EE 443

Ke

pagel

CHAPTER 2

Representation of Signals and Systems

Problem 2.1

(a) The half-cosine pulse g(t) of Fig. P2.i(a) may be considered as the product of the rectangular function rect(t/T) and the sinusoidal wave A $cos(\pi t/T)$. Since

$$rect(\frac{t}{T}) \Rightarrow T sinc(fT)$$

$$A \cos(\frac{\pi t}{T}) \rightleftharpoons \frac{A}{2}[\delta(f - \frac{1}{2T}) + \delta(f + \frac{1}{2T})]$$

and multiplication in the time domain is transformed into convolution in the frequency domain, it follows that

$$G(f) = [T \operatorname{sinc}(fT)] \approx \left\{\frac{A}{2}[\delta(f-\frac{1}{2T}) + \delta(f+\frac{1}{2T})]\right\}$$

where A denotes convolution. Therefore, noting that

$$sinc(fT) \approx \delta(f - \frac{1}{2T}) = sinc[T(f - \frac{1}{2T})]$$

$$sinc(fT) \stackrel{?}{\bowtie} \delta(f + \frac{1}{2T}) = sinc[T(f + \frac{1}{2T})]$$

we obtain the desired result

$$G(f) = \frac{AT}{2} \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right]$$

(b) The half-sine pulse of Fig. P2.1(b) may be obtained by shifting the half-cosine pulse to the right by T/2 seconds. Since a time shift of T/2 seconds is equivalent to multiplication by $\exp(-j\pi fT)$ in the frequency domain, it follows that the Fourier transform of the half-sine pulse is

$$G(f) = \frac{AT}{2} \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right] exp(-j\pi fT)$$

(c) The Fourier transform of a half-sine pulse of duration aT is equal to

$$\frac{1a|AT}{2} \left[sinc(afT - \frac{1}{2}) + sinc(afT + \frac{1}{2}) \right] exp(-j\pi afT)$$

(d) The Fourier transform of the negative half-sine pulse shown in Fig. P2.1(c) is obtained from the result of part (c) by putting a=-1, and multiplying the result by -1, and so we find that its Fourier transform is equal to

$$-\frac{AT}{2}[sinc(fT+\frac{1}{2}) + sinc(fT-\frac{1}{2})]exp(j_{\pi}fT)$$

(e) The full-sine pulse of Fig. P2.I(d) may be considered as the superposition of the half-sine pulses shown in parts (b) and (c) of the figure. The Fourier transform of this pulse is therefore

$$G(f) = \frac{AT}{2} \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right] \left[exp(-j\pi fT) - exp(j\pi fT) \right]$$

$$= -jAT \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right] sin(\pi fT)$$

$$= -jAT \left[\frac{sin(\pi fT - \frac{\pi}{2})}{\pi fT - \frac{\pi}{2}} + \frac{sin(\pi fT + \frac{\pi}{2})}{\pi fT + \frac{\pi}{2}} \right] sin(\pi fT)$$

$$= -jAT \left[-\frac{cos(\pi fT)}{\pi fT - \frac{\pi}{2}} + \frac{cos(\pi fT)}{\pi fT + \frac{\pi}{2}} \right] sin(\pi fT)$$

$$= jAT \left[\frac{sin(2\pi fT)}{2\pi fT - \pi} - \frac{sin(2\pi fT)}{2\pi fT + \pi} \right]$$

$$= jAT \left[-\frac{sin(2\pi fT - \pi)}{2\pi fT - \pi} + \frac{sin(2\pi fT + \pi)}{2\pi fT + \pi} \right]$$

Problem 2.2

Consider next an exponentially damped sinusoidal wave defined by (see Fig. 1):

$$g(t) = \exp(-t)\sin(2\pi f_c t)u(t)$$

In this case, we note that

$$\sin(2\pi f_{c}t) = \frac{1}{2j} \left[\exp(j2\pi f_{c}t) - \exp(-j2\pi f_{c}t) \right]$$

