HW 9 Electronic Communication Systems Fall 2008 California State University, Fullerson

[Nasser M. Abbasi](mailto:nma@12000.org)

Fall 2008 Compiled on May 29, 2019 at 11:41pm

Contents

5–5 A 50,000-W AM broadcast transmitter is being evaluated by means of a two-tone test. The trans-A 50,000-W AM broadcast transmitter is being evaluated by means of a contracted
mitter is connected to a 50- Ω load, and $m(t) = A_1 \cos \omega_1 t + A_1 \cos 2\omega_1 t$, where $f_1 = 500$ Hz. Assume that a perfect AM signal is generated. (a) Evaluate the complex envelope for the AM signal in terms of A_1 and ω_1 . (b) Determine the value of A_1 for 90% modulation. (b) Determine the value of A_1 for 90% modulation.
(c) Find the values for the peak current and average current into the 50- Ω load for the 90% modulation case.

Figure 1: the Problem statement

1.1 part(a)

 $s(t) = A_c \left(1 + k_a m(t)\right) \cos \omega_c t$ in-phase component

Assume $k_a = 1$ in this problem. $m(t) = A_1 (\cos \omega_1 t + \cos 2\omega_1 t)$, then $s(t)$ becomes

$$
s(t) = \overbrace{A_c \left(1 + A_1 \left(\cos \omega_1 t + \cos 2\omega_1 t\right)\right)}^{\text{in-phase component}} \cos \omega_c t \tag{1}
$$

But $s(t)$ can be written as

$$
s(t) = s_I(t) \cos \omega_c t - s_Q(t) \sin \omega_c t \tag{2}
$$

Where $s_I(t)$ is the inphase component and $s_Q(t)$ is the quadrature component of $s(t)$. Compare (1) to (2) , we see that

$$
s_I(t) = A_c [1 + A_1 (\cos \omega_1 t + \cos 2\omega_1 t)]
$$

$$
s_Q(t) = 0
$$

Now, the complex envelope $\tilde{s}(t)$ of $s(t)$ is given by

$$
\tilde{s}(t) = s_I(t) + j s_Q(t)
$$

Hence replacing the value found for $s_I(t)$ and $s_Q(t)$ we obtain

$$
\tilde{s}(t) = A_c \left[1 + A_1 \left(\cos \omega_1 t + \cos 2\omega_1 t \right) \right]
$$
\n(3)

Now, we can find *A^c* since the average power in the carrier signal is given as 50000 watt as follows

$$
P_{\text{av_carrier}} = \frac{A_c^2}{2(50)} = 50000
$$

Hence

$$
A_c = \sqrt{100 \times 50000} = 2236.1 \text{volt}
$$

Then (3) becomes

$$
\tilde{s}(t) = 2236.1 [1 + A_1 (\cos \omega_1 t + \cos 2\omega_1 t)] \tag{4}
$$

The above is the complex envelope in terms of A_1 and ω_1 only as required to show.

1.2 part(b)

$$
\mu = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} \tag{5}
$$

Need to find angle at which $\cos \omega_1 t + \cos 2\omega_1 t$ is Max and at which it is min. then Let $\Delta = \cos \omega_1 t + \cos 2\omega_1 t$

We see that when $\omega_1 t = 2\pi$, then $\Delta = 1 + 1 = 2$, hence

$$
A_{\text{max}} = A_c (1 + 2A_1)
$$

Need to find A_{min} hence we need to find Δ_{min} . For this case we must use calculus as it is not obvious where this is minimum

$$
\frac{\partial \Delta}{\partial t} = 0 = -\omega_1 \sin \omega_1 t - 2\omega_1 \sin 2\omega_1 t
$$

\n
$$
0 = -\omega_1 \sin \omega_1 t - 2\omega_1 (2 \sin (\omega_1 t) \cos (\omega_1 t))
$$

\n
$$
= -\omega_1 \sin \omega_1 t - 4\omega_1 \sin (\omega_1 t) \cos (\omega_1 t)
$$

