
HW3, Math 307. CSUF. Spring 2007.

Nasser M. Abbasi

Spring 2007 Compiled on November 5, 2018 at 8:48am [public]

Contents

1 Section 1.6, problem 1 1

2 Section 1.6, problem 2 3

3 Section 1.6, problem 11 5

4 Section 1.6, problem 17 6

5 Section 1.6, problem 25 8

6 Section 1.6, Problem 28 10

7 Section 1.6, Problem 49 11

8 Section 1.6, Problem 50 12

9 Section 1.6 problem 56 13

10 Section 1.7, Problem 1 14

11 Section 1.7, Problem 3 16

12 Section 1.7, Problem 10 18

1 Section 1.6, problem 1

Problem: Find the inverse of A1 =

[
0 2

3 0

]
,A2 =

[
2 0

4 2

]
,A3 =

[
cosθ − sinθ

sinθ cosθ

]
Answer:
Using the formula [

a b

c d

] −1
=

1
ad − bc

[
d −b

−c a

]
Hence
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A−1
1 =

[
0 2

3 0

] −1
=

−1
6

[
0 −2

−3 0

]
=

[
0 1

3
1
2 0

]
A−1
2 =

[
2 0

4 2

] −1
=

1
4

[
2 0

−4 2

]
=

[
1
2 0

−1 1
2

]
A−1
3 =

[
cosθ − sinθ

sinθ cosθ

] −1
=

1

cos2 θ + sin2 θ

[
cosθ sinθ

− sinθ cosθ

]
=

[
cosθ sinθ

− sinθ cosθ

]
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2 Section 1.6, problem 2

Problem: (a) Find the inverses of the permutation matrices P1 =


0 0 1

0 1 0

1 0 0

 and P2 =


0 0 1

1 0 0

0 1 0


(b) Explain for permutation why P−1 is always the same as PT . Show that the 1′s are in the right place
to give PPT = I
Solution:

(a) When P1 =


0 0 1

0 1 0

1 0 0

 is applied to a matrix A its effect on A is to replace the first row of by the 3rd

row of, and to replace the 3rd row by the first row at the same time. As an example


X

Y

Z


P1
⇒


Z

Y

X

 . Hence

to reverse this effect, we need to perform the same operation again, i.e. replace the first row by the 3rd

row and replace the 3rd row by the first, but this is P1 itself. Hence


Z

Y

X


P1
⇒


X

Y

Z


Therefor P−1

1 = P1

P2 =


0 0 1

1 0 0

0 1 0

 says to replace first row by the 3rd row, and to replace the second row by the first and

to replace the 3rd row by the second. For example


X

Y

Z


P2
⇒


Z

X

Y

 , Hence to reverse it, we need to replace

the first row by the second, and to replace the second row by the 3rd and to replace the 3rd row by the

first at the same time. Hence P−1
2 =


0 1 0

0 0 1

1 0 0


(b) In a permutation matrix P , each row will have at most one non-zero entry with value of 1.
Consider the entry Pi , j = 1. This entry will cause row i to be replaced by row j . Hence to reverse the
effect, we need to replace row j by row i , or in other words, we need to have the entry (j, i) in the inverse
matrix be 1. But this is the same as transposing P , since in a transposed matrix the entry (i, j) goes to
(j, i)
Hence

P−1 = PT

Now Let PPT = C , where P, PT , are permutation matrices (in other words, each row of P, PT is all zeros,
except for one entry with value of 1.)
Hence the entry C (i, i) will be 1 whenever A (i, j) = B (j, i) = 1, This is from the definition of matrix

multiplication, element by element view, since C (k, l) =
N∑
j=1

P (k, j) × PT (j, l) but P (k, j) × PT (j, l) = 0

for all entries except when the entry P (k, j) = 1, and at the same time PT (j, l) = 1, but since PT is the
transpose of P , then whenever P (k, j) = 1 then PT (j, l) = 1 only when k = l .
Hence this leads to C (k,k) = 1 with all other entries in C being zero.
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i.e.
C = PPT = I
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3 Section 1.6, problem 11

Problem: Give examples of A and B such that
(a) A + B is not invertible although A and B are invertible
(b) A + B is invertible although A and B are not invertible
(c) All of A,B and A + B are invertible
In the last case use A−1 (A + B)B−1 = B−1 +A−1 to show thatC = B−1 +A−1 is also invertible and find a
formula for C−1

Answer:

(a)A =

[
0 1

1 0

]
,B =

[
1 0

0 1

]
Here A,B are both invertible (Det (A) = −1 ,Det (B) = 1, while Det (A + B) = Det

[
1 1

1 1

]
= 0) i.e.

