HW 1 EGEE 443, Electronic Communication Systems Fall 2008 California State University, Fullerson

Nasser M. Abbasi

Fall 2008 Compiled on May 29, 2019 at 11:40pm

Contents

1	Questions	2
2	Problem 2.1 2.1 part(a) 2.2 part(b) 2.3 part(c) 2.4 part(d) 2.5 part(e)	5 5 5
3	Problem 2.2	6
4	Problem 2.3 4.1 part(a)	
5	Problem 2.4	9
6	Key solution	10
7	my graded HW	15

1 Questions

HW #1 EE 443 page 96 Representation Of Signals And Systems 2.19 in new Book. Find the Fourier transform of the half-cosine pulse shown in Fig. P2.4(a). (b) Apply the time-shifting property to the result obtained in part (a) to evaluate the spectrum of the half-sine pulse shown in Fig. P2.4(b). (c) What is the spectrum of a half-sine pulse having a duration equal to aT? (d) What is the spectrum of the negative half-sine pulse shown in Fig. P2.4(c)? (e) Find the spectrum of the single sine pulse shown in Fig. P2.4(d). Hint: O(t) = A cos (nt). rect (+) Figure P2.4 Prob. # 2 -2 GIVEN G(t) = exp(-t) Sim(217fet) ult). Find the Fourier Transform of glt): F.T[glt] = ? 2.20 in Book. => g(+) = ge (+) + go(+) $g(t) = g_{e}(t) + g_{e}(t)$ The even part is defined by $\mathcal{J}_{\mathcal{E}}^{(t)=\frac{1}{2}\left[g(t)+g(-t)\right]}$ (That in find F. T. of gelt) on gold) and the odd part is defined by $g_{g}(t) = \frac{1}{2} [g(t) - g(-t)]$ $g(t) = A \operatorname{rect}\left(\frac{t}{T} - \frac{1}{2}\right)$ (b) What are the Fourier transforms of these two parts of the pulse?

2.4

Problem Determine the inverse Fourier transform of the frequency function G(f) defined by the amplitude and phase spectra shown in Fig. P

Figure P2.5

$2.1 \quad part(a)$

Let F(g(t)) be the Fourier Transform of g(t), i.e. F(g(t)) = G(f). First we use the given hint and note that g(t) can be written as follows

$$g(t) = A\cos\left(\frac{\pi t}{T}\right) \ rect\left(\frac{t}{T}\right)$$

Start by writing $\frac{\pi t}{T}$ as $2\pi f_0 t$, where $f_0 = \frac{1}{2T}$. Now using the property that multiplication in time domain is the same as convolution in frequency domain, we obtain

$$G(f) = F\left(A\cos\left(2\pi f_0 t\right)\right) \otimes F\left(rect\left(\frac{t}{T}\right)\right) \tag{1}$$

But

$$F (A\cos(2\pi f_0 t)) = A F (\cos(2\pi f_0 t))$$

$$= A F \left(\frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}\right)$$

$$= \frac{A}{2} F \left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}\right)$$

$$= \frac{A}{2} \left[F \left(e^{j2\pi f_0 t}\right) + F \left(e^{-j2\pi f_0 t}\right)\right]$$

But $F\left(e^{j2\pi f_0 t}\right) = \delta\left(f - f_0\right)$ and $F\left(e^{-j2\pi f_0 t}\right) = \delta\left(f + f_0\right)$ hence the above becomes

$$F\left(A\cos\left(2\pi f_0 t\right)\right) = \frac{A}{2} \left[\delta\left(f - f_0\right) + \delta\left(f + f_0\right)\right] \tag{2}$$

Substitute (2) into (1) we obtain

$$G(f) = \frac{A}{2} \left[\delta \left(f - f_0 \right) + \delta \left(f + f_0 \right) \right] \otimes F \left(rect \left(\frac{t}{T} \right) \right)$$

But $F\left(rect\left(\frac{t}{T}\right)\right) = T\operatorname{sinc}\left(fT\right)$, hence the above becomes

$$F\left(g\left(t\right)\right) = \frac{A}{2} \left[\delta\left(f - f_0\right) + \delta\left(f + f_0\right) \right] \otimes T\operatorname{sinc}\left(fT\right)$$

