maxN, 1, "number of steps"}, 1, 2000000, 100, ContinuousAction - False,

stationary distribution w= {0.0526316, 0.421053, 0.315789, 0.210526}
current stationary distribution= {0.053453, 0.420567, 0.316001, 0.209979}

0.
0.248743
0.333434
0.

Define a function for cummuiative sum

cumSum([list_] := Module[{i, sum, s, k},
sum = 0;
k = Length[list];
8 = Table[0, {k}];
For[i=1, i< k, i++,
{
sum = sum + list[[i];
s[[i] = sum;
}
1:
s

1

Printed by Mathematica for Students
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nma_hastings_problem_8_5_part_a.nb | 3

Function to calculate 8 (x, y)

beta[x_, y_, pi_, q_] := Module[{},
pillyl ally, x] ]

Min|1,
[ pillx] allx, y]

]

Function called at the end of the run to generate P from the path of states travelled

generatePMatrixFromStatePath [nStates_, x_] := Module[{i, j, p, allPairs, n, m},

n = Length[x] ;
(*Print["X=",x];*)
p = Table[0, {nStates}, {nStates}];
allPairs = Partition([x, 2, 1];
For[i =1, i s nStates, i++,

{

m = Count[allPairs, {i, y_}]:

For[j =1, j s nStates, j++,

If[m# 0, p[i, j] = Count[allPairs, {i, j}] /m, p[i, jl =0]

Function to sample from q using uniform distribution

sampleFromQConditional [q_, x_] := Module[{s, found, j, k, sample, y},
s = Flatten[Position[g[[ x, A11l]], Except[0], 1, Heads - False] ];
sample = q[ x, s];
sample = cumSum[sample] ;

y = RandomReal[];
found = False;
For[j =1, j < Length[sample], j++,
If[ Not[found], If[y < sample[[j], {k = j; found = True}]]
1:

y = s[k]
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4 | nma_hastings_problem_8_5_part_a.nb

The Hastings algorithm main loop

hastings[maxN_] := Module[{i, j, nStates, n, s, y, a, u, x, sample, pts, sum, k, found},
nStates = Length[originalMatrix];
n=l;
x = Table[0, {maxN}];
x[n]] =1; (*pick any state to start from«)
1 =1
While[i < maxN,
{
y = sampleFromQConditional [originalMatrix, x[n]];
a = beta[x[[n], y, w, originalMatrix];
u = RandomReal[];
n++;
If[us a, x[n] =y, x[n] =x[n-1]]; (*acceptance stepx)
i++;
}
1:

generatePMatrixFromStatePath [nStates, x]
1
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Problem 8.5 part(b)
by Naser Abbasi. Mathematics 504, Spring 2008. CSUF

This below construct the P matrix using direct computation of the Hasting-Meropolis method

Define the data given in the problem

v=1{1, 2, 3, 4};
edges = ({1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}};
£={1, 8, 6, 4};

Define the functions n(x) to use in the implementation

£[x]

pi[x_, £] :z= —m8m ——
m ™ eray

Define the functions q(x,y) to use in the implementation. This does something similar to the
adjcancy matrix normally used. | used the Count[] function in Mathematica which automatically
counts the edges from the edges list above, so there is really no need to construct an adjancy
matrix as such.

q[x_, y_] :=Module[{r},
r = Count [edges, {x, any_}] + Count[edges, {any_, x}];
If[ (Count[edges, {x, y}] >0 || Count[edges, {y, x}] >0), 1/r, 0]
1

Find the stationary distribution

w = Table[pi[x, £], {x, 1, v[-1]}]

Printed by Mathematica for Students
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2 | problem_8_5_part_b.nb

Generate the original q matrix

(originalMatrix = Table[q[x, y], {x, 1, v[-1]}., {y. 1, v[-1]}]) // MatrixForm

o : 2o
o33
N
o 2 2o

define Beta function

beta[x_, y_, pi_, q_] := Hodule[{},
pillyl ally. x] ]

Min[l,
pilx] qllx, y1

|

define a function to calculate a non - diagonal entry in the P matrix

makeEntryInPMatrix([x_, y , pi_, q_] := Module[{},
If[qx, y] == 0, 0, qllx, y] beta[x, y, pi, ql]
1

Construct the P matrix for the off-diagonal elements only

nStates = Length[originalMatrix];
p = Table[0, {nStates}, {nStates}];

For[i =1, i < nStates, i++,
For[j =1, j s nStates , j++,
If[i# j, p[i, j] = makeEntryInPMatrix[i, j, w, originalMatrix]]
]
1:

Now calculate the diagonal elements of the P matrix

For[i =1, i < nStates, i++,
For[j =1, j <snStates , j++,
If[i= j, p[i, j] =1-Total[p[[i, All]]]
1
1:

Printed by Mathematica for Students
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Print the P matrix

problem_8_5_part_b.nb | 3

0.

0.0625
0.0833333
Q.

p// N // MatrixForm

0.5
0.4375
0.333333
0.5

+5 0.
.25 0.25
;25 0.33
<5 (818

o ©O O O

3333

Raise the final p matrix to some large power to verify it is regular

.0526316
.0526316
.0526316
.0526316

o o o o

0.421053
0.421053
0.421053
0.421053

0.315789
0.315789
0.315789
0.315789

MatrixPower [p, 50] // N // MatrixForm

0.210526
0.210526
0.210526
0.210526
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4.13 Wed 5/7/2008

Grade: 4/4.

Problems 10.5 and 10.6 These deal with continues time markov chains. To determine rate of
arrival and departure for birth/death process

4.13.1 Problem 10.5

»10.5 Consider a set of m + n machines which fail independently of each other at an
exponential rate A. It is intended that m machines are to be in operation at any time.
The remaining machines serve as spares and are called into operation when an operating
machine fails. If more than n machine are in a state of failure, then all the operational
machines will be in service. Suppose there are s, 1 < s < m, repair persons that
service the machines independently and each at exponential rate ;1. Let X (t) denote the
number of machines at time t that are not operational; that is, they are in the repair
shop. Determine the arrival and departure rates for the birth-and-death model.

