HW 2 EGEE 518 Digital Signal Processing I Fall 2008 California State University, Fullerton

Nasser M. Abbasi

 $May\ 29,\ 2019 \qquad \qquad {\tiny Compiled\ on\ May\ 29,\ 2019\ at\ 5:28pm}$

Contents

	Problem 1 1.1 Solution	2 2
2	Problem 2	2
3	graded HW2	5

1 Problem 1

Compute an appropriate sampling rate and DFT size $N=2^v$ to analyze a single with no significant frequency content above 10khz and with a minimum resolution of 100 hz

1.1 Solution

From Nyquist sampling theory we obtain that sampling frequency is

$$f_s = 20000 \ hz$$

Now, the frequency resolution is given by

$$\Delta f = \frac{f_s}{N}$$

where N is the number of FFT samples. Now since the minimum Δf is 100 hz then we write

$$\frac{f_s}{N} = \Delta f \ge 100$$

or

$$\frac{f_s}{N} \ge 100$$

Hence

$$N \le \frac{20,000}{100}$$
$$\le 200 \text{ samples}$$

Therefore, we need the closest N below 200 which is power of 2, and hence

$$N = 128$$

2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for $M=8,W_0=2,\phi_0=\frac{\pi}{16},A_0=2,\theta_0=\frac{\pi}{4}$

Answer:

Chirp Z transform is defined as

$$X(z_k) = \sum_{n=0}^{N-1} x[n] z_k^{-n} \qquad k = 0, 1, \dots, M-1$$
 (1)

Where

$$z_k = AW^{-k}$$

and $A = A_0 e^{j\theta_0}$ and $W = W_0 e^{-j\phi_0}$

Hence

$$z_k = \left(A_0 e^{j\theta_0}\right) \left(W_0 e^{-j\phi_0}\right)^{-k}$$
$$= \frac{A_0}{W_0^k} e^{j(\theta_0 + k\phi_0)}$$

Hence

$$|z_k| = \frac{A_0}{W_0^k}$$
$$= \frac{2}{2^k}$$

and

phase of
$$z_k = \theta_0 + k\phi_0$$

= $\frac{\pi}{4} + k\frac{\pi}{16}$

Hence

k	$ z_k = \frac{2}{2^k}$	phase of $z_k = \frac{\pi}{4} + k \frac{\pi}{16}$	phase of z_k in degrees
0	$\frac{2}{1} = 2$	$\frac{\pi}{4} + 0 \times \frac{\pi}{16} = \frac{\pi}{4}$	45
1	$\frac{2}{2} = 1$	$\frac{\pi}{4} + 1 \times \frac{\pi}{16} = \frac{5}{16}\pi$	56.25
2	$\frac{2}{4} = \frac{1}{2}$	$\frac{\pi}{4} + 2 \times \frac{\pi}{16} = \frac{3}{8}\pi$	67.5
3	$\frac{2}{8} = \frac{1}{4}$	$\frac{\pi}{4} + 3 \times \frac{\pi}{16} = \frac{7}{16}\pi$	78.75
4	$\frac{2}{16} = \frac{1}{8}$	$\frac{\pi}{4} + 4 \times \frac{\pi}{16} = \frac{1}{2}\pi$	90
5	$\frac{2}{32} = \frac{1}{16}$	$\frac{\pi}{4} + 5 \times \frac{\pi}{16} = \frac{9}{16}\pi$	101.25
6	$\frac{2}{64} = \frac{1}{32}$	$\frac{\pi}{4} + 6 \times \frac{\pi}{16} = \frac{5}{8}\pi$	112.5
7	$\frac{2}{128} = \frac{1}{64}$	$\frac{\pi}{4} + 7 \times \frac{\pi}{16} = \frac{11}{16}\pi$	123.75

Figure 1: plot of the above contour

This is Mathematica notebook used to make plot of the Chirp Z transform contour. This is my graded HW2

3 graded HW2

 $HW2,\, EGEE\,\, 518.\,$ CSUF, Fall $\,2008$ Nasser Abbasi October 11, 2008

Problem 1 1

Compute an appropriate sampling rate and DFT size $N=2^v$ to analyze a single with no significant frequency content above 10khz and with a minimum resolution of 100hz