Now using the property of convolution with a delta, we obtain

$$G(f) = \frac{AT}{2} \left[\operatorname{sinc} \left((f - f_0) T \right) + \operatorname{sinc} \left((f + f_0) T \right) \right]$$

note: by doing more trigonometric manipulations, the above can be written as

$$G(f) = \frac{2AT\cos(\pi fT)}{\pi(1 - 4f^2T^2)}$$

2.2 part(b)

Apply the time shifting property $g\left(t\right) \Longleftrightarrow G\left(f\right)$, hence $g\left(t-t_{0}\right) \Longleftrightarrow e^{-j2\pi ft_{0}}G\left(f\right)$

From part(a) we found that $F\left(g\left(t\right)\right)=\frac{AT}{2}\left[\operatorname{sinc}\left(\left(f-f_{0}\right)T\right)+\operatorname{sinc}\left(\left(f+f_{0}\right)T\right)\right]$, so in this part, the function in part(a) is shifted in time to the right by amount $\frac{T}{2}$, let the new function be $h\left(t\right)$, hence we need to multiply $G\left(f\right)$ by $e^{-j2\pi f\frac{T}{2}}$, hence

$$F\left(g\left(t - \frac{T}{2}\right)\right) = F\left(h\left(t\right)\right)$$

$$= H\left(f\right)$$

$$= e^{-j\pi fT} \left(\frac{AT}{2} \left[\operatorname{sinc}\left(\left(f - f_0\right)T\right) + \operatorname{sinc}\left(\left(f + f_0\right)T\right)\right]\right)$$

2.3 part(c)

Using the time scaling property $g(t) \iff G(f)$, hence $g(at) \iff \frac{1}{|a|}G\left(\frac{f}{a}\right)$, and since we found in part(b) that $H(f) = e^{-j\pi fT}\left(\frac{AT}{2}\left[\operatorname{sinc}\left((f-f_0)T\right) + \operatorname{sinc}\left((f+f_0)T\right)\right]\right)$, hence

$$\digamma \{h(at)\} = \frac{1}{|a|} e^{-j\pi \frac{f}{a}T} \left(\frac{AT}{2} \left[\operatorname{sinc} \left(\left(\frac{f}{a} - f_0 \right) T \right) + \operatorname{sinc} \left(\left(\frac{f}{a} + f_0 \right) T \right) \right] \right)$$

2.4 part(d)

Let f(t) be the function which is shown in figure 2.4c, we see that

$$f\left(t\right) = -h\left(-t\right)$$

where h(t) is the function shown in figure 2.4(b). We found in part(b) that

$$H(f) = e^{-j\pi fT} \left(\frac{AT}{2} \left[\operatorname{sinc} \left((f - f_0) T \right) + \operatorname{sinc} \left((f + f_0) T \right) \right] \right)$$

Now using the property that $h\left(t\right) \iff H\left(f\right)$ then $h\left(-t\right) \iff \frac{1}{\left|-1\right|}H\left(-f\right) = H\left(-f\right)$, hence

$$F\left\{f\left(t\right)\right\} = -e^{j\pi fT} \left(\frac{AT}{2} \left[\operatorname{sinc}\left(\left(-f - f_0\right)T\right) + \operatorname{sinc}\left(\left(-f + f_0\right)T\right)\right]\right)$$

2.5 part(e)

This function, call it $g_1(t)$, is the sum of the functions shown in figure 2.4(b) and figure 2.4(c), then the Fourier transform of $g_1(t)$ is the sum of the Fourier transforms of the functions in these two figures (using the linearity of the Fourier transforms). Hence

$$F(g_{1}(t)) = e^{-j\pi fT} \left(\frac{AT}{2} \left[\operatorname{sinc} ((f - f_{0}) T) + \operatorname{sinc} ((f + f_{0}) T) \right] \right) - e^{j\pi fT} \left(\frac{AT}{2} \left[\operatorname{sinc} ((-f - f_{0}) T) + \operatorname{sinc} ((-f + f_{0}) T) \right] \right)$$

The above can be simplified to

$$F(g_{1}(t)) = \frac{AT}{2} \left(\operatorname{sinc} ((f + f_{0}) T) \left[e^{j\pi fT} + e^{-j\pi fT} \right] + \operatorname{sinc} ((f - f_{0}) T) \left[e^{j\pi fT} + e^{-j\pi fT} \right] \right)$$

$$= \frac{AT}{2} \left(\operatorname{sinc} ((f + f_{0}) T) \left[2 \cos (\pi fT) \right] + \operatorname{sinc} ((f - f_{0}) T) \left[2 \cos (\pi fT) \right] \right)$$