\n
$$
\frac{-1}{4} = \cos (\omega_1 t)
$$

Hence $\omega_1 t = \cos^{-1} \left(\frac{-1}{4} \right)$ 4 $\rightarrow \omega_1 t = 104.477^{\circ}$ (using calculator). hence

$$
\Delta_{\min} = \cos (104.477^0) + \cos (2 \times 104.477^0)
$$

= -0.2499 - 0.875
= -1.1249

Then $A_{\min} = A_c (1 - 1.1249A_1)$, so from (5) above

$$
\mu = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}
$$

\n
$$
0.9 = \frac{A_c (1 + 2A_1) - A_c (1 - 1.1249A_1)}{A_c (1 + 2A_1) + A_c (1 - 1.1249A_1)}
$$

\n
$$
= \frac{(1 + 2A_1) - (1 - 1.1249A_1)}{(1 + 2A_1) + (1 - 1.1249A_1)}
$$

\n
$$
= \frac{1 + 2A_1 - 1 + 1.1249A_1}{1 + 2A_1 + 1 - 1.1249A_1}
$$

\n
$$
= \frac{3.1249A_1}{2 + 0.8751A_1}
$$

Hence

$$
1.8 + 0.9 (0.8751A1) - 3.9A1 = 0
$$

$$
1.8 - 2.3A1 = 0
$$

Then

$$
A_1=0.770
$$

1.3 part(c)

Since

$$
A_{\text{max}} = A_c (1 + 2A_1)
$$

= 2236.1 (1 + 2 × 0.77012)
= 5680.2 volts

Then from Ohm's law, $V = RI$,

$$
I_{\text{max}} = \frac{V_{\text{max}}}{R}
$$

$$
= \frac{5680.2}{50}
$$

$$
= 113.6 \text{ amps}
$$

Since mean voltage is zero, then average current is zero.

5-8 Assume that transmitting circuitry restricts the modulated output signal to a certain peak value, say, A_p , because of power-supply voltages that are used and because of the peak voltage and current ratings of the components. If a DSB-SC signal with a peak value of A_p is generated by this circuit, show that the sideband power of this DSB-SC signal is four times the sideband power of a comparable AM signal having the same peak value A_p that could also be generated by this circuit.

Figure 2: the Problem statement

answer For normal modulation, let

$$
s_{am}(t) = A_c(1 + m(t))\cos\omega_c t
$$

Maximum envelop is $2A_c$ (i.e. when $m_{\text{max}}(t) = 1$), this means that $A_p = 2A_c$

But

$$
s_{am}\left(t\right) = \overbrace{A_c \cos \omega_c t}^{\text{carrier}} + \overbrace{A_c m\left(t\right) \cos \omega_c t}^{\text{side band}}
$$

So max of sideband is A_c or $\frac{A_p}{2}$ $\frac{A_p}{2}$. Hence maximum power of sideband is $\frac{1}{2}$ $\frac{A_p}{A_p}$ 2 $\int_0^2 = \frac{A_p^2}{8}$ and for DSB-SC, where now use A_p in place of what we normally use A_c then we obtain

 $s(t) = A_p m(t) \cos \omega_c t$

Hence maximum for sideband is $\frac{1}{2}A_p^2$

Hence we see that power of sideband of DSB-SC to the power of sideband of AM is

$$
\frac{\frac{1}{2}A_p^2}{\frac{A_p^2}{8}}=4
$$

3 Problem 5-13

3.1 part(a)

$$
m(t) = 5\cos\omega_1 t
$$

 $\hat{m}(t)$ is Hilbert transform of $m(t)$ defined as $\hat{m}(t) = \int_{0}^{\infty} m(\tau) \frac{1}{t-1}$ frequency approach where $\hat{m}(t) = F^{-1}[-j\ sign(f)] M(f)]$ where $M(f)$ is the Fourier $\frac{1}{t-\tau}d\tau$. Or we can use the transform of $m(t)$. We can carry out this easily, but since this is a phase 90 change, and $m(t)$ is a cosine function, then