(A + B) not invertible .

(b)A =

[
1 0

0 0

]
,B =

[
0 0

0 1

]
,Here A,B are both non-invertible (Det (A) = 0 ,Det (B) = 0, while

Det (A + B) = Det

[
1 0

0 1

]
= 1) i.e. (A + B) invertible .

(c)A =

[
1 0

0 1

]
,B =

[
1 1

1 0

]
Here A,B are both invertible (Det (A) = 1 ,Det (B) = −1, and Det (A + B) =

Det

[
2 1

1 1

]
= 1) i.e. (A + B) invertible also .

Now need to find a formula for C−1.

Since C = B−1 +A−1, then

C−1 =
(
B−1 +A−1) −1

= (A−1 (A + B)B−1)−1

=
(
B−1) −1 (

A−1 (A + B)
) −1

= B
(
(A + B)−1

(
A−1) −1)

= B (A + B)−1A

btw, reading around, found a paper called ”On the inverse of the sum of Matrices” by Kenneth Meler,
gives this formula

(X + Y )−1 = X−1 −
1

1 + trace(YX−1)
X−1YX−1

(But this is valid when Y has rank 1?)
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4 Section 1.6, problem 17

Problem: If A = L1D1U1 and A = L2D2U2 prove that L1 = L2,D1 = D2 and U1 = U2. If A is invertible,
the factorization is unique.
(a) Derive the equation L−11 L2D2 = D1U1U

−1
2 and explain why one side is lower triangular and the other

side is upper triangular.
(b) Compare the main diagonals and then compare the off-diagonals.
Solution:
This question is asking to show that the LDV decomposition is unique.
Proof by contradiction: Assume the decomposition is not unique. Hence there exist [L] [D] [V ] and[
L̂
] [

D̂
] [

V̂
]
decompositions of A.

Hence we write

A =

[
a11 a12

a21 a22

]
= [L] [D] [V ]=

[
L̂
] [

D̂
] [

V̂
]

=

[
1 0

L21 1

] [
D11 0

0 D22

] [
1 V12

0 1

]
=

[
1 0

L̂21 1

] [
D̂11 0

0 D̂22

] [
1 V̂12

0 1

]
=

[
1 0

L21 1

] [
D11 D11V12

0 D22

]
=

[
1 0

L̂21 1

] [
D̂11 D̂11V̂12

0 D̂22

]
=

[
D11 D11V12

L21D11 L21D11V12 + D22

]
=

[
D̂11 D̂11V̂12

L̂21D̂11 L̂21D̂11V̂12 + D̂22

]
Since both of the above 2 matrix are equal to the same matrix A, compare elements to elements from
the above.
Then we see that D11 = a11, and D̂11 = a11, hence

D11 = D̂11

Similarly, D11V12 = a12, and D̂11V̂12 = a12, therefor D11V12 = D̂11V̂12. But from above we showed that
D11 = D̂11, hence

V12 = V̂12

Similarly, L21D11 = a21 and L̂21D̂11 = a21 hence L21D11 = L̂21D̂11, but from above we showed that
D11 = D̂11, hence

L21 = L̂21

Finally, L21D11V12 +D22 = a22, and L̂21D̂11V̂12 + D̂22 = a22, hence L21D11V12 +D22 = L̂21D̂11V̂12 + D̂22, but
since from above we showed that D11 = D̂11 and V12 = V̂12 and L21 = L̂21, hence this means that

D22 = D̂22

Hence we showed that all the elements of L are equal to all the elements of L̂, i.e. L = L̂, similarlyV = V̂
and D = D̂, But this is a contradiction that the decomposition is not unique. Hence the decomposition
is unique.
(a) Start with
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L1D1U1 = L2D2U2

right multiply both sides byU −1
2

L1D1U1U
−1
2 = L2D2U2U

−1
2

L1D1U1U
−1
2 = L2D2

left multiply both sides by L−11

L−11 L1D1U1U
−1
2 = L−11 L2D2

Hence

D1U1U
−1
2 = L−11 L2D2

Since U is an upper triangle matrix, then its inverse is also an upper triangle matrix. When 2 upper
triangle matrices are multiplied with each others, the result is a diagonal matrix (a matrix with non-zero
elements only on the diagonal). HenceU1U

−1
2 is a diagonal matrix. But D1 is a diagonal matrix, and the

product of 2 diagonal matrices is a diagonal matrix. Hence D1U1U
−1
2 is a diagonal matrix.