Hence

$$F\left(g_{1}\left(t\right)\right) = AT\cos\left(\pi f T\right)\left[\operatorname{sinc}\left(\left(f+f_{0}\right) T\right)+\operatorname{sinc}\left(\left(f-f_{0}\right) T\right)\right]$$

3 Problem 2.2

Given $g(t) = e^{-t} \sin(2\pi f_c t) u(t)$ find $\digamma(g(t))$ Answer:

$$F\left(g\left(t\right)\right) = F\left(e^{-t}u\left(t\right)\right) \otimes F\left(\sin\left(2\pi f_{c}t\right)\right) \tag{1}$$

But

$$F\left(\sin\left(2\pi f_0 t\right)\right) = \frac{1}{2j} \left[\delta\left(f - f_c\right) - \delta\left(f + f_c\right)\right] \tag{2}$$

and

$$F\left(e^{-t}u\left(t\right)\right) = \int_{0}^{\infty} e^{-t}e^{-j2\pi ft}dt = \int_{0}^{\infty} e^{-t(1+j2\pi f)}dt$$

$$= \frac{\left[e^{-t(1+j2\pi f)}\right]_{0}^{\infty}}{-(1+j2\pi f)} = \frac{0-1}{-(1+j2\pi f)}$$

$$= \frac{1}{1+j2\pi f}$$
(3)

Substitute (2) and (3) into (1) we obtain

$$F(g(t)) = \frac{1}{2j} \left[\delta(f - f_c) - \delta(f + f_c) \right] \otimes \frac{1}{1 + j2\pi f}$$
$$= \frac{1}{2j} \left[\frac{1}{1 + j2\pi (f - f_c)} - \frac{1}{1 + j2\pi (f + f_c)} \right]$$

4 Problem 2.3

4.1 part(a)

$$g(t) = A \operatorname{rect}\left(\frac{t}{T} - \frac{1}{2}\right)$$
$$= A \operatorname{rect}\left(\frac{t - \frac{T}{2}}{T}\right)$$

hence it is a rect function with duration T and centered at $\frac{T}{2}$ and it has height A

$$g_e = \frac{g(t) + g(-t)}{2}$$

$$g_o = \frac{g(t) - g(-t)}{2}$$
(1)

Hence $g_e = \frac{1}{2} \left[A \ rect \left(\frac{t}{T} - \frac{1}{2} \right) + A \ rect \left(\frac{-t}{T} - \frac{1}{2} \right) \right]$ which is a rectangular pulse of duration 2T and centered at zero and height A

 $g_o = \frac{1}{2} \left[A \ rect \left(\frac{t}{T} - \frac{1}{2} \right) - A \ rect \left(\frac{-t}{T} - \frac{1}{2} \right) \right]$ which is shown in the figure below

Figure 1: rectangular pulse

4.2 part(b)

$$F(g(t)) = F\left(A \operatorname{rect}\left(\frac{t - \frac{T}{2}}{T}\right)\right)$$

$$= AT \operatorname{sinc}(fT) e^{-j2\pi f\frac{T}{2}}$$

$$= AT \operatorname{sinc}(fT) e^{-j\pi fT}$$
(2)

Now using the property that $g(t) \Leftrightarrow G(f)$, then $g(-t) \Leftrightarrow G(-f)$, then we write

$$F(g(-t)) = G(-f)$$

$$= AT \operatorname{sinc}(-fT) e^{j\pi fT}$$
(3)

Now, using linearity of Fourier transform, then from (1) we obtain

$$F\left(g_{e}\left(t\right)\right) = F\left(\frac{g\left(t\right) + g\left(-t\right)}{2}\right)$$

$$= \frac{1}{2}\left[F\left(g\left(t\right)\right) + F\left(g\left(-t\right)\right)\right]$$

$$= \frac{1}{2}\left[AT \operatorname{sinc}\left(fT\right) \ e^{-j\pi fT} + AT \operatorname{sinc}\left(-fT\right) \ e^{j\pi fT}\right]$$

$$= \frac{AT}{2}\left[\operatorname{sinc}\left(fT\right) \ e^{-j\pi fT} + \operatorname{sinc}\left(-fT\right) \ e^{j\pi fT}\right]$$

now sinc $(-fT) = \frac{\sin(-\pi fT)}{-\pi fT} = \frac{-\sin(\pi fT)}{-\pi fT} = \text{sinc}(fT)$, hence the above becomes

$$F\left(g_{e}\left(t\right)\right) = \frac{AT\operatorname{sinc}\left(fT\right)}{2} \left[e^{-j\pi fT} + e^{j\pi fT}\right]$$
$$= \frac{AT\operatorname{sinc}\left(fT\right)}{2} \left[2\operatorname{cos}\left(\pi fT\right)\right]$$