$$
\hat{m}(t) = 5\sin\omega_1 t
$$

3.2 part(b)

$$
s_{SSB}(t) = A_c [m(t) \cos \omega_c t \mp \hat{m}(t) \sin \omega_c t]
$$

Where the negative sign for upper sided band, and positive sign for the lower sided band, hence

$$
s_{LSSB}(t) = A_c [m(t) \cos \omega_c t + \hat{m}(t) \sin \omega_c t]
$$

= $5A_c [\cos \omega_1 t \cos \omega_c t + \sin \omega_1 t \sin \omega_c t]$
= $5A_c [\cos (\omega_c - \omega_1) t]$

We can plug in numerical values given

$$
s_{LSSB}\left(t\right) = 5\left[\cos\left(\omega_c - \omega_1\right)t\right]
$$

3.3 Part(c)

To find the RMS value of the SSB, pick the above lower side band. First find *Pav*.

$$
s_{LSSB}\left(t\right) = 5\left[\cos\left(\omega_1 - \omega_c\right)t\right]
$$

Hence

RMS value of signal =
$$
\frac{5}{\sqrt{2}}
$$

= 3.5355 volt

3.4 part(d)

Then maximum of 5 [cos $(\omega_1 - \omega_c)t$] is when cos $(\omega_1 - \omega_c)t = 1$, hence

$$
s_{LSSB_{\max}}(t) = 5 \text{volt}
$$

3.5 part(e)

$$
P_{av} = \frac{1}{2}A_c^2
$$

= $\frac{1}{2} \times 25$
= 12.5watt

3.6 Part(f)

$$
PEP = \frac{1}{2} s_{LSSB_{\text{max}}}^2(t)
$$

$$
= \frac{5^2}{2}
$$

$$
= 12.5 \text{ watt}
$$

4 Problem 5-18

Figure 4: the Problem statement

4.1 part(a)

This is a detector for USSB (Upper side band). i.e.

 $s(t) = A_c(m(t)\cos \omega_c t - \hat{m}(t)\sin \omega_c t)$

Note, I wrote A_c and not $\frac{A_c}{2}$ in the above. As long this is a constant, it gives the same analysis.

The reason is because at point *H* the signal is $-\frac{1}{2}m(t)$ and at the *C* point the signal is $+\frac{1}{2}m(t)$, hence due to subtraction at the audio output end we obtain $m(t)$. To receive LSSB, we should change the sign to positive at the audio output end.

4.2 part(b)

$$
s(t) = A_c(m(t)\cos\omega_c t - \hat{m}(t)\sin\omega_c t)
$$

at point B

$$
s_B(t) = s(t) * A_c' \cos \omega_c t
$$

\n
$$
= A_c' A_c (m(t) \cos \omega_c t - \hat{m}(t) \sin \omega_c t) \cos \omega_c t
$$

\n
$$
= A_c' A_c (m(t) \cos^2 \omega_c t - \hat{m}(t) \sin \omega_c t \cos \omega_c t)
$$

\n
$$
= A_c' A_c (m(t) (\frac{1}{2} + \frac{1}{2} \cos 2\omega_c t) - \frac{1}{2} \hat{m}(t) \sin 2\omega_c t)
$$

\n
$$
= \frac{A_c' A_c}{2} m(t) + \frac{A_c' A_c}{2} m(t) \cos 2\omega_c t - \frac{A_c' A_c}{2} \hat{m}(t) \sin 2\omega_c t
$$

