CH. 2 / SIGNALS AND SPECTRA

The voltage across a load is given by $v(t) = A_0 \cos \omega_0 t$, and the current through the 2-3 load is a square wave,

$$i(t) = I_0 \sum_{n = -\infty}^{\infty} \left[\prod \left(\frac{t - nT_0}{T_0/2} \right) - \prod \left(\frac{t - nT_0 - (T_0/2)}{T_0/2} \right) \right]$$

where $\omega_0 = 2\pi/T_0$, $T_0 = 1$ sec, $A_0 = 10$ V, and $I_0 = 5$ mA.

- (a) Find the expression for the instantaneous power and sketch this result as a
- (b) Find the value of the average power.
- The voltage across a $50-\Omega$ resistive load is the positive portion of a cosine wave That is.

$$v(t) = \begin{cases} 10 \cos \omega_0 t, & |t - nT_0| < T_0/4 \\ 0, & t \text{ elsewhere} \end{cases}$$

where n is any integer.

1 sec.

function of time.

- (a) Sketch the voltage and current waveforms. (b) Evaluate the dc values for the voltage and current.
- (c) Find the rms values for the voltage and current.
- (d) Find the total average power dissipated in the load.
- For Prob. 2-4, find the energy dissipated in the load during a 1-hr interval if T_0 :
- Determine whether each of the following signals is an energy signal or a power signal and evaluate the normalized energy or power, as appropriate. (a) $w(t) = \prod (t/T_0)$.
 - (b) $w(t) = \Pi(t/T_0) \cos \omega_0 t$.
 - (c) $w(t) = \cos^2 \omega_0 t$.
 - An average reading power meter is connected to the output circuit of a transmitte
 - 67 W. (a) What is the power in dBm units?
 - (b) What is the power in dBk units?

 - (c) What is the value in dBmV units? Assume that a waveform with a known rms value, $V_{\rm rms}$, is applied across a 50-
 - load. Derive a formula that can be used to compute the dBm value from V_{rms} . An amplifier is connected to a 50- Ω load and driven by a sinusoidal current source as shown in Fig. P2-9. The output resistance of the amplifier is 10 Ω and the int resistance is 2 k Ω . Evaluate the true decibel gain of this circuit.

The transmitter output is fed into a 75- Ω resistive load and the wattmeter read

- 2-10 The voltage (rms) across the 300- Ω antenna input terminals of an FM receiver is 3.5 μ V.
 - (a) Find the input power (watts).
 - (b) Evaluate the input power as measured in decibels below 1 mW (dBm).
 - (c) What would be the input voltage (in microvolts) for the same input power if the input resistance were 75 Ω instead of 300 Ω ?
- 2-11 What is the value for the phasor that corresponds to the voltage waveform v(t) = $12 \sin(\omega_0 t - 25^\circ)$, where $\omega_0 = 2000 \pi$?
- 2-12 A signal is $w(t) = 3 \sin(100\pi t 30^\circ) + 4 \cos(100\pi t)$. Find the corresponding phasor.
- 2-13 Evaluate the Fourier transform of

$$w(t) = \begin{cases} e^{-\alpha t}, & t \ge 1\\ 0, & t < 1 \end{cases}$$

- 2-14 Find the spectrum for the waveform $w(t) = e^{-\pi (t/T)^2}$. What can we say about the width of w(t) and W(f) as T increases? [Hint: Use (A-75).]
- 2-15 Using the convolution property, find the spectrum for

$$w(t) = \sin 2\pi f_1 t \cos 2\pi f_2 t$$

2-16 Find the spectrum (Fourier transform) of the triangle waveform

$$s(t) = \begin{cases} At, & 0 < t < T_0 \\ 0, & t \text{ elsewhere} \end{cases}$$

in terms of A and T_0 .

2-17 Find the spectrum for the waveform shown in Fig. P2-17.

FIGURE P2-17

2-18 If
$$w(t)$$
 has the Fourier transform

$$W(f) = \frac{j2\pi f}{1 + j2\pi f}$$

find X(f) for the following waveforms.

- (a) x(t) = w(2t + 2).

(b) $x(t) = \omega(t-1)e^{-jt}$