Hence

$$F\left(g_{e}\left(t\right)\right) = AT\operatorname{sinc}\left(fT\right)\cos\left(\pi fT\right)$$

Now to find the Fourier transform of the odd part

$$g_o = \frac{g(t) - g(-t)}{2}$$

$$F(g_{o}(t)) = F\left(\frac{g(t) - g(-t)}{2}\right)$$

$$= \frac{1}{2} [F(g(t)) - F(g(-t))]$$

$$= \frac{1}{2} [AT \operatorname{sinc}(fT) e^{-j\pi fT} - AT \operatorname{sinc}(-fT) e^{j\pi fT}]$$

$$= \frac{AT}{2} [\operatorname{sinc}(fT) e^{-j\pi fT} - \operatorname{sinc}(fT) e^{j\pi fT}]$$

$$= \frac{AT \operatorname{sinc}(fT)}{2} [e^{-j\pi fT} - e^{j\pi fT}]$$

$$= \frac{-AT \operatorname{sinc}(fT)}{2} [e^{j\pi fT} - e^{-j\pi fT}]$$

$$= \frac{-AT \operatorname{sinc}(fT)}{2} [2j \sin(\pi fT)]$$

Hence

$$F\left(g_{o}\left(t\right)\right) = -jAT\operatorname{sinc}\left(fT\right)\operatorname{sin}\left(\pi fT\right)$$

5 Problem 2.4

$$G(f) = |G(f)| e^{j \arg(G(f))}$$

Hence from the diagram given, we write

$$G(f) = \begin{cases} 1 \times e^{j\frac{\pi}{2}} & -W \le f < 0\\ 1 \times e^{-j\frac{\pi}{2}} & 0 \le f \le W \end{cases}$$

Therefore, we can use a rect function now to express G(f) over the whole f range as follows

$$G(f) = e^{j\frac{\pi}{2}} rect\left(\frac{f + \frac{W}{2}}{W}\right) - e^{-j\frac{\pi}{2}} rect\left(\frac{f - \frac{W}{2}}{W}\right)$$

Now, noting that $\delta(t-t_0) \Leftrightarrow e^{-j2\pi t_0}$ and $\delta(t+t_0) \Leftrightarrow e^{j2\pi t_0}$ and $W \operatorname{sinc}(tW) \Leftrightarrow \operatorname{rect}\left(\frac{f}{W}\right)$ and noting that shift in frequency by $\frac{W}{2}$ becomes multiplication by $e^{-j2\pi t \frac{W}{2}}$, then now we write

$$\begin{split} g\left(t\right) &= \digamma^{-1}\left(e^{j\frac{\pi}{2}}\ rect\left(\frac{f+\frac{W}{2}}{W}\right)\right) - \digamma^{-1}\left(e^{-j\frac{\pi}{2}}rect\left(\frac{f-\frac{W}{2}}{W}\right)\right) \\ &= \digamma^{-1}\left(e^{j\frac{\pi}{2}}\right)\ \otimes \digamma^{-1}\left(rect\left(\frac{f+\frac{W}{2}}{W}\right)\right) - \digamma^{-1}\left(e^{-j\frac{\pi}{2}}\right)\ \otimes \digamma^{-1}\left(rect\left(\frac{f-\frac{W}{2}}{W}\right)\right) \end{split}$$