at point C, after LPF we obtain

$$
s_c(t) = A_c' A_c \frac{m(t)}{2}
$$

at point F we have

$$
s_f(t) = s(t) A_c' \sin \omega_c t
$$

= $A_c' A_c (m(t) \cos \omega_c t - \hat{m}(t) \sin \omega_c t) \sin \omega_c t$
= $A_c' A_c (m(t) \cos (\omega_c t) \sin (\omega_c t) - \hat{m}(t) \sin^2 \omega_c t)$
= $A_c' A_c (m(t) \frac{1}{2} \sin (2\omega_c t) - \hat{m}(t) (\frac{1}{2} - \frac{1}{2} \cos 2\omega_c t))$
= $\frac{A_c' A_c}{2} (m(t) \sin (2\omega_c t) - \hat{m}(t) (1 - \cos 2\omega_c t))$

at point G after LPF

$$
s_{g}\left(t\right)=-\frac{A_{c}^{'}A_{c}}{2}\hat{m}\left(t\right)
$$

at point H after -90^0 phase shift

$$
s_{h}\left(t\right) = +\frac{A_{c}^{'}A_{c}}{2}m\left(t\right)
$$

at point I, we sum $s_h(t)$ and $s_c(t)$, hence $s_i(t) = A'_c A_c \frac{m(t)}{2} + \frac{A'_c A_c}{2} m(t) = A'_c A_c m(t)$

4.3 Part(c)

$$
s(t) = A_c(m(t)\cos\omega_c t + \hat{m}(t)\sin\omega_c t)
$$

This the same as part (b), except now since there is a sign difference, this carries all the way to point I , and then we obtain

$$
s_i(t) = A_c' A_c \frac{m(t)}{2} - \frac{A_c' A_c}{2} m(t) = 0
$$

This if this circuit is used as is to demodulate an LSSB AM signal, then the signal will be lost. So, instead of adding at point *I* we should now subtract to counter the effect of the negative sign.

4.4 part(d)

Since SSB has bandwidth of 3*kHz* then this means the width of upper (or lower) band is 3*khz*. This means the signal has 3*khz* bandwidth. This diagram shows the LPF requirement

Figure 5: Low pass filter

Hence LPF is centered at zero frequency and have bandwidth of 3*khz* (may be make it a little over 3*khz* band width?)

The IF filter is centered at $455 + \left(\frac{3}{2}\right)$ 2) for the upper band of the positive band, and centered at $-455 - \left(\frac{3}{2}\right)$ 2 for the upper band of the negative band. (i.e. for the *USSB*).

For *LSSB*, IF should be centered at $455 - \left(\frac{3}{2}\right)$ 2) for the lower band of the positive band, and centered at $-455 + \left(\frac{3}{2}\right)$ 2) for the lower band of the negative band. (This works if there is a guard band around 455, small one, to make the design of IF possible).

5 Key solution

$$
E = 443
$$
 $W = 9$ $P = 2$
\n
$$
= 5-7
$$
 (a) 0.58 -50 and 1 = cos ω , t + 2cos ω , t
\n
$$
s(t) = [cos\omega, t + 2cos2\omega, t] cos\omega, t
$$
\n
$$
= cos\omega t
$$
\n
$$
s(t)
$$
\n
$$
s(t)
$$
\n
$$
= 3
$$
\n(b) 3 (t) $z(t) = \frac{1}{2} [cos(\omega_c - \omega_0)t + cos(\omega_c + \omega_0)t]$ \n
$$
+ cos(\omega_c - 2\omega_0)t + cos(\omega_c + 2\omega_0)t
$$
\n
$$
= 5-7
$$
 (b) 6 $sinh$ \n
$$
S(f) = \frac{1}{2}[sinh\frac{1}{2}t[s(f - 6, f)] + 8(f + 6, -3) + f(f + 6, f)] + f(f + 6, f)]
$$
\n
$$
= 5-7
$$
 (c) 0.001²
\n
$$
= 4[sln\frac{1}{2}t[s(f - 6, f)] + 8(f + 6, -3) + f(f + 6, f)] + f(f + 6, f)]
$$
\n
$$
= 6sln\frac{1}{2}
$$
\n
$$
= 6sln\frac{1}{2}
$$
\n
$$
= 2[(1)^{n}x(t)^{2} + (1)^{n}y(t)^{n}] = \frac{1}{2} \cdot 25 \cdot \frac{w}{2}
$$
\n(d) 4 $max = 3$ \Rightarrow $PE = \frac{18}{2} = \frac{4}{2} \cdot 5 \cdot \frac{w}{2}$

