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1 Problem 3.24

Figure 1: the Problem statement

s1 (t) = Ac cos (ωct + φ)

DSB-SC signal is

s2 (t) = m (t) cos (ωct)

Hence by adding the above, we obtain

s (t) = m (t) cos (ωct) + Ac cos (ωct + φ)

The above signal is applied to an ideal envelope detector. The output of an envelope
detector is given by

a (t) =
√

s2
I (t) + s2

Q (t)

Since s (t) is a bandpass signal, we need to first write it in the canonical form sI (t) cos (ωct)−
sQ (t) sin (ωct)

Using cos (A + B) = cos A cos B − sin A sin B, then we have

s (t) = m (t) cos (ωct) + Ac [cos ωct cos φ − sin ωct sin φ]
= [m (t) + Ac cos φ] cos (ωct) − Ac sin ωct sin φ

Hence we see that

sI (t) = m (t) + Ac cos φ

sQ (t) = Ac sin φ

Now we can start answering parts (a) and (b)
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1.1 Part(a)
When φ = 0, then

sI (t) = m (t) + Ac

sQ (t) = 0

Hence

a (t) =
√

[m (t) + Ac]2 + 02

= m (t) + Ac

2 Part(b)
When φ 6= 0 and |m (t)| << Ac

2

a (t) =
√

[m (t) + Ac]2 + [Ac sin φ]2

=
√

[m2 (t) + A2
c + 2Acm (t)] + [A2

c sin2 φ]

Since |m (t)| << Ac

2 , then m2 (t) + A2
c + 2Acm (t) ' A2

c hence

a (t) '
√

A2
c + A2

c sin2 φ

= Ac

√
1 + sin2 φ

3 Problem 5.20

Figure 2: the Problem statement
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3.1 Part(a)
An AM signal is s (t) = Ac [1 + µ m (t)] cos (2πfct + θ (t)). Now compare this form with
the one given above, which is s (t) = Ac cos (2πfct + θ (t)). We see that µ = 0, i.e. no
message source exist. Hence percentage of modulation is zero.

3.2 Part(b)

Pav = 1
2A2

c

But Ac = 10, hence

Pav = 100
2

= 50watt

3.3 Part(c)
From the general form for angle modulated signal

s (t) = cos (ωct + θ (t))

Looking at

s (t) = Ac cos

T otal P hase︷ ︸︸ ︷
2πfc︷ ︸︸ ︷(

2π × 108
)
t +

θ(t)︷ ︸︸ ︷
10 cos

(
2π × 103t

)
Phase deviation is

θ (t) = 10 cos
(
2π × 103t

)
Which is maximum when cos (2π × 103t) = 1Hence maximum Phase deviation is 10
radians.

3.4 part(d)
Now, we know that the instantenouse frequency fi is given by

fi (t) = 1
2π

d

dt
(total phase)

= 1
2π

d

dt
[ωct + θ (t)]

= 1
2π

d

dt

[
2πfct + 10 cos

(
2π × 103t

)]
= fc − 10

(
103

)
sin

(
2π × 103t

)
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The deviation of frequency is the difference between fi and the carrier frequency fc. Hence
from the above we see that the frequency deviation is

∆f = fi − fc

= −10
(
103

)
sin

(
2π × 103t

)
So, maximum ∆f occures when sin (2π × 103t) = −1, hence

max (∆f) = 104 Hz

4 Problem 5.22

Figure 3: the Problem statement

The modulating waveform is m (t) Hence (I am assuming it is cos since it said sinusoidal)

m (t) = Am cos (2πfmt)
= 4 cos (2000πt)

Since it is an FM signal, then

s (t) = Ac cos


θ(t)︷ ︸︸ ︷

ωct + 2πkf

∫ t

0
m (x) dx


Where kf is the frequency deviation constant in cycle per volt-second. The gain here means
the frequency gain, which is the frequency deviation (deviation from the fc frequency).
Let ∆f be the frequency deviation in Hz, then

∆f = fi − fc

= 1
2π

d

dt
θ (t)