Hence

$$\begin{split} g\left(t\right) &= \left[\delta\left(t + \frac{\pi}{2}\right) \otimes W \operatorname{sinc}\left(tW\right) e^{-j2\pi t \frac{W}{2}}\right] - \left[\delta\left(t - \frac{\pi}{2}\right) \otimes W \operatorname{sinc}\left(tW\right) e^{j2\pi t \frac{W}{2}}\right] \\ &= W \operatorname{sinc}\left(\left(t + \frac{\pi}{2}\right)W\right) e^{-j2\pi\left(t + \frac{\pi}{2}\right)\frac{W}{2}} - W \operatorname{sinc}\left(\left(t - \frac{\pi}{2}\right)W\right) e^{j2\pi\left(t - \frac{\pi}{2}\right)\frac{W}{2}} \\ &= W \operatorname{sinc}\left(\left(t + \frac{\pi}{2}\right)W\right) e^{-j\pi W t - j\pi W \frac{\pi}{2}} - W \operatorname{sinc}\left(\left(t - \frac{\pi}{2}\right)W\right) e^{j\pi W t - j\pi W \frac{\pi}{2}} \end{split}$$

$$g(t) = We^{-\frac{j\pi^2W}{2}} \left(\operatorname{sinc}\left(\left(t + \frac{\pi}{2}\right)W\right)e^{-j\pi Wt} - \operatorname{sinc}\left(\left(t - \frac{\pi}{2}\right)W\right)e^{j\pi Wt}\right)$$

6 Key solution

EE 443

HW#/
Key

pagel

Representation of Signals and Systems

Problem 2.1

(a) The half-cosine pulse g(t) of Fig. P2.§(a) may be considered as the product of the rectangular function rect(t/T) and the sinusoidal wave A $\cos(\pi t/T)$. Since

rect
$$(\frac{t}{1}) \Rightarrow T \operatorname{sinc}(fT)$$

$$A \cos(\frac{\pi t}{2}) \Rightarrow \frac{A}{2}[\delta(f - \frac{1}{2\pi}) + \delta(f + \frac{1}{2\pi})]$$

and multiplication in the time domain is transformed into convolution in the frequency domain, it follows that

$$G(f) = [T sinc(fT)] \frac{A}{\sqrt{c}} \left\{ \frac{A}{2} [\delta(f - \frac{1}{2T}) + \delta(f + \frac{1}{2T})] \right\}$$

where $\frac{A}{b^2}$ denotes convolution. Therefore, noting that

$$\operatorname{sinc}(fT) \stackrel{\wedge}{\nearrow} \delta(f + \frac{1}{2T}) = \operatorname{sinc}[T(f + \frac{1}{2T})]$$

we obtain the desired result

$$G(f) = \frac{AT}{2} \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right]$$

(b) The half-sine pulse of Fig. P2.1(b) may be obtained by shifting the half-cosine pulse to the right by T/2 seconds. Since a time shift of T/2 seconds is equivalent to multiplication by $\exp(-j\pi fT)$ in the frequency domain, it follows that the Fourier transform of the half-sine pulse is

$$G(f) = \frac{AT}{2} \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right] exp(-j\pi fT)$$

(c) The Fourier transform of a half-sine pulse of duration aT is equal to

$$\frac{\ln |AT|}{2} \left[sinc(afT - \frac{1}{2}) + sinc(afT + \frac{1}{2}) \right] exp(-j\pi afT)$$

(d) The Fourier transform of the negative half-sine pulse shown in Fig. P2.1(c) is obtained from the result of part (c) by putting a=-1, and multiplying the result by -1, and so we find that its Fourier transform is equal to

EE 443 HW#1

pagez

$$-\frac{AT}{2}[\operatorname{sinc}(fT + \frac{1}{2}) + \operatorname{sinc}(fT - \frac{1}{2})]\exp(j\pi fT)$$

= jAT[sinc(2fT+1) - sinc(2fT-1)]

(e) The full-sine pulse of Fig. P2.1(d) may be considered as the superposition of the half-sine pulses shown in parts (b) and (c) of the figure. The Fourier transform of this pulse is therefore

$$G(f) = \frac{AT}{2} \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right] \left[exp(-j\pi fT) - exp(j\pi fT) \right]$$

$$= -jAT \left[sinc(fT - \frac{1}{2}) + sinc(fT + \frac{1}{2}) \right] sin(\pi fT)$$

$$= -jAT \left[\frac{sin(\pi fT - \frac{\pi}{2})}{\pi fT - \frac{\pi}{2}} + \frac{sin(\pi fT + \frac{\pi}{2})}{\pi fT + \frac{\pi}{2}} \right] sin(\pi fT)$$

$$= -jAT \left[-\frac{cos(\pi fT)}{\pi fT - \frac{\pi}{2}} + \frac{cos(\pi fT)}{\pi fT + \frac{\pi}{2}} \right] sin(\pi fT)$$

$$= jAT \left[\frac{sin(2\pi fT)}{2\pi fT - \pi} - \frac{sin(2\pi fT)}{2\pi fT + \pi} \right]$$

$$= jAT \left[-\frac{sin(2\pi fT - \pi)}{2\pi fT - \pi} + \frac{sin(2\pi fT + \pi)}{2\pi fT + \pi} \right]$$