Therefore, applying the frequency-shifting property to the Fourier transform pair we find that the Fourier transform of the damped sinusoidal wave of Fig. 1 is

$$G(f) = \frac{1}{2j} \left[\frac{1}{1 + j2\pi(f - f_c)} - \frac{1}{1 + j2\pi(f + f_c)} \right]$$
$$= \frac{2\pi f_c}{(1 + j2\pi f)^2 + (2\pi f_c)^2}$$

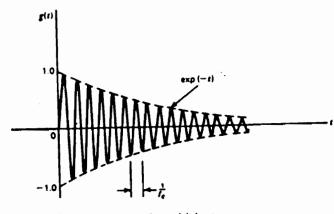


Figure I Damped sinusoidal wave.

Problem 2.3

EE

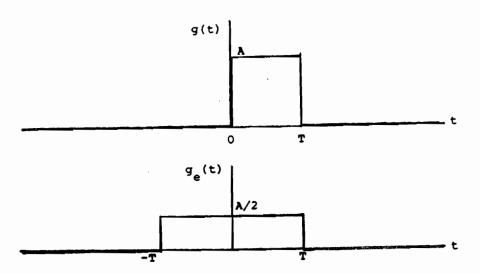
(a) The even part $g_e(t)$ of a pulse g(t) is given by

$$g_e(t) = \frac{1}{2}[g(t) + g(-t)]$$

Therefore, for $g(t) = A \operatorname{rect}(\frac{t}{T} - \frac{1}{2})$, we obtain

$$g_{e}(t) = \frac{A}{2} \left[rect(\frac{t}{T} - \frac{1}{2}) + rect(-\frac{t}{T} - \frac{1}{2}) \right]$$
$$= \frac{A}{2} \left[rect(\frac{t}{2T}) \right]$$

which is shown illustrated below:



HW#1

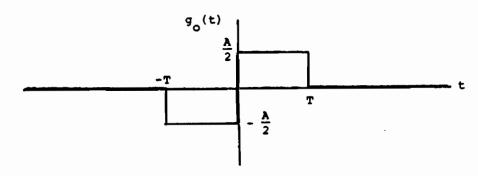
page 4

ne odd part of g(t) is defined by

$$g_0(t) = \frac{1}{2}[g(t) - g(-t)]$$

= $\frac{A}{2}[rect(\frac{t}{T} - \frac{1}{2}) - rect(-\frac{t}{T} - \frac{1}{2})]$

which is illustrated below:



(b) The Fourier transform of the even part is

$$G_{e}(f) = AT sinc(2fT)$$

The Fourier transform of the odd part is

$$G_{o}(f) = \frac{AT}{2} \operatorname{sinc}(fT) \exp(-j\pi fT) - \frac{AT}{2} \operatorname{sinc}(fT) \exp(j\pi fT)$$
$$= \frac{AT}{j} \operatorname{sinc}(fT) \sin(\pi fT)$$

Problem 2.4

$$G(f) = \begin{cases} \exp(j\frac{\pi}{2}), & -\pi \leq f \leq 0 \\ \exp(-j\frac{\pi}{2}), & 0 \leq f \leq \pi \end{cases}$$
otherwise

Therefore, applying the formula for the inverse Fourier transform, we get

$$g(t) = \int_{-W}^{0} \exp(j\frac{\pi}{2})\exp(j2\pi ft)df + \int_{0}^{W} \exp(-j\frac{\pi}{2})\exp(j2\pi ft)dt$$

Replacing f with -f in the first integral and then interchanging the limits of integration:

g(t) =
$$\int_{0}^{W} \exp(-j2\pi ft + j\frac{\pi}{2}) + \exp(j2\pi ft - j\frac{\pi}{2})]df$$

= 2
$$\int_{0}^{W} \cos(2\pi f t - \frac{\pi}{2}) df$$

$$= \left[-\frac{\cos(2\pi ft)}{\pi t} \right]_0^W$$

$$=\frac{1}{\pi t}[1-\cos(2\pi Wt)]$$

$$= \frac{2}{\pi t} \sin^2(\pi Wt)$$