SOLUTION
m
Operational n
machines
Spare
/ /I— machines %
’ %0  N— o RN
/ O
/ O O O N
.,
'f ~
I Y
| N
\ 0 )
\ . /
\ Repair Queue /
N\
N A s
s S -
Servers
i VAN
Figure 4.3: Illustrating model diagram for problem 10.5

In the above, i is the number of broken machines in the queue. m is maximum capacity of
the operating room. The goal is to keep this room filled to its capacity. In other words, to
keep m machines in operations. n is the capacity of the spare room.

Calculating arrival rates: ‘

Need to determine p; ;+1(h) . This can happen when one machine fails, but no server completes
its service meanwhile. Hence we do not need to consider the servers part in this analysis.
There are 2 cases to consider:
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1. i < n (there are m machines in operations)

In the above, the last term o(h) accounts for other possible conditions under which ¢
can increase by one but which is considered to be less likely, such as 2 machines break
down and one server completes its service. In the above, (1 — Ah + o(h))™
to zero when h is very small, hence the above equation becomes

simplifies

pii+1(h) = mAh + o(h)

Comparing the above with the Hence we see p;;(h) = ¢;;h+o0(h) we see that ¢; ;41 = mA
or in other words,

i = mA ign‘

2. n < i < n+m (there are less than m machines in operations)
Piini(h) = (m - (1’ N "’)) (Ah + o(h)) (1 = Ak + o(h))™ 71 4 o(h)
= (m+n — i) Ah+ o(h)

Hence we see that g; ;11 = (m + n — @) or in other words,

Ai=(m+n—1) n<i<n+m

Calculating departure rates: ‘

Need to determine p;;_;, this can happen when a server completes its job but no machine
fails meanwhile, Hence we only need to consider the servers. There are 2 cases to consider:

1. 1 <i< s (Queue is empty and not all servers at working on fixing machines at hand)
) i
pracs(h) = (1) (uh -+ o) (1= -+ o))"+ o)
= iuh + o(h)
Hence ¢; ;-1 = ip, or since this is a birth/death process, we write

— 1<i<s
2. s < (All servers at busy)

pii-1(h) = (i) (uh + o(h)) (1 — ph+ o(h))* ™" (1 — Ah + o(h))™ ™ + o(h)
= sph + o(h)

Hence g; ;-1 = su, Hence
Wi = Sl §<1

Therefore, we summarize all the above as follows

Arrival rate \; = mAfori <nmand \; =(m+n—1i) Afor n<i<n+m|

Departure rate y; =i for 1 <14 < sand y; = su for s < 2‘

Notice that |arrival rate does not depend on the number of servers s ‘
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The following state transition diagram illustrates the above result, with arrows leaving/en-
tering states show the rate of arrival and departure on them per the above result. To make
the diagram easier to make, I assume the following values: s =3,m =5,n =2

Notice that puy = 0 and A, 4, = 0 as expected.

Azssume N=2 ‘ Assume M=5

mai m}L

oNofoRoRooNoN0

A

|
|
|
:
A
m{ Im—l A lm—__ '“. (m—B);l (m 4),1
. .

e l \\ — S .
2 3;1 3 ?ﬂf 3;1 3;1
I
|
Assume 5=3

Assume N=2 ‘ Assume M=5

51 5,1 :ul 4/1 ’%;{ 24
ONONONO] @ o] @
,u 2;1 ’%;f 30 30 3 ’3;1

Assume 5=3

Now compute the steady state distribution 7 (This is not asked for in this problem, but need
to do this to solve problem 12.3 later on and implement it)

Starting with the balance equation, where to balance the rate out of a state, with the rate
into a state. We have

7Tj’l)j= E qkjwk

Py

Hence for state i = 0 we have
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ToVo = q1,07T1

But vp = Ao and g1 0 = p1 hence

ToAo = 1T (1)

For state i = 1 we have

MV = Go,1T0 + G2,172

but v; = A1 + 1, go1 = Ao, @21 = pe,hence the above becomes

Ty (A1 + p1) = AoTo + paTry
T1AL + Ty = AoTo + foT2

But from (1) we have p;m; = Ao, hence the above becomes

T1A1L + Ao = AoTo + HaTo
71'1)\1 = WUoTr2 (2)

Continue this way, we obtain that

7ri)\'i:l"”i+17ri+1 7:2071’2"" ynm+m
From the above, if we solve in terms of my we obtain that

Aodr - A '
m = 2L L 1=0,1,2,--- ,n+m (3)
M2 =« [y

and with the equation 7wy + m + - - - + Tp1m = 1 we can now solve for all 7; as follows

To=1— (T4 + Tpym)
Ao AoA AL A
=1_<0_'_01_'_”._'_01 + 1)770

M1 pap2 Hipe2 = Pntm

Hence

Ao Ao Ao Ao
WO(1+(—°+ 071 ... 4204 + 1>)=1
t1 e Hip2 * -+ fpym

1
1+ <& 4dod gy )\0>\1"->\n+m_1>

o =

H1 1 a2 12 fhntm

Now that 7 is found, we can find the remaining 7; using (3)
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4.13.2 Problem 10.6

10.6 Consider a sign that contains IV light bulbs, each with a lifetime that follows an
exponential distribution with parameter A. Assume that the bulbs function
independently of each other. Suppose it is the policy to allow bulbs to burn out until the
moment the r-th bulb expires, and to then replace all burned out bulbs at that time.
Define the state of the system X (¢) to be the number of burned out bulbs at time ¢.
Argue that this stochastic process (a) has the Markov property, (b) is stationary, and (c)
can be represented as a pure jump process. Determine the parameters v; and g;; of the
jump process. (d) Determine the balance equations for this system, and find the long-
run probability distribution for the states.