Problem 2.2

Consider next an exponentially damped sinusoidal wave defined by (see Fig. 1):

$$g(t) = \exp(-t)\sin(2\pi f_c t)u(t)$$

In this case, we note that

$$\sin(2\pi f_c t) = \frac{1}{2j} \left[\exp(j2\pi f_c t) - \exp(-j2\pi f_c t) \right]$$

Therefore, applying the frequency-shifting property to the Fourier transform pair we find that the Fourier transform of the damped sinusoidal wave of Fig. 1 18

$$G(f) = \frac{1}{2j} \left[\frac{1}{1 + j2\pi(f - f_c)} - \frac{1}{1 + j2\pi(f + f_c)} \right]$$
$$= \frac{2\pi f_c}{(1 + j2\pi f)^2 + (2\pi f_c)^2}$$

EE

443

Hw#1 pune 3

Damped sinusoidal wave.

Problem 2.3

(a) The even part $g_e(t)$ of a pulse g(t) is given by

$$g_e(t) = \frac{1}{2}[g(t) + g(-t)]$$

Therefore, for $g(t) = A \operatorname{rect}(\frac{t}{T} - \frac{1}{2})$, we obtain

$$g_{e}(t) = \frac{A}{2} \left[\operatorname{rect}(\frac{t}{T} - \frac{1}{2}) + \operatorname{rect}(-\frac{t}{T} - \frac{1}{2}) \right]$$
$$= \frac{A}{2} \left[\operatorname{rect}(\frac{t}{2T}) \right]$$

which is shown illustrated below:

EE 443

HW#1

page 4

ne odd part of g(t) is defined by

$$g_0(t) = \frac{1}{2}[g(t) - g(-t)]$$

= $\frac{A}{2}[rect(\frac{t}{1} - \frac{1}{2}) - rect(-\frac{t}{1} - \frac{1}{2})]$

which is illustrated below:

(b) The Fourier transform of the even part is

$$G_{\bullet}(f) = AT \operatorname{sinc}(2fT)$$

The Fourier transform of the odd part is

$$G_{o}(f) = \frac{AT}{2} \operatorname{sinc}(fT) \exp(-j\pi fT)$$

$$-\frac{AT}{2} \operatorname{sinc}(fT) \exp(j\pi fT)$$

$$=\frac{AT}{j} \operatorname{sinc}(fT) \sin(\pi fT)$$

Problem 2.4

$$G(f) = \begin{cases} \exp(j\frac{\pi}{2}), & -W \leq f \leq 0 \\ \exp(-j\frac{\pi}{2}), & 0 \leq f \leq W \\ 0, & \text{otherwise} \end{cases}$$

Therefore, applying the formula for the inverse Fourier transform, we get

$$g(t) = \int_{-W}^{0} \exp(j\frac{\pi}{2})\exp(j2\pi ft)df + \int_{0}^{W} \exp(-j\frac{\pi}{2})\exp(j2\pi ft)dt$$

Replacing f with -f in the first integral and then interchanging the limits of integration:

EE 443

HW#1

jiege 5

 $g(t) = \int_{0}^{W} \exp(-j2\pi ft + j\frac{\pi}{2}) + \exp(j2\pi ft - j\frac{\pi}{2})]df$

= 2
$$\int_{M}^{\infty} \cos(2\pi f t - \frac{\pi}{2}) df$$

$$= \left[-\frac{\cos(2\pi ft)}{\pi t} \right]_{0}^{W}$$
$$= \frac{1}{\pi t} [1 - \cos(2\pi Wt)]$$

$$= \frac{1}{-t} [1 - \infty s(2\pi Wt)]$$

$$=\frac{2}{\pi t} \sin^2(\pi Wt)$$

$7 \quad \text{my graded HW}$

 $HW1,\, EGEE\,\, 443.\,$ CSUF, Fall $\,2008$

Nasser Abbasi

September 11, 2008

part(a) 1.1

Let F(g(t)) be the Fourier Transform of g(t), i.e. F(g(t)) = G(f). First we use the given hint and note that g(t) can be written as follows

$$g\left(t
ight) = A\cos\left(rac{\pi t}{T}
ight) \; rect\left(rac{t}{T}
ight)$$

Start by writing $\frac{\pi t}{T}$ as $2\pi f_0 t$, where $f_0 = \frac{1}{2T}$. Now using the property that multiplication in time domain is the same as convolution in frequency domain, we obtain

$$G(f) = F(A\cos(2\pi f_0 t)) \otimes F\left(rect\left(\frac{t}{T}\right)\right)$$
 (1)