Now looking at the RHS. L is a lower triangle matrix. Hence its inverse is a lower triangle matrix. The
product of 2 lower triangle matrices is a diagonal matrix. But D2 is a diagonal matrix, and the product
of 2 diagonal matrices is a diagonal matrix. Hence L−11 L2D2 is a diagonal matrix.
But a diagonal matrix is both an upper and a lower diagonal matrices. Hence one can label one side as
lower diagonal matrix and the other side as upper diagonal matrix.
(b) The main diagonals contain the pivots. The off diagonals are the same, all zeros.
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5 Section 1.6, problem 25

Problem: If A has row 1+row2=row3, show that A is not invertible.
(a) Explain why Ax = (1, 0, 0) cannot have a solution
(b) Which right-hand sides (b1,b2,b3) might allow a solution for Ax = b?
(c) What happens to row 3 in elimination?
Answer:
One answer is to use the row view. This leads to geometrical reasoning. A row represents an equation of
some hyperplane in n dimensional space. For n = 3, this represents a plane. Since we are told 2 planes
add to a third, hence we only need to consider 2 planes to obtain a solution. The solution (if one exist)
of 2 planes is a line (2 planes if they interest make a line). Hence we can not have a single point as a
solution. Hence (1, 0, 0) can not be a solution. This is the same as saying that a matrix whose rows (or
columns) are not all linearly independent to each others is not invertible.
Another way to show this is by construction.
If row1+row2=row3, then A is not invertible since when using Gaussian elimination the method will
fail. To show how and why, and W.L.O.G., consider the following 3 × 3 matrix where row1+row2=row3

A =


a b c

d e f

a + d b + e c + f


Elimination using l21 = d

a gives 
a b c

0 e − b
(
d
a

)
f − c

(
d
a

)
a + d b + e c + f


Elimination using l31 = a+d

a gives


a b c

0 e − b
(
d
a

)
f − c

(
d
a

)
0 (b + e) − b

(
a+d
a

)
(c + f ) − c

(
a+d
a

)
 =


a b c

0 ea−bd
a

f a−cd
a

0 (b + e) − ab+db
a (c + f ) − ca+cd

a


=


a b c

0 ea−bd
a

f a−cd
a

0 ab+ae
a − ab+db

a
ca+f a

a − ca+cd
a


=


a b c

0 ea−bd
a

f a−cd
a

0 (ab+ae)−(ab+db)
a

(ca+f a)−(ca+cd )
a


=


a b c

0 ea−bd
a

f a−cd
a

0 ea−bd
a

f a−cd
a


we see that we are unable to eliminate this any more. row 2 now is the same as row 3. Trying to zero
out entry (3,2) will cause entry (3,3) to become zero as well since l32 = 1 in this case. Hence we will get
the third row to be all zeros. and hence no unique solution can result.
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(a) To answer this part, consider the row view of Ax = b.The solution is where the 3 planes intersects,
which is a point.
Since first row+second row=third row, then we only have 2 planes here to consider and not 3. which
are row 1 and row 2 only. Hence the solution is a line and not a point (2 planes can have only have a
line as a solution). Hence it is not possible to have the solution be a point when we have only 2 planes
in 3 dimensional space.
(b) The right hand side of [0, 0, 0] would allow a solution of x = [0, 0, 0]

(c) In elimination, as shown above, row 3 will be the same as row 2. Hence it is not possible to zero
out entry (3,2) and finish elimination.
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6 Section 1.6, Problem 28

Problem: If the product M = ABC of the three square matrices is invertible, then A,B,C, are invertible.
Find a formula for B−1 that involves M−1, A and C
solution:
Since M is invertible, then

M−1 = (ABC)−1

= (BC)−1A−1

= C−1B−1A−1

Left multiply both sides by C

CM−1 = CC−1B−1A−1

CM−1 = B−1A−1

right multiply both sides by A

CM−1A = B−1A−1A

= B−1

Hence

B−1 = CM−1A
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7 Section 1.6, Problem 49