Review of the problem setup: Imagine there is a queue of length r. Burned out bulbs enter
the queue (with inter-arrival time which is a random variable distributed as an exponential
with rate A). Bulbs continue to enter the queue until the queue is full, then at that moment
we imagine a single server processing the bulbs in the queue all at once and immediately all
r bulbs become operational again and the queue is now empty. This process repeats again
and again.

A stochastic process X (t) is defined to have the Markov property if its transition to the
next state depends only on the current state and not on any earlier states. In other words it
satisfies the following

Pr{X(s+1t) =j|X(s) =i, X (u) for any u < i} = Pr{X(s+1t) = j|X(s) =1}

In this problem X (¢) is the number of burned out bulbs in the queue at any time ¢. When
X (t) < r then X (¢) can be viewed as a counting process (or pure birth process) or a Poisson
process (until the queue become full).

Therefore, The time between each successive events (where an event causes the count to
increase by one) is a random variable with exponential distribution (we are also given this
fact in the problem). But the exponential distribution is memorylesﬂ by definition. Therefore
it does not depend on clock time but only on the length of the time interval. Hence the
process satisfies the Markov property.

"A memorless random variable X is one in which Pr(X > ¢+ h|X >t) =Pr(X > h)
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A stochastic process X (s) is defined to be stationaryf] if its state transition p;;(t) do not

depend on when the transitions happen but only on the time interval ¢. In other words,
random process X (s) is stationary if

Pr{X(s+1t) = j|X(s) = i} = Pr {X(c+1t) = j|X(c) = i}

For any c,s > 0. So, letting ¢ = 0, the system is stationary if
Pr{X(s+1t) = j|X(s) = i} = Pr{X(¢) = j|X(0) = i}

This process is clearly stationary, since it is a counting process (when X(¢) < r —1). A
counting Poisson process is stationary since it does not depend on clock time as was argued
in part (A). To show this more clearly, since this is a counting process, then by definition of
the Poisson process

)"

Pr(X(s—i—t)—X(s):n):e"\t(—') n=0,1,---,r—1

n!
We see that the probability of X = n does not depend on s and depends only on the time
interval t. If this was a non-stationary process, then s would appear in the RHS above. L.e.
the probability of the random variable would depend on clock time, but we see from the
above definition that it does not.

PART(0C)

A stochastic process is a pure jump process if the transition probabilities can be written as
pii(h) =1 —v;h + o(h) and p;;(h) = g;jh + o(h) as h — 0%

In this problem p;;(h) is the probability than no bulb burns out during an interval h. This
is given by the probability than no bulb burns out from the current number of functional
bulbs which is N — 7. Due to independence, we obtain

pii(h) = (1 = Ah + o(R)) ™M™

Applying Binomial expansion (a + b)" = Z <Z) a™ *b*, to the above, and taking a = 1,b =

k=0

—Ah +o(h),n = N — i we obtain

pii(h) = 1+ (N — i) (=Ah + o(h)) + higher order terms in o(h) which can be ignored when h — 0
=1 — N+ i\ + o(h)
=1—hXN —1i) + o(h)

Hence we can write p;;(h) = 1 — v;h + o(h) where |v; = A\(N — 1)

Now p;;(h) is the probability that there will be j failed bulbs after h units of time given
that there is already ¢ failed bulbs. For this to occur, then we need to have j — ¢ bulbs fail
in h units of time. We can solve for the general case when j —¢ > 1, but since we will let
h — 0% it is most likely that there will be only one event occur (one bulb fail) during this
time, and we can collect all other less likely probabilities in the o(h) term. Hence we will
only consider p; ;41 in the following.

Diir1(h) = (N 1‘ ’) (AR +0(R)) (1 — A+ o(h))N ™ + o(h)

= (N —4) A+ o(h)

8In Linear system theory, the term time-invariant is used.
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Therefore from p;;(h) = ¢;;h+o(h) we see that ¢; ;11 = (N — i) Aie. | A = (N —3) A i=0,1,---r—1

Hence the @ matrix (The rate matrix) is

[ 0 1 2 s r-1 ]
0 “AN AN 0 0 0
1 0 AN —1) AN —1) 0 0
©=12 0 0 AN —2) AN —1) 0
_r—'l AN - 1) | | | Y - 1)]
PART (D)

qop 412 G253
101 12~ N ‘

{Ir—l.{}

Figure 4.4: rate flow diagram for problem 10.6

The balance equation can be obtained from balancing the flow out rate of a state ¢ (which
is given by v;) by all the flow in rate into the state which is given by qu' as illustrated

v#£ig
below for the above problem

Flow into state i Flow out of state i

i1 Vi

Hence we write

ViTi = Qi—1,iTi—1 i1=12---r—1

and for state s = 0 we have

VoTo = Gr—1,07r—1

Therefore we obtain
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AN —d)m = (N —i+1)dmi 1=1,2,---7—1
ANmg=(N—r+1) A7y 1=0

Hence we have for 1 =1,2,---r—1

)\(N—l)ﬂ'l:N)\ﬂ'o
AN —2)m =AN = 1)m
)\(N—3)7T3=)\(N—2)7T2

)\(N —-r++ 1) Tpr—1 = )\(N - ’I‘) Tr—2

Therefore we have

N
™ N — 17'('0
_N-1
T2 N_27T1
_N-2
Ty = N — 37T2
N-—r
Ty T
YT N—r41
back substitute, we obtain
N
T = N — 17T0
N-1 N

(i Y
_N-2N-1 N
“N_3N_2N_1"

3

N—-—r N-r-1 N
N—-r+1 N-r N-1

Tr—1 =

Hence

N
’7T1—N_17T0

N
7T2—N_27T0

N
7T3—N_37T0

N
Tr—1
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We notice that the last equation above, is the same as for the case i« = 0. Hence we have one
of the r equations duplicated. Hence we need one more equation to solve for the unknowns