Solution

From Nyquist sampling theory we obtain that sampling frequency is

$$f_s = 20000 \ hz$$

Now, the frequency resolution is given by

$$\Delta f = \frac{f_s}{N}$$

where N is the number of FFT samples. Now since the minimum Δf is 100 hz then we write

$$\frac{f_s}{N} = \Delta f \ge 100$$

or

$$\frac{f_s}{N} \ge 100$$

Hence

$$N > \frac{20,000}{100}$$

$$\leq 200 \text{ samples}$$

Therefore, we need the closest N below 200 which is power of 2, and hence

$$N = 128$$

2 Problem 2

sketch the locus of points obtained using Chirp Z Transform in the Z plane for $M=8, W_0=2, \phi_0=\frac{\pi}{16}, A_0=2, \theta_0=\frac{\pi}{4}$

Answer:

Chirp Z transform is defined as

$$X(z_k) = \sum_{n=0}^{N-1} x[n] z_k^{-n}$$
 $k = 0, 1, \dots, M-1$ (1)

Where

$$z_k = AW^{-k}$$

and $A = A_0 e^{j\theta_0}$ and $W = W_0 e^{-j\phi_0}$

Hence

$$z_k = \left(\lambda_0 e^{j\theta_0} \right) \left(W_0 e^{-j\phi_0} \right)^{-k}$$
$$= \frac{A_0}{W_0^k} e^{j(\theta_0 + k\phi_0)}$$

Hence

$$|z_k| = \frac{A_0}{W_0^k}$$
$$= \frac{2}{2^k}$$

and

$$phase \ of \ z_k = \theta_0 + k\phi_0$$

$$= \frac{\pi}{4} + k\frac{\pi}{16}$$

Hence

k	$ z_k = \frac{2}{2^k}$	phase of $z_k = \frac{\pi}{4} + k \frac{\pi}{16}$	phase of z_k in degrees
0	$\frac{2}{1} = 2$	$\frac{\pi}{4} + 0 \times \frac{\pi}{16} = \frac{\pi}{4}$	45
1	$\frac{2}{2} = 1$	$\frac{\pi}{4} + 1 \times \frac{\pi}{16} = \frac{5}{16}\pi$	56.25
2	$\frac{2}{4} = \frac{1}{2}$	$\frac{\pi}{4} + 2 \times \frac{\pi}{16} = \frac{3}{8}\pi$	67.5
3	$\frac{2}{8} = \frac{1}{4}$	$\frac{\pi}{4} + 3 \times \frac{\pi}{16} = \frac{7}{16}\pi$	78.75
4	$\frac{2}{16} = \frac{1}{8}$	$\frac{\pi}{4} + 4 \times \frac{\pi}{16} = \frac{1}{2}\pi$	90
5	$\frac{2}{32} = \frac{1}{16}$	$\frac{\pi}{4} + 5 \times \frac{\pi}{16} = \frac{9}{16}\pi$	101.25
6	$\frac{2}{64} = \frac{1}{32}$	$\frac{\pi}{4} + 6 \times \frac{\pi}{16} = \frac{5}{8}\pi$	112.5
7	$\frac{2}{128} = \frac{1}{64}$	$\frac{\pi}{4} + 7 \times \frac{\pi}{16} = \frac{11}{16}\pi$	123.75

Below is plot of the above contour

```
\ln[579] = \mathbf{z} \left[ k_{\perp}, \ WO_{\perp}, \ AO_{\perp}, \ \mathscr{O}O_{\perp}, \ \varphi O_{\perp} \right] := AO \operatorname{Exp} \left[ \mathbf{I} \ \mathscr{O}O \right] \left\{ WO \operatorname{Exp} \left[ -\mathbf{I} \ \varphi O \right] \right\}^{-k}
          W0 = 2;
          A0 = 2;
          00 = Pi / 4;
          \phi 0 = Pi / 16;
          m = 8;
          zValues = Table[z[k, W0, A0, \theta0, \phi0], \{k, 0, m-1\}];
          arg = Arg[zValues]
          abs = Abs[zValues]
          data = Transpose [{arg, abs}]:
          p1 = ListPolarPlot[data, AxesOrigin \rightarrow \{0, 0\},
               PlotRange → All, Joined → False,
               PlotMarkers → {Automatic, Automatic}];
          p2 = ListPolarPlot[data, AxesOrigin \rightarrow \{0, 0\},
              PlotRange \rightarrow All, Joined \rightarrow True;
          p3 = PolarPlot[1, {t, 0, 2 Pi}];
          Show[p1, p2, p3]
```

$$\text{Out[586]=} \ \left\{ \frac{\pi}{4} \,,\; \frac{5\,\pi}{16} \,,\; \frac{3\,\pi}{8} \,,\; \frac{7\,\pi}{16} \,,\; \frac{\pi}{2} \,,\; \frac{9\,\pi}{16} \,,\; \frac{5\,\pi}{8} \,,\; \frac{11\,\pi}{16} \right\}$$