Problem: Find AT and A−1 and
(
A−1)T and

(
AT

) −1 for

A =

[
1 0

9 3

]
,B =

[
1 c

c 0

]
Solution:

AT =

[
1 9

0 3

]
A−1 =

1
3

[
3 0

−9 1

]
=

[
1 0

−3 1
3

]

(
A−1)T = [

1 −3

0 1
3

]
(
AT

) −1
=

(
A−1)T = [

1 −3

0 1
3

]

BT =

[
1 c

c 0

]
B−1 =

1
−c2

[
0 −c

−c 1

]
=

[
0 1

c
1
c − 1

c2

]

(
B−1)T = [

1 1
c

1
c − 1

c2

]
(
BT

) −1
=

(
B−1)T = [

1 1
c

1
c − 1

c2

]
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8 Section 1.6, Problem 50

Problem: Verify that (AB)T equals BTAT but these are different from ATBT

A =

[
1 0

2 1

]
,B =

[
1 3

0 1

]
,AB =

[
1 3

2 7

]
in case AB = BA (not generally true!) how do you prove that BTAT = ATBT ?
Solution:

(AB)T =

( [
1 0

2 1

] [
1 3

0 1

] )T
=

[
1 3

2 7

] T
=

[
1 2

3 7

]

BTAT =

[
1 3

0 1

] T [
1 0

2 1

] T
=

[
1 0

3 1

] [
1 2

0 1

]
=

[
1 2

3 7

]
Hence (AB)T = BTAT but

ATBT =

[
1 0

2 1

] T [
1 3

0 1

] T
=

[
1 2

0 1

] [
1 0

3 1

]
=

[
7 2

3 1

]
, BTAT

Now to show that if AB = BA then ATBT = BTAT

Since we are given that AB = BA , then take the transpose of each side

(AB)T = (BA)T

But (XY )T = YTXT , hence applying this rule to each side of the above , we obtain the result needed

BTAT = ATBT
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9 Section 1.6 problem 56

Problem: If A = AT and B = BT , which of these matrices are certainly symmetric?
(a)A2 − B2 (b)(A + B) (A − B) (c)ABA (d)ABAB
Solution:
If A and B are symmetric matrices, then A − B and A + B are symmetric. Call this rule (1).
To show this, WLOG, we can use 2 × 2 matrices and write

A =

[
a b

b c

]
,B =

[
e f

f д

]
⇒ A + B =

[
a + e b + f

b + f c + д

]
which is symmetric.

and A − B =

[
a − e b − f

b − f c − д

]
which is symmetric.

(a) WLOG, we can check on a general 2 × 2 symmetric matrix A :

A2 =

[
a b

b c

] [
a b

b c

]
=

[
a2 + b2 ab + bc

ba + cb b2 + c2

]
which is symmetric.

Hence if A is symmetric, then A2 is symmetric. Similarly, if B is symmetric, then B2. Hence using rule

(1) above, it follows that A2 − B2 is symmetric
(b) Using rule (1), (A + B) is symmetric and so is (A − B), hence we need to see if the product of two
symmetric matrices is always symmetric or not. WLOG, we can check on a 2 × 2 symmetric matrices.

X =

[
a b

b c

]
,Y =

[
e f

f д

]
⇒ XY =

[
a b

b c

] [
e f

f д

]
=

[
ae + b f a f + bд

be + c f b f + cд

]
which is

NOT certainly symmetric in general (unless af + bд = be + c f ) which is not true in general.
(c)To check onABA, from part(b) we showed that the product of 2 symmetric matrices is not necessarily
symmetric, hence AB is not necessarily symmetric, Let AB = X , then the above is the same as asking if
XA is always symmetric when X is not necessarily symmetric and A is symmetric. The answer is NO.
To show, WLOG, try to a general 2 × 2 matrices.