E E 443 **chopf 2,5 HW# 7 Page6**
\n**Proof # 5** 13 **cont 4**
\n**b)**
$$
\lambda_1^1 (1) = \frac{5}{2} \text{ (by 1) } \text{ (as 1)} \pm \frac{5}{2} \text{ Simust 1} \text{ (b)}
$$

\n**10 10 11 12 13 14 15 16 17 18 19** <

15.8)
\n19.
$$
\frac{0.880}{mH} = \frac{36}{12} \frac{mH}{mH} = 24 \frac
$$

necti 2000 _ m @ yahar. con neda HW9, EGEE 443. CSUF, Fall $2008\ (5\hbox{-}5,5\hbox{-}8,5\hbox{-}13,5\hbox{-}18)$ Nasser Abbasi November 20, 2008

1.1 $part(a)$

$$
s(t) = \overbrace{A_c(1 + k_a m(t))}^{\text{in-phase component}} \cos \omega_c t
$$

Assume $k_a = 1$ in this problem. $m(t) = A_1 (\cos \omega_1 t + \cos 2\omega_1 t)$, then $s(t)$ becomes

in-phase component
\n
$$
s(t) = \overbrace{A_c (1 + A_1 (\cos \omega_1 t + \cos 2\omega_1 t))}^{\text{in-phase component}} \cos \omega_c t
$$
\n(1)

But $s(t)$ can be written as

$$
s(t) = s_I(t) \cos \omega_c t - s_Q(t) \sin \omega_c t \tag{2}
$$

 $\frac{14.5}{40}$ $\frac{17.5}{30}$

Where $s_I(t)$ is the inphase component and $s_Q(t)$ is the quadrature component of $s(t)$. Compare (1) to (2) , we see that

$$
s_I(t) = A_c [1 + A_1 (\cos \omega_1 t + \cos 2\omega_1 t)]
$$

$$
s_Q(t) = 0
$$

Now, the complex envelope $\tilde{s}(t)$ of $s(t)$ is given by

 $\tilde{s}\left(t\right)=s_{I}\left(t\right)+js_{Q}\left(t\right)$

Hence replacing the value found for $s_I(t)$ and $s_Q(t)$ we obtain

$$
\boxed{\tilde{s}(t) = A_c \left[1 + A_1 \left(\cos\omega_1 t + \cos 2\omega_1 t\right)\right]}
$$
\n(3)

Now, we can find A_c since the average power in the carrier signal is given as 50000 watt as follows

$$
P_{av_carrier} = \frac{A_c^2}{2(50)} = 50000
$$

Hence

$$
A_c = \sqrt{100 \times 50000} = \boxed{2236.1 \text{ volt}}
$$

Then (3) becomes

$$
\overline{s(t)} = 2236.1\left[1 + A_1\left(\cos\omega_1 t + \cos 2\omega_1 t\right)\right]
$$

The above is the complex envelope in terms of A_1 and ω_1 only as required to show.

 (4)

1.2 part(b)

$$
\mu = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} \tag{5}
$$

Need to find angle at which $\cos \omega_1 t + \cos 2\omega_1 t$ is Max and at which it is min. then Let $\Delta =$ $\cos \omega_1 t + \cos 2 \omega_1 t$

We see that when $\omega_1 t = 2\pi$, then $\Delta = 1+1=2,$ hence

 $A_{\text{max}} = A_c (1 + 2A\sqrt{2})$

Need to find A_{\min} hence we need to find Δ_{\min} . For this case we must use calculus as it is not obvious where this is minimum $\,$

$$
\frac{\partial \Delta}{\partial t} = 0 = -\omega_1 \sin \omega_1 t - 2\omega_1 \sin 2\omega_1 t
$$