T
7; and for that we use Zm =1
=0

Therefore, the general expression for ; is

N
N —1

= o i=1,2,---,r—1 (1)

Now since mg + 71 + - - - + m._1 = 1, then we write

=1
m 1+N2T: 1 =1
0 ile—z N
1
o (2)

o N 1
TN r
<1+NZN1_1>
=1
N
= ; (3)
(N =)+ (N =) Ny 3t
=1
But N-1 N 1
L1 1 1 1 g | — 1
;N—i_N—1+N—2+"'+N—r_k:1E_ ; k

n
Which is the difference between 2 partial sums of harmonic numbers. Let H,, = Z%, then
k=1

Z = = Hy—1 — Hy_r—1 hence (3) becomes

i=1

N
(N—4)(1+ N (Hy_1— Hy_r1))

= 1 1=1,2 r—1
- (N —1) (% +Hy-1— Hy_r1) T

T =

Hence

1
(N —4)(Hy — Hy—r-1)

T =

This is a small program which show the long term 7 for N = 100, = 10 using the above
equation
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Verify solution to problem 10.6

Nasser Abbasi, Math 504, CSUF spring 2008.

v define the data. Assume n=100 bulbs and r=10

In[1]:= [ n=100;
r=10;

v calculate 7y which is special case

1

In[3]:= | piZero = ————— //N
r

l+npi, noi
out[3]= b
0.0862679
v Now calculate therestmn;, 72, ... m._1.
In[4]:= | z = HarmonicNumber[n - 1] - HarmonicNumber[n - r - 1] ;

n

restPi = Table [{1 ,

o e i, =] 6

(n-1i) (1 +n*xz)

v Print result in table form

In[6]:= | longTerm = Prepend [restPi, {0, piZero}] // N;
TableForm[longTerm, TableHeadings - {None, {"i", "m;"}}]

Out[7]//TableForm=

S

[

.0862679
.08713593
.0880284
.08859359
.0858624
.0508083
.0917743
.0%827611
.0937624
.0847558
.0858532

=W oo =l s W N O B
oomes s e e o Y e e e e Y |

+ Verify the sum is ONE

In[80]:=

Total[longTerm[All, 2] ]
Out[80]=

4.14 Wed 5/7/2008

Grade: 4/4.

Computer problem, problem 12.3 in lecture notes. Simulation of problem 10.5 in above HW.
Repair shop problem
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Problem 12.3 lecture notes, Mathematics 504
Spring 2008, CSUF
By Nasser Abbasi
PIODIBIM ...ttt sttt ettt ettt st b e b bt re b stentens
Solution....
Result ...

Source code..
Driver script ...
Matlab function.

GWWN - -

Problem

Problem
with mean 2 hours. WIITe an EXWend MOUCt 101 LS Sy 3o,

12.3 Consider again the machine-repair problem of Section 12.3.2. Recall that there is a
set of m + n machines which fail independently of each other, and assume now that
they fail at an exponential rate ). Recall that m machines are to be in operation at any
time, while the remaining machines serve as spares and are called into operation when
an operating machine fails. If more than n machine are in a state of failure, then all the
operational machines will be in service. Suppose there are s, 1< s <m, repair
persons who service the machines independently and each at exponential rate p. Let
X (t) denote the number of machines at time ¢ that are nof operational; that is, they are
in the repair shop. Derive the arrival and departure rates for the birth-and-death model
of the machine-repair problem with spares. Use these rates to develop a formula for the
average number of machines that are not operational. Write a program, in MATLAB
say, which computes the long-run state probabilities and implements your formula for
the average number of machine that are not operational. Use the model developed in the
assignment above to compare your results with theory. In particular, consider the
following cases: (a) two servers, six machines, and two spares, and (b) three servers,
six machines and two spares. For each case, take the mean service times to be 8 days,
and the mean time between breakdowns to be 4 days for each run. Study also how the
computed averages change with increasing duration of the simulation.

Solution

A Matlab function written to implement the above 2 cases. A driver script was written to
call the function and display result. This is the result of the driver run, followed by the
Matlab source code listing for the driver script and for the function which calculates the
average number of machines not operational.
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Result

CASE(a)

mu=[0.500000], Bambda=[0.250000], m=6, n=2, s=2
Average number of machines not operational [4.117902]
long Term stationary distribution vector

longTermPi =

.0236
.0707
.1061
.1592
-1990
-1990
.1492
.0746
.0187

eNeoNoNoNoloNoNoNel

CASE(b)

mu=[0.500000], Bambda=[0.250000], m=6, n=2, s=3
Average number of machines not operational [3.048312]
long Term stationary distribution vector

longTermPi =

.0477
.1430
.2144
.2144
.1787
-1191
.0596
.0199
.0033

cNeoooNoNoNoNoNel

We now study how the average number of machines not operational changes with
increasing number of servers for case(a) parameter. This is done by changing the number
of servers from s=1 all the way up to s=n+m while keeping all the other parameters the
same.
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Showing effect of increasing number of servers on average

Awerage number of machines not aperational

Source code

Driver script

3 4 g B T 3
S, number of servers

This is listing of the server script which generated the above results

close all;
clear all;

mu=0.5;
lambda=0.25;

%CASE(a)
s=2;
m=6;
n=2;

[av,longTermPi]=nma_HW_12_ 3(lambda,mu,m,n,s);
fprintf("CASE(a)\n");

fprintf("mu=[%f],

lambda=[%f], m=%d, n=%d, s=%d\n",mu,lambda,m,n,s);

fprintf("Average number of machines not operational [%F]\n*,av);
fprintf("long Term stationary distribution vector\n®);

longTermPi
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%CASE(b)
s=3;
m=6;
n=2;