But

$$F(A\cos(2\pi f_0 t)) = A F(\cos(2\pi f_0 t))$$

$$= A F\left(\frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2}\right)$$

$$= \frac{A}{2} F\left(e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}\right)$$

$$= \frac{A}{2} [F(e^{j2\pi f_0 t}) + F(e^{-j2\pi f_0 t})]$$

But $F\left(e^{j2\pi f_0t}\right) = \delta\left(f - f_0\right)$ and $F\left(e^{-j2\pi f_0t}\right) = \delta\left(f + f_0\right)$ hence the above becomes

$$F(A\cos(2\pi f_0 t)) = \frac{A}{2} [\delta(f - f_0) + \delta(f + f_0)]$$
 (2)

Substitute (2) into (1) we obtain

$$G(f) = \frac{A}{2} \left[\delta (f - f_0) + \delta (f + f_0) \right] \underline{\otimes F} \left(rect \left(\frac{t}{T} \right) \right)$$

But $F\left(rect\left(\frac{t}{T}\right)\right) = T\operatorname{sinc}\left(fT\right)$, hence the above becomes

$$F\left(g\left(t
ight)
ight) = rac{A}{2}\left[\ \delta\left(f - f_0
ight) + \ \delta\left(f + f_0
ight)
ight] \otimes T\operatorname{sinc}\left(fT
ight)$$

Now using the property of convolution with a delta, we obtain

$$G(f) = \frac{AT}{2} \left[\operatorname{sinc} \left((f - f_0) T \right) + \operatorname{sinc} \left((f + f_0) T \right) \right]$$

 $G(f) = \frac{AT}{2} \left[\operatorname{sinc} \left((f - f_0) T \right) + \overline{\operatorname{sinc} \left((f + f_0) T \right)} \right] , \quad f_0 = 2T - 3$

note: by doing more trigonometric manipulations, the above can be written as

$$G(f) = rac{2AT\cos(\pi fT)}{\pi(1-4f^2T^2)}$$

1.2 part(b)

Apply the time shifting property $g\left(t\right)\Longleftrightarrow G\left(f\right)$, hence $g\left(t-t_{0}\right)\Longleftrightarrow e^{-j2\pi ft_{0}}G\left(f\right)$

From part(a) we found that $F(g(t)) = \frac{AT}{2} [\operatorname{sinc}((f - f_0)T) + \operatorname{sinc}((f + f_0)T)]$, so in this part, the function in part(a) is shifted in time to the right by amount $\frac{T}{2}$, let the new function be h(t), hence we need to multiply G(f) by $e^{-j2\pi f \frac{T}{2}}$, hence

$$F\left(g\left(t - \frac{T}{2}\right)\right) = F\left(h\left(t\right)\right)$$

$$= H\left(f\right)$$

$$= e^{-j\pi fT} \left(\frac{AT}{2}\left[\operatorname{sinc}\left(\left(f - f_0\right)T\right) + \operatorname{sinc}\left(\left(f + f_0\right)T\right)\right]\right)$$

1.3 part(c)

Using the time scaling property $g(t) \iff G(f)$, hence $g(at) \iff \frac{1}{|a|}G\left(\frac{f}{a}\right)$, and since we found in part(b) that $H(f) = e^{-j\pi fT}\left(\frac{AT}{2}\left[\operatorname{sinc}\left(\left(f - f_0\right)T\right) + \operatorname{sinc}\left(\left(f + f_0\right)T\right)\right]\right)$, hence

part(b) that $H(f) = e^{-j\pi f} \left(\frac{2\pi}{2} \left[\operatorname{sinc}\left((f - f_0) T \right) + \operatorname{sinc}\left((f + f_0) T \right) \right] \right)$, hence $F(h(at)) = \frac{1}{|a|} e^{-j\pi \frac{f}{a}T} \left(\frac{AT}{2} \left[\operatorname{sinc}\left((\frac{f}{a} - f_0) T \right) + \operatorname{sinc}\left((\frac{f}{a} + f_0) T \right) \right] \right)$ Then the following part(d)