\n
$$
0 = -\omega_1 \sin \omega_1 t - 2\omega_1 (2 \sin (\omega_1 t) \cos (\omega_1 t))
$$

\n
$$
= -\omega_1 \sin \omega_1 t - 4\omega_1 \sin (\omega_1 t) \cos (\omega_1 t)
$$

\n
$$
\frac{-1}{4} = \cos (\omega_1 t)
$$

Hence $\omega_1 t = \cos^{-1} \left(\frac{-1}{4} \right) \rightarrow \omega_1 t = 104.477^0$ (using calculator). hence

$$
\Delta_{\min} = \cos(104.477^0) + \cos(2 \times 104.477^0)
$$

= -0.2499 - 0.875
= -1.1249

Then $A_{\min} = A_c (1 - 1.1249 A_1)$, so from (5) above

$$
\mu = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}
$$

\n
$$
0.9 = \frac{A_c (1 + 2A_1) - A_c (1 - 1.1249A_1)}{A_c (1 + 2A_1) + A_c (1 - 1.1249A_1)}
$$

\n
$$
= \frac{(1 + 2A_1) - (1 - 1.1249A_1)}{(1 + 2A_1) + (1 - 1.1249A_1)}
$$

\n
$$
= \frac{1 + 2A_1 - 1 + 1.1249A_1}{1 + 2A_1 + 1 - 1.1249A_1}
$$

\n
$$
= \frac{3.1249A_1}{2 + 0.8751A_1}
$$

 $\operatorname*{Hence}% \mathcal{M}(G)$

$$
1.8 + 0.9 (0.875 1A1) - 3.124 9A1 = 0
$$

$$
1.8 - 2.337 3A1 = 0
$$

$$
A_1 = 0.77012 \Big|_{\chi} \quad 0.57 \Big|_{\varphi}
$$

 I^{J}_{φ} , j

 -0.5

Then

 $\overline{2}$

1.3 $part(c)$

 $\rm Since$

$$
A_{\max} = A_c (1 + 2A_1)
$$

= 2236. 1 (1 + 2 × 0.77012)
= 5680. 2 volts
 χ

Then from Ohm's law, $V=RI,$

$$
I_{\text{max}} = \frac{V_{\text{max}}}{R}
$$

=
$$
\frac{5680.2}{50}
$$

= 113.6 amps

$$
\frac{Q_0}{V} \times \frac{1}{2} \times \frac{1}{2}
$$

average current is zero.

 $\bf 3$

Since $\mbox{mean voltage}$ is zero, then

Problem 5-8 $\bf{2}$

answer For normal modulation, let

$$
s_{am}(t) = A_c(1 + m(t))\cos\omega_c t
$$

Maximum envelop is $2A_c$ (i.e. when $m_{\text{max}}(t) = 1$), this means that $A_p = 2A_c$ $\mathop{\text{\rm But}}$

$$
s_{am}\left(t\right) = \overbrace{A_c \cos \omega_c t}^{\text{carrier}} + \overbrace{A_c m\left(t\right) \cos \omega_c t}^{\text{side band}}
$$

So max of sideband is A_c or $\frac{A_p}{2}$. Hence maximum power of sideband is $\frac{1}{2} \left(\frac{A_p}{2}\right)^2 = \frac{A_p^2}{8}$ and for DSB-SC, where now use A_p in place of what we normally use A_c then we obtain