[av, longTermPi]=nma_HW_12_ 3(lambda,mu,m,n,s);
fprintf("CASE(b)\n");
fprintf("mu=[%f], lambda=[%f], m=%d, n=%d, s=%d\n*",mu,lambda,m,n,s);

fprintf("Average number of machines not operational [%F]\n",av);

fprintf("long Term stationary distribution vector\n®);
longTermPi

m
n

6;
2;

s=1:n+m;
averages=zeros(length(s),1);

for i=1:length(s)
[averages(i), longTermPi]=nma_HW_12_3(lambda,mu,m,n,s(i));
end

plot(s,averages);

title("Showing effect of increasing number of servers on average®);
xlabel (S, number of servers®);

ylabel ("Average number of machines not operational™);
ylim([0,max(averages)]):



CHAPTER 4. HWS 417

Matlab function

function [av,steadyStatePl] = nma_HW_12_ 3(lambda,mu,m,n,s)
%

%Ffunction nma_HW_12_3(lambda,mu,m,n,s)

%solves problem 12.3 in lecture notes by Professor Gearhart,
%CSUF Mathematics 504, spring 2008

%

%by Nasser Abbasi

%

%INPUT :

% lambda, mean time between breakdown of machines
% mu, mean service time

% m, maximum number of operating machines

% n, maximum number of spare machines

% s, number of servers. l<=s<=m

%

%OUTPUT :

% av, The expected number of days a machine stays in the
% queue (or in the repair shop)

av = -1;

DEBUG = 0;

[msg,status] = validlnput(lambda,mu,m,n,s);
if ~status

error(msg);
end

%
% Allocate data storage
%

nStates = n+m+l;
steadyStatePl = zeros(nStates,1);
factors = zeros(nStates-1,1);
mus = zeros(nStates-1,1);
lambdas = zeros(nStates,1);

%
% Make the Lambda vector
%
for i=0:n+m
if i<=n
lambdas(i+1)=m*lambda;
else
lambdas(i+1)=(m+n-i)*lambda;
end
end

% Make the mu vector
%
for i=1:n+m
if i<s
mus(i)=i*mu;
else
mus(i)=s*mu;
end
end
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%

% build the factors lambda/mu terms

%

factors(l)=lambdas(1)/mus(l);

for i=2:n+m
factors(i)=factors(i-1)*lambdas(i)/mus(i);

end

%

% Find mu_O and initialize Pl vector
%

muZero=1/(1+sum(factors));
steadyStatePI (1)=muZero;

%
% calculate the rest of the steady state Pl vector
%
for i=2:nStates
steadyStatePIl (i)=Ffactors(i-1)*muZero;
end

%
% verify sum is ONE
%
iT DEBUG
fprintf("sum of Pl vector is %f\n",sum(steadyStatePl));
end

%Find expected value

av=0;

for i=0:n+m
av=av+i*steadyStatePl(i+1);

end

%9%6%%%%%%%%%%%%

% Function to validate input

%

%6%%%%%%%%%%%%%

function [msg,status] = validlnput(lambda,mu,m,n,s)

VALID = 1;
NOT_VALID = 0;
status = NOT_VALID;
msg ="

if ~isnumeric(s) || ~isnumeric(m) || ~isnumeric(n) ...

Il ~isnumeric(mu) || ~isnumeric(lambda)
msg="not a numeric value in input. correct”;
return;

end

if s<=0 |] m<=0 || n<O || lambda<=0 || mu <=0
msg="negative value in input. correct”;
return;

end

it s>n+m
msg="number of servers must be less than n+m-";
return;

end

status=VALID;
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key Matlab code given

close all;
clear all;

mu=0.5;
lambda=0.25;

%CASE(a)
s=2;
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m=6;
n=2;

[av,longTermPi]=nma_HW_12_3(lambda,mu,m,n,s);
fprintf ('CASE(a)\n');
fprintf ('mu=[%f], lambda=[%f], m=Y%d, n=Jd, s=/d\n',mu,lambda,m,n,s);

fprintf ('Average number of machines not operational [/f]\n',av);
fprintf('long Term stationary distribution vector\n');
longTermPi

%CASE (b)
s=3;
m=6;
n=2;

[av,longTermPi]=nma_HW_12_3(lambda,mu,m,n,s);
fprintf ('CASE(b)\n');
fprintf ('mu=[%f], lambda=[%f], m=)d, n=Yd, s=/d\n',mu,lambda,m,n,s);

fprintf ('Average number of machines not operational [%f]l\n',av);
fprintf('long Term stationary distribution vector\n');
longTermPi

A
A
"
m=6;
n=2;

s=1:n+m;
averages=zeros(length(s),1);

for i=1:length(s)
[averages(i),longTermPi]=nma_HW_12_3(lambda,mu,m,n,s(i));
end

plot(s,averages) ;

title('Showing effect of increasing number of servers on average');
xlabel ('S, number of servers');

ylabel('Average number of machines not operational');

ylim([0,max (averages)]);

Matlab function

function [av,steadyStatePI] = nma_HW_12_3(lambda,mu,m,n,s)
A

%function nma HW_12_3(lambda,mu,m,n,s)

%solves problem 12.3 in lecture notes by Professor Gearhart,
%CSUF Mathematics 504, spring 2008

"

%by Nasser Abbasi

YA

%INPUT:

% lambda, mean time between breakdown of machines
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% mu, mean service time

% m, maximum number of operating machines

% n, maximum number of spare machines

h s, number of servers. 1<=s<=m

h

%0UTPUT :

% av, The expected number of days a machine stays in the
% queue (or in the repair shop)

av = -1;

DEBUG = 0;