= kfm (t)
= kf [4 cos (2000πt)]
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4.1 Part(a)
max ∆f is

(∆f)max = 4kf

But kf = 50 hz/volt, hence

(∆f)max = 4 × 50
= 200hz

4.2 Part(b)
Modulation index

β = (∆f)max
fm

= 200
1000

= 0.2

5 Problem 5.24

Figure 4: the Problem statement
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s (t) = Ac cos
(

2πfct + 2πkf

∫ t

0
m (x) dx

)

We are told the carrier frequency has fc = 103.7 Mhz, but there is a multiplier of 8, and
hence the center frequency of the bandpass filter must be 1

8 of the carrier frequency. i.e.

center frequency of the bandpass filter is 1
8103.7 = 103.7

8 = 12.963

Since peak deviation is 75khz, which means the deviation from the central frequency has
maximum of 75khz, then

75
8 = 9.375 khz

Hence bandwidth from center of frequency of bandwidth filter is 9.375 but we need to add
frequency width of the audio which is 15000 − 20 = 14980 Hz on both side, hence

Bandwidth of BPF is 9.375 × 103 ± 14980

5.1 Part (b)
To do

6 Problem 5.26

Figure 5: the Problem statement

s (t) = Ac cos (ωct + 20 cos ω1t)

where Ac = 500, f1 = 1khz, fc = 100Mhz

6.1 Part(a)
The general form of the above PM signal is
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s (t) = Ac cos

ωct +
phase deviation︷ ︸︸ ︷

kpm (t)


Where kpm (t) is the phase deviation, and kp is the phase deviation constant in radians
per volt. Hence we write

kpm (t) = 20 cos ω1t

Then

m (t) = 20 cos ω1t

kp

But we are given that kp = 100 rad/voltage and f1 = 1000hz, then the above becomes

m (t) = 20 cos (2000πt)
100

= 0.2 cos (2000πt)

its frequency is 1 khz and its peak value is 0.2 volts

6.2 Part(b)
The general form of the above FM signal is

s (t) = Ac cos
(

ωct + kf

∫ t

0
m (x) dx

)

Where kf is the frequency deviation constant in radians per volt-second

Hence

kf

∫ t

0
m (x) dx = 20 cos ω1t

Solve for m (t) in the above, given that kf = 106radians per volt-second, hence

kf

∫ t

0
m (x) dx = 20 cos ω1t∫ t

0
m (x) dx = 20 cos (2000πt)

106
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Take derivative of both sides, we obtain

m (t) = 20
106 [− sin (2000πt) × 2000π]

= −20 × 2000π

106 sin (2000πt)

= −0.126 sin (2000πt)

Hence its peak value is 0.126 and its frequency is 1 khz

6.3 Part(c)

Pav = 〈s2 (t)〉
50

=
1
2A2

c

50

= 5002

100
= 2500watt

PEP is average power obtained if the complex envelope is held constant at its maximum
values. i.e. (the normalized PEP) is

PEP = 1
2 [max (|s̃ (t)|)]2

Since

s (t) = Ac cos (ωct + 20 cos ω1t)
= Ac [cos ωct cos (20 cos ω1t) − sin ωct sin (20 cos ω1t)]

=
sI(t)︷ ︸︸ ︷

Ac cos (20 cos ω1t) cos ωct −
sQ(t)︷ ︸︸ ︷

Ac sin (20 cos ω1t) sin ωct

Hence

s̃ (t) = sI (t) + jsQ (t)
= Ac cos (20 cos ω1t) + jAc sin (20 cos ω1t)

Then

|s̃ (t)| =
√

[Ac cos (20 cos ω1t)]2 + [Ac sin (20 cos ω1t)]2

= Ac

√
cos2 (20 cos ω1t) + sin2 (20 cos ω1t)

= Ac
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Hence the non-normalized PEP is

PEP =
1
2 [Ac]2

50

= 5002

100
= 2500watt

ps. is there an easier or more direct way to find PEP than what I did? (assuming it is
correct)
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7 Key solution
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