 $s\left(t\right)=A_{p}m\left(t\right)\cos\omega_{c}t$

Hence maximum for sideband is $\frac{1}{2}A_p^2$

Hence we see that power of sideband of DSB-SC to the power of sideband of AM is

$$
\frac{\frac{1}{2}A_p^2}{\frac{A_p^2}{8}} = \boxed{4}
$$

4

 $ok.$ See $sh.$

$\bf{3}$ Problem 5-13

```
(a) Find a mathematical expression that describes the waveform out of each block on the block
        diagram.<br>(b) Show that s(t) is an SSB signal.
5-13 An SSB-AM transmitter is modulated with a sinusoid m(t) = 5 \cos \omega_1 t, where \omega_1 = 2\pi f.
         f_1 = 500 Hz, and A_c = 1.
         (a) Evaluate m(t).<br>
(b) Find the expression for a lower SSB signal.<br>
(c) Find the rms value of the SSB signal.<br>
(d) Find the peak value of the SSB signal.<br>
(e) Find the normalized average power of the SSB signal.<br>
(f) Fi
  5-14 An SSB-AM transmitter is modulated by a rectangular pulse such that m(t) = \prod (t/T) and
            A_c = 1<br>(a) Prove that
                                                                   \hat{m}(t) = \frac{1}{\pi} \ln \left| \frac{2t + T}{2t - T} \right|
```
3.1 $part(a)$

$$
m(t)=5\cos\omega_1 t
$$

 $\hat{m}(t)$ is Hilbert transform of $m(t)$ defined as $\hat{m}(t) = \int m(\tau) \frac{1}{t-\tau} d\tau$. Or we can use the frequency approach where $\hat{m}(t) = F^{-1}[-j \, sign(f) \, M(f)]$ where $M(f)$ is the Fourier transform of $m(t)$.

We can carry out this easily, but since this is a phase 90 change, and $m(t)$ is a cosine function, then

$$
\boxed{\hat{m}(t) = 5\sin\phi_1 t}
$$

3.2 part(b)

$$
s_{SSB}\left(t\right)=A_{c}\left[m\left(t\right)\cos\omega_{c}t\mp\hat{m}\left(t\right)\sin\omega_{c}t\right]
$$

Where the negative sign for upper sided band, and positive sign for the lower sided band, hence

$$
s_{LSSB}(t) = A_c [m(t) \cos \omega_c t + \hat{m}(t) \sin \omega_c t]
$$

= $\frac{5A}{2A_c} [\cos \omega_1 t \cos \omega_c t + \sin \omega_1 t \sin \omega_c t]$
= $\frac{5A}{2A_c} [\cos (\omega_c - \omega_1) t]$

We can plug in numerical values given

$$
\frac{s_{LSSB}(t) = 5[\cos(\omega_c - \omega_1) t]}{\sum}
$$

3.3 $Part(c)$

To find the RMS value of the SSB, pick the above lower side band. First find $P_{av}.$

$$
s_{LSSB}\left(t\right)=5\left[\cos\left(\omega_{1}-\omega_{c}\right)t\right]
$$

 \rm{Hence}

RMS value of signal =
$$
\frac{5}{2\sqrt{2}}
$$

= 3.5355 volt \times

3.4 part(d)

Then maximum of 5 $[\cos{(\omega_1 - \omega_c)} t]$ is when $\cos{(\omega_1 - \omega_c)} t = 1$, hence

$$
s_{LSSB_{\max}}(t) = \boxed{5 \text{volt}}
$$

 3.5 part (e)

$$
P_{av} = \frac{1}{2} \underbrace{A_z^2}_{= 12.5 \text{ watt}} \times P_{av} = \underbrace{1}{12.5 \text{ Watt}} \times P_{av}
$$

 sec sol.

3.6 $Part(f)$

$$
PEP = \frac{1}{2} s_{LSSB_{\text{max}}}^2(t)
$$

$$
= \frac{5^2}{2}
$$

$$
= 12.5 \text{ watt}
$$

Problem 5-18 4

Answer

4.1 $part(a)$

This is a detector for USSB (Upper side band). i.e.

$$
s(t) = A_c (m(t) \cos \omega_c t - \hat{m}(t) \sin \omega_c t)
$$

Note, I wrote A_c and not $\frac{A_c}{2}$ in the above. As long this is a constant, it gives the same analysis.