[msg,status] = validInput(lambda,mu,m,n,s);
if ~status

error(msg) ;
end

%
% Allocate data storage
%

nStates = n+m+1;
steadyStatePI = zeros(nStates,1);
factors = zeros(nStates-1,1);
mus = zeros(nStates-1,1);
lambdas = zeros(nStates,1);

h
% Make the Lambda vector
yA
for i=0:n+m
if i<=n
lambdas (i+1)=m*lambda;
else
lambdas (i+1)=(m+n-i)*lambda;
end
end

h
% Make the mu vector
%
for i=1:n+m
if i<s
mus (i)=i*mu;
else
mus (i) =s*mu;
end
end

yA

% build the factors lambda/mu terms

A

factors(1)=lambdas (1) /mus(1);

for i=2:n+m
factors(i)=factors(i-1)*lambdas (i) /mus(i);

end

h

% Find mu_O and initialize PI vector
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b
muZero=1/(1+sum(factors));
steadyStatePI(1)=muZero;

b

% calculate the rest of the steady state PI vector

h

for i=2:nStates
steadyStatePI(i)=factors(i-1)*muZero;

end

b
% verify sum is ONE
b
if DEBUG
fprintf('sum of PI vector is %f\n',sum(steadyStatePI));
end

%Find expected value

av=0;

for i=0:n+m
av=av+i*steadyStatePI(i+1);

end

DotoTotoTotoTotoJoto o to oo

% Function to validate input

h

TotoTotoTotoTotoJotoToto To o

function [msg,status] = validInput(lambda,mu,m,n,s)
VALID =1;

NOT_VALID = 0;

status = NOT_VALID;

msg ="'";

if ~isnumeric(s) || ~isnumeric(m) || ~isnumeric(n)
|| ~isnumeric(mu) || ~isnumeric(lambda)

msg='not a numeric value in input. correct';

return;

end

if s<=0 || m<=0 || n<0 || lambda<=0 || mu <=0
msg='negative value in input. correct';
return;

end

if s>n+m
msg='number of servers must be less than n+m';
return;

end

status=VALID;
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4.15 Wed 5/7/2008

Problems 9.3 and 9.5 (On Poisson process)

4.15.1 Problem 9.3

, '9.,3”Consider a Poisson process such that each time an event occurs, it is of type 1 with

probability p > 0, or it is type 2 with probability ¢ =1 — p > 0. Assume these two
types appear independently from event to event. Show that these two processes each are
Poisson processes and that they are independent of each other. Help: Let Ny(t) and
N, (t) be the counting processes for each type of event. Find the joint distribution by
conditioning on N (¢), where N (t) = Ni(t) + Na(t).

Start by showing that the processes N;(t) and N(t) are each a Poisson process. Next show
that they are independent by showing that the product of these 2 distributions is equal to
the joined distribution.

Given: N(t) = Ni(t) + Na(t), Where are told that N(t) is a Poisson process. Need to find
Pr (N;(t) = n) and Pr (Ny(t) = m).

By law of total probabilities

Pr (Ni(t) = n) = Pr(Ny(t) = n, N2(t) = 0)
or Pr(Ny(t) =mn,Na(t) =1)
or Pr (Ny(t) =n, Na(t) = 2)

or Pr (Ny(t) = n, Na(t) = 00)

Hence

Pr(Ny(t) =n) =Y Pr(Ni(t) =n, Ny(t) = m) (A1)
Similarly,

Pr(Ny(t) =m) =)  Pr(Ni(t) =n, Na(t) = m) (A2)

Now find expression for the joined distribution Pr (N;(t) = n, Na(t) = m) to complete the
above evaluation. Condition on N(t) hence we obtain

Pr (N3 (£) = 1, No(#) = m) = Pr (Ni(t) = m, No(t) = m | N(t) = 0) Pr(N(¢) = 0)
or Pr(Ny(t) =n,Na(t) =m | N(t) =0)Pr(N(t) =1)
or Pr (Ny(t) =n,No(t) =m | N(t) =0)Pr(N(t) =2)

or Pr (Ny(t) =n, No(t) =m | N(t) = 0) Pr(N(t) = 00)

or
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Pr(Ni(t) = n, Nao(t) =m) = > Pr(Ni(t) = n, No(t) = m | N(t) = k) Pr(N(¢) = k)

But since N(t) = Ni(t) + Na(t), then the above reduces to one case which is

Pr (Ny(t) = n, No(t) = m) = Pr (N1(t) =n,Na(t) =m | N(t) =n+m)Pr(N(t) = n+nz))
1

And all the other probabilities must be zero.

Now in (1), we are given that Pr (N(t) = n + m) is a Poisson process with some rate A Hence
the rate adjusted for duration ¢ must be At, hence from definition of Poisson process with

rate A\t we write
( A t)n-i-m —(A¢)

PrN() = ntm)= 20—

(2)
Now we need to evaluate the term Pr(Ny(t) =n,No(t) =m | N(t) =n+m) in (1). This
terms asks for the probability of getting the sum (n + m). If we think of n as number of
successes and m as number of failures, then this is asking for probability of getting n success
out of n + m trials. But this is given by Binomial distribution

n+m\ , .
Pr(X=n)=< n )pq

Where p is the probability of event type I, and g is the probability of not getting this event,
which is the probability of event I/ which is given by ¢ = (1 — p) hence the above becomes

Pr(Ni(t) = n, No(t) =m | N(t) = n+m) = <" Zm) g™ (3)

Substitute (2) and (3) into (1) we obtain

"t m n+m ,—(At)
Pr () =, Naft) =m) = ("4 ) prgn O

Cm)l (e
~ mln! (n+m)!

_ (P:!f)n (q;\;)m Y (@)

But p+ ¢ = 1, hence e~ = ¢~ (At(p+9) = o= ((XP)+(Xa)) — ¢=(AP)e=(Ma) hence (4) becomes

Pr(N;(t) = n, Na(t) =m) = (Me_o‘t”)) (Me_()‘tq)) (5)

n! m!