Let X =

[
a b

c d

]
where c , b, and A =

[
e f

f д

]
⇒ XA =

[
a b

c d

] [
e f

f д

]
=

[
ae + b f a f + bд

ce + d f c f + dд

]
which is NOT symmetric in general (unless af + bд = ce + d f )
(d) To check onABAB, From (b) we showed that the product of 2 symmetric matrices is NOT necessarily
symmetric, hence AB is NOT necessarily symmetric. Hence this is asking if the product of 2 matrices,
both not necessarily symmetric is certainly symmetric or not. Hence the answer is NOT symmetric .
(if the product of 2 symmetric matrices is not necessarily symmetric, then the product of 2 matrices
who are not symmetric is also not necessarily symmetric).
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10 Section 1.7, Problem 1

Problem: Write out the LDU = LDLT factors of A in equation (6) when n = 4. Find the determinant as
the product of the pivots in D.
Solution:
for n = 4,

A =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


To start LU decomposition, write the augmented matrix
2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


l21= −1

2
⇒


2 −1 0 0

0 3
2 −1 0

0 −1 2 −1

0 0 −1 2


l32= −2

3
⇒


2 −1 0 0

0 3
2 −1 0

0 0 4
3 −1

0 0 −1 2


l43= −3

4
⇒


2 −1 0 0

0 3
2 −1 0

0 0 4
3 −1

0 0 0 5
4


,hence

U =


2 −1 0 0

0 3
2 −1 0

0 0 4
3 −1

0 0 0 5
4


and

L =


1 0 0 0
−1
2 1 0 0

0 −2
3 1 0

0 0 −3
4 1


and now we need to make the diagonal elements ofU be all 1′s , hence the D matrix is

D =


2 0 0 0

0 3
2 0 0

0 0 4
3 0

0 0 0 5
4


and the V matrix is

V =


1 − 1

2 0 0

0 1 − 3
2 0

0 0 1 − 4
3

0 0 0 1


Hence
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LDV =


1 0 0 0
−1
2 1 0 0

0 −2
3 1 0

0 0 −3
4 1





2 0 0 0

0 3
2 0 0

0 0 4
3 0

0 0 0 5
4




1 − 1

2 0 0

0 1 − 3
2 0

0 0 1 − 4
3

0 0 0 1


which is equal to LDLT

Now the determinant of A can be found as the products of the pivots, which are along the diagonal of
the D matrix

2 ×
3
2
×
4
3
×
5
4
= 5
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11 Section 1.7, Problem 3

Problem: Find the 5 × 5 matrix Ao(h =
1
6 ) that approximates

−
d2u

dx2
= f (x)

with boundary conditions u ′(0) = u ′ (1) = 0
replace these boundary conditions byu0 = u1 andu6 = u5. Check that yourAo times the constant vector
[C,C,C,C,C] yields zero. Ao is singular. Analogously, if u (x) is a solution of the continuos problem,
then so is u (x) +C
Solution:
Using the approximation d2u

dx 2 ≈
u(x+h)−2u(x )+u(x−h)

h2 we write the above ODE for each internal point as
shown in this diagram

Hence we have the following 5 equations (one equation generated per one internal node)

−u2 + 2u1 − u0 = h
2 f (h)

−u3 + 2u2 − u1 = h
2 f (2h)

−u4 + 2u3 − u2 = h
2 f (3h)

−u5 + 2u4 − u3 = h
2 f (4h)

−u6 + 2u5 − u4 = h
2 f (5h)

Since the boundary condition given is u ′(0), this means that the rate of change of u at the boundary is
zero (insulation). Hence the value of the dependent variable does not change at the boundary. This is
another way of say that u0 = u1. The same on the other side, where u6 = u5. Doing these replacement
into the above equations we obtain the following

16



−u2 + u1 = h
2 f (h)

−u3 + 2u2 − u1 = h
2 f (2h)

−u4 + 2u3 − u2 = h
2 f (3h)

−u5 + 2u4 − u3 = h
2 f (4h)

u5 − u4 = h
2 f (5h)

Written in Matrix form, and given h = 1
6

1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1





u1

u2

u3

u4

u5


=

1
36



f (h)

f (2h)

f (3h)

f (4h)

f (5h)


Now Check that A0 × B = 0 where B is some constant vector [C,C,C,C,C]

1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1





C

C

C

C

C


=



0

0

0

0

0


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12 Section 1.7, Problem 10

Problem:Compare the pivots in direct elimination to those with partial pivoting forA =

[
0.001 0

1 1000

]
(this is actually an example that needs rescaling before elimination)
Solution:

Direct elimination

[
0.001 0

1 1000

]
l21=1000
⇒


0.001 0

0 1000


Partial pivoting. Switch rows first ⇒

[
1 1000

0.001 0

]
, now apply elimination[

1 1000

0.001 0

]
l21=0.001
⇒


1 1000

0 −1


The pivots in direct elimination are {0.001, 1000}, while when using partial pivoting {1,−1}
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