The reason is because at point *H* the signal is $-\frac{1}{2}m(t)$ and at the *C* point the signal is $+\frac{1}{2}m(t)$, hence due to subtraction at the audio output end we obtain $m(t)$. To receive LSSB, we should change the sign to positive at the audio output end.

See sol.

оk.

 4.2 part(b)

$$
s(t) = A_c (m(t) \cos \omega_c t - \hat{m}(t) \sin \omega_c t)
$$

at point ${\bf B}$

$$
s_B(t) = s(t) * A_c' \cos \omega_c t
$$

= $A_c' A_c (m(t) \cos \omega_c t - \hat{m}(t) \sin \omega_c t) \cos \omega_c t$
= $A_c' A_c (m(t) \cos^2 \omega_c t - \hat{m}(t) \sin \omega_c t \cos \omega_c t)$
= $A_c' A_c (m(t) (\frac{1}{2} + \frac{1}{2} \cos 2\omega_c t) - \frac{1}{2} \hat{m}(t) \sin 2\omega_c t)$
= $\frac{A_c' A_c}{2} m(t) + \frac{A_c' A_c}{2} m(t) \cos 2\omega_c t - \frac{A_c' A_c}{2} \hat{m}(t) \sin 2\omega_c t$

at point $\mathrm C,$ after LPF we obtain

$$
s_c(t) = A_c' A_c \frac{m(t)}{2}
$$

at point ${\cal F}$ we have

$$
s_f(t) = s(t) A_c' \sin \omega_c t
$$

= $A_c' A_c (m(t) \cos \omega_c t - \hat{m}(t) \sin \omega_c t) \sin \omega_c t$
= $A_c' A_c (m(t) \cos (\omega_c t) \sin (\omega_c t) - \hat{m}(t) \sin^2 \omega_c t)$
= $A_c' A_c (m(t) \frac{1}{2} \sin (2\omega_c t) - \hat{m}(t) (\frac{1}{2} - \frac{1}{2} \cos 2\omega_c t))$
= $\frac{A_c' A_c}{2} (m(t) \sin (2\omega_c t) - \hat{m}(t) (1 - \cos 2\omega_c t))$

at point ${\rm G}$ after ${\rm LPF}$

$$
s_g\left(t\right)=-\frac{A_c'A_c}{2}\hat{m}\left(t\right)
$$

at point H after -90^0 phase shift

$$
s_{h}\left(t\right) =+\frac{A_{c}^{'}A_{c}}{2}m\left(t\right)
$$

at point I, we sum $s_h(t)$ and $s_c(t)$, hence $s_i(t) = A_c A_c \frac{m(t)}{2} + \frac{A_c A_c}{2} m(t) = A_c A_c m(t)$

4.3 Part (c)

$$
s(t) = A_c (m(t) \cos \omega_c t + \hat{m}(t) \sin \omega_c t)
$$

This the same as part (b), except now since there is a sign difference, this carries all the way to point I , and then we obtain

$$
s_i(t) = A_c' A_c \frac{m(t)}{2} - \frac{A_c' A_c}{2} m(t) = 0
$$

This if this circuit is used as is to demodulate an LSSB AM signal, then the signal will be lost. So, instead of adding at point I we should now subtract to counter the effect of the negative sign.

9

4.4 part(d)

Since SSB has bandwidth of $3kHz$ then this means the width of upper (or lower) band is $3khz$. This means the signal has $3khz$ bandwidth. This diagram shows the LPF requirement

Hence LPF is centered at zero frequency and have bandwidth of $3khz$ (may be make it a little over $3khz$ band width?)

The IF filter is centered at $455 + (\frac{3}{2})$ for the upper band of the positive band, and centered at $-455 - \left(\frac{3}{2}\right)$ for the upper band of the negative band. (i.e. for the *USSB*).

For LSSB, IF should be centered at $455 - (\frac{3}{2})$ for the lower band of the positive band, and centered at $-455 + (\frac{3}{2})$ for the lower band of the negative pand. (This works if there is a guard band around 455, small one, to make the design of IF possible).

10

 OL