The above is the joined probability of N;(t) and Ny(t) . We know can determine the probability
distribution of N;(t) and N(t) from substituting (5) into (Al) and (A2)

Pr((0) = m) = 3 Pr (N (1) =, tt) = )
_ Z( pAt)" (Atp)) (%e—wn)
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We remove terms outside sum which do not depend on n and obtain

nl

Pr () = m) = ({2500 ) oy 20

But Z(’f;—t,)n = eP* by definition, hence the above becomes
)™
Pr (Ny(t) = m) = LD -0
m/!

Therefore, we see that Pr (Ny(t) = m) satisfies the Poisson formula. To show it is a Poisson
distribution, we must also show that it satisfies the following

1. N5(0) = 0. We see that at ¢t = 0, the above becomes Pr (N(0) = 0) = %e_wxo) =
0° x 1,Butf] 0° = 1, hence Pr (N2(0) = 0) = 1, Therefore No(0) = 0.

2. Increments are independents of each others. Since the original process N(¢) is already
given to be Poisson process, then the increments of N(t) are independent of each others.
But Nj(t) increments are a subset of those increments. Therefore, N»(t) increments
must by necessity be independent of each others.

Similar arguments show that

Pr(Ni(t) =n) = _(q:'f) e~ (\ta)

and that it satisfies the Poisson definition.We now need to show independence. We see that

q)\t g \t)” _
Pr (Na(t) = m) Pr (Ny(t) = n) = (@A0)” ) o0 (XD n!) e~ (M)
But from (5) above, we see this is the same as Pr (N(t) = n, Na(t) = m), therefore
Pr (Ny(t) = m) Pr(Ny(t) = n) = Pr(N; = n, Ny =m)
Hence N;(t) and N,(t) are 2 independent Poisson processes.

4.15.2 Problem 9.5

9 5 A vehlcle controlled trafﬁc light will stay green for T seconds after a car passes
Let X denote the number of cars that pass through the 1ntersect10n followmg
dissapation of the initial queue and until the light next turns red. Assume cars arrive
according to a Poisson process with rate A. Find the probability distribution of X and
find the expected value of X. Help: Note that the event {X > n} occurs 1f the
interarrival times of the next n arriving cars are each no more than 7.

Let the interr arival time between each car be T; where ¢ is the interval as indicated by this
diagram

900 depends on the context. I checked a reference that in this context, it is ok to define 0° = 1 otherwise,
0° is taken as undefined.
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P2 P T

Figure 4.5: Inter-arrival times are random variable which is exponential distributed

)

For the number of cars that pass through the intersection to be n it must imply that the
interval between the first n cars was less than 7 and that the (n + l)th car arrived after than
n'* car after more than 7 units of time. Therefore

Pr(X=n)=Pr(Thi<n,Ta<1,T3<7, -, T, <T,Tps1 > 7) (1)

But since X is a Poisson random number with parameter A , then the time between increment
T is an exponential random number with parameter A (and they are independent from each

others). Hence
Pr(T;>7)=e
and

Pr(Ti<7)=1-—e""

Hence (1) becomes

Pr(X=n)=(1—e?)"e™

This is a small program which plots the probability above as function of n for some fixed
A, 7. It shows as expected the probability of n becomes smaller the larger n gets.

nget= prlz_1 := (1 -Exp[-A=])" Exp[-2z]
data =Table[{n, pr[n]}, {n, 0, 100}]:
ListPlot[data, Joined - True, AxesOrigin -+ {0, 0}, PlotRange =+ A11,
AxesLabel + {"n, number ofyn cars passing\nhefure red light",

"B (x=n)"}]
P(E=m)
nos
o6 [\
oursal= 004l
- '-\..
\
002 - N\
I \\\
H__ t, tanber of
. 2;:| M- .';E——-—-—-—ﬁln—- - E;ZI — IE:EI cars passing
before red ight
Now
[e o]
n=0
o0
n _
:Zn(l_e )\‘r) e AT
n=0
o0
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Let 1 — e~ = 2z then the above becomes

E(X)= e_’\Tan"
n=1

The above sum converges since by ratio test the (k)™ term over the (k + 1) term is less
than one. (I can find a closed form expression for this sum?)

4.16 Challenge Problems

These are extra problems relating to first midterm the instructor gave the class to try to
work out. Here are the questions

4.16.1 Problems

Math 504 Exam 1 Extra Problems

I. A stochastic process has states 0,1,2,-..,r. If the process is in state i > 1. then
during the next time step, it goes to a state that is selected at random from among
the states 0,1,2,--- 4 — 1. If the process is in state 0, it stays there. This Process
can be modelled as a Markov chain.  (a) Specify the one-step transition probability
matrix. (b) Let ¥; be the number of steps that the process takes to reach state 0,
given that it starts in state 1. Derive a linear system of equations that determines
the expected values E(Y]), for ¢ = 1,2,---,r. Write the linear system in the form
Axr = b, where the components of the vector 2 are the unknown expected values,
Specify the matrices A and b.

Problem 1 Solve explicitly for the expected values E(Y;), i = 1,2,---,r. Of particular

interest is £(Y;), when r is large. What is an asymptotic estimate of this quantity?

3. Suppose N red balls and N white balls are placed in two urns so that each urn con-
tains N balls. Label one urn A and the other B. The following action is performed
repeatedly and independently: A ball is selected at random from urn A and inde-
pendently a ball is selected at random from urn B. Each ball is then transforred to
the other urn. The state of the system at the beginning of each trial is the number
of white balls in urn B. This process can be modelled as a regular Markov chain.

Determine the one-step transition probability matrix.

Problem 3 Find an explicit formula for the long-run state probability distribution.
In other words, find the probability vector w that satisfies the equation w = w P,

where P is the one-step transition probability matrix.

Figure 4.6: Problem 1
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4. A machine component has a random lifetime L with given discrete distribution
P(L = k) = B, for k =1,2,--- . Assume 5 > 0 for all k. A component is put
into operation, and replaced when it burns ont. However, if the component in
operation has age N. it is instantly replaced by a new component. This process can
be modelled as a regular Markov chain, where the state X, at time n =0,1,2,-- -,
is defined by X, = i if the component in operation has age i. The possible states
are 1 = 0,1,2,---, N — 1. The state ¢ = 0 means that a new component has just
been placed into operation.  (a) Determine the one-step transition probabilities.
Help: Fori=0,1,2,---, N — 2,

a; =piip1 =P(L>i+1|L>%), and py_9=1.

First, find the probabilities {a;}, i = 0,1,2,---, N — 2. Then, in terms of the {a;},
show the one-step transition probability matrix.  (b) Suppose we wish to study
the time between replacements. Interpret this time as a first entrance time. ()
Derive a linear system of equations that determines the expected first entrance
times from states ¢ = 1,2,---,N — 1 to state zero. Express these equations in
terms of the {a;}. (d) Suppose the expected first entrance times in part (¢) have
been determined. Find a single formula for the expected first entrance time from
state 0 to state 0. Express this equation in terms of the {a;}, and the expected
first entrance times from part (c).

Problem 4 (i) Find an explicit formula for the long-run state probability distribution.
In other words, find the probability vector w that satisfies the equation w = wP,
where P is the one-step transition probability matrix. (i7) Give an interpretation
for the component wy, and for wy_,, and interpret wy —wy_;. (iii) Determine the
expected first entrance time from state 0 to state 0. Help: Use w.

Figure 4.7: Problem 2

4.16.2 Problem 1

1. A stochastic process has states 0,1,2,--- 7. If the process is in state i > 1, then
during the next time step, it goes to a state that is selected at random from among
the states 0,1,2,---,4 — L. If the process is in state 0, it stays there. This process
can be modelled as a Markov chain. (a) Specify the one-step transition probability
matrix. (b) Let Y; be the number of steps that the process takes to reach state 0,
given that it starts in state i. Derive a linear system of equations that determines
the expected values E(Y;), for ¢ = 1,2, r. Write the linear system in the form
Az = b, where the components of the vector  are the unknown expected values.
Specify the matrices A and b.

Problem 1 Solve explicitly for the expected values E(Y;),i=1,2,---,r. Of particular
interest is £/(Y,), when r is large. What is an asymptotic estimate of this quantity?

Solution:

We start with the solution we already{"| obtained for E(Y;) which is
i—1
E(Y;) =1+ B(Y:) Px
k=1

Let E(Y;) = z; hence the above can be written as

i—1

r; =1+ Zxkpzk
k=1

10See my midterm solution for this problem
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But P;;, = 1 then the above becomes
=
z, =1+ —,Zwk
L=
Multiply by 7 the above becomes
i1
1T, =1+ sz
k=1
Therefore, we obtain the following equations for ¢ = 1-- -
Fori:=1
For 1 =2
200 =2+ 1, (2)
For i =3
3.’I,‘3=3+.’D1+.’132 (3)
Fori=4
4oy =4+ 71 + 29 + 23 (4)
etc...

Now evaluate (2)-(1) and (3)-(2) and (4)-(3), etc... we obtain the following equations

(2)-(1) gives

21}2—$1=2+IE1—1

_1+2.’L‘1
2

T2

(3)-(2) gives

3$3—2IE2:3+.’II1+9§2—2—CII1

3.’133—2$2=1+.’E2
. 1+3JJ2
3

x3

etc... Hence we see that for the r** term we obtain

i 1+’f‘.’1,‘r_1
N T

Ly

Hence
Tr=—+Tr_1
T

Now replace r by 7 — 1 in the above we obtain

Tr1=——=+Tr_2

r—1

(5)
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replace the above in (6) we obtain

()
Tr=—+F+ | —F+Tr2
T r—1

And again, in the above, z,_5 = ﬁ + z,_3 hence (7) becomes

x—l—l— ! + ! +z
Ty r—1 r—2 =3

and so on, until we get to z; = 1, hence we obtain

T, =

S =

+ L+ 5+ +1

Hence
"1
w=31
k=1

Which is the harmonic series. Now, it is known that']

Please see http://en.wikipedia.org/wiki/Harmonic_number|

rlggo z, =log(r) — v

Where 7 is Euler Gamma constant given by

n[47= N[EBulerGamma, 16]

Outj47]= 0.27721266480153289

Do I have to proof this?

(7)

(®)


http://en.wikipedia.org/wiki/Harmonic_number
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4.17 Links

1. Mathworks SimEvents http://www.mathworks.com/products/simevents/descrip|

EionZ hEmT

2. Free demo of extend http://www.extendsim.com/prods _demo.html|

3. Started to make comparison between some simulation packages. This is not complete

This note compares features between SimEvents™ discrete event simulator from

The MathWorks and ExtendSim from Imagine Than inc.

(I need to add Rockwell Arena also) http://www.arenasimulation.com/ check arean basic

edition. Arena 10 for students can be downloaded for free from

http://pl.wordpress.com/tag/simulation-software/

(when installing, use STUDENT as serial number)

By Nasser Abbasi, last updated 12/22/07

SimEvent | ExtendSim
s
Queue type Sorted queue FIFO X X
Sorted queue LIFO X X
Sorted queue attribute value X
Sorted queue priority X X
Resource pool queue X
Server Type Infinite server X X
N-Server X ?
Single server X X
Select server delay time statistics from No Yes
known distributions?

I think extendSim has more capabilities, but I need more time to study this. I do not have
an evaluation version of SimEvents, but I have access to a demo version of ExtendSim.

Will update this as time permits.

Links
http://www.wintersim.org/ winter simulation conference

http://www.wintersim.org/pastprog.htm papers from winder simulation conferences on-

line


http://www.mathworks.com/products/simevents/description2.html
http://www.mathworks.com/products/simevents/description2.html
http://www.extendsim.com/prods_demo.html 
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