The part(d)

The part(d)

The part(d)

The part (d)

The part (d

Let f(t) be the function which is shown in figure 2.4c, we see that

$$f\left(t\right) = -h\left(-t\right)$$

where h(t) is the function shown in figure 2.4(b). We found in part(b) that

$$H\left(f
ight) = e^{-j\pi fT} \left(rac{AT}{2}\left[\operatorname{sinc}\left(\left(f-f_{0}
ight)T
ight) + \operatorname{sinc}\left(\left(f+f_{0}
ight)T
ight)
ight]
ight)$$

Now using the property that $h\left(t\right)\Longleftrightarrow H\left(f\right)$ then $h\left(-t\right)\Longleftrightarrow \frac{1}{\left|-1\right|}H\left(-f\right)=H\left(-f\right)$, hence

$$F\left\{f\left(t\right)\right\} = -e^{j\pi fT} \left(\frac{AT}{2} \left[\operatorname{sinc}\left(\left(-f - f_0\right)T\right) + \operatorname{sinc}\left(\left(-f + f_0\right)T\right)\right]\right)$$

1.5 part(e)

This function, call it $g_1(t)$, is the sum of the functions shown in figure 2.4(b) and figure 2.4(c), then the Fourier transform of $g_1(t)$ is the sum of the Fourier transforms of the functions in these two figures (using the linearity of the Fourier transforms). Hence

$$F(g_1(t)) = e^{-j\pi fT} \left(\frac{AT}{2} \left[\text{ sinc} \left((f - f_0) T \right) + \text{ sinc} \left((f + f_0) T \right) \right] \right)$$
$$- e^{j\pi fT} \left(\frac{AT}{2} \left[\text{ sinc} \left((-f - f_0) T \right) + \text{ sinc} \left((-f + f_0) T \right) \right] \right)$$

The above can be simplified to

$$F(g_{1}(t)) = \frac{AT}{2} \left(\operatorname{sinc} \left((f + f_{0}) T \right) \left[e^{j\pi fT} + e^{-j\pi fT} \right] + \operatorname{sinc} \left((f - f_{0}) T \right) \left[e^{j\pi fT} + e^{-j\pi fT} \right] \right)$$

$$= \frac{AT}{2} \left(\operatorname{sinc} \left((f + f_{0}) T \right) \left[2 \cos (\pi fT) \right] + \operatorname{sinc} \left((f - f_{0}) T \right) \left[2 \cos (\pi fT) \right] \right)$$

$$F(g_1(t)) = AT\cos(\pi f T)\left[\operatorname{sinc}\left((f + f_0)T\right) + \operatorname{sinc}\left((f - f_0)T\right)\right]$$

Given $g\left(t\right)=e^{-t}\sin\left(2\pi f_{c}t\right)u\left(t\right)$ find $\digamma\left(g\left(t\right)\right)$ Answer:

$$F\left(g\left(t\right)\right) = F\left(e^{-t}u\left(t\right)\right) \otimes F\left(\sin\left(2\pi f_{c}t\right)\right) \tag{1}$$

But

$$F\left(\sin\left(2\pi f_0 t\right)\right) = \frac{1}{2j} \left[\delta\left(f - f_c\right) - \delta\left(f + f_c\right)\right] \tag{2}$$

and

$$F\left(e^{-t}u\left(t\right)\right) = \int_{0}^{\infty} e^{-t}e^{-j2\pi ft}dt = \int_{0}^{\infty} e^{-t(1+j2\pi f)}dt$$

$$= \frac{\left[e^{-t(1+j2\pi f)}\right]_{0}^{\infty}}{-(1+j2\pi f)} = \frac{0-1}{-(1+j2\pi f)}$$

$$= \frac{1}{1+j2\pi f}$$
(3)

Substitute (2) and (3) into (1) we obtain

$$F\left(g\left(t\right)\right) = \frac{1}{2j} \left[\delta\left(f - f_c\right) - \delta\left(f + f_c\right)\right] \otimes \frac{1}{1 + j2\pi f}$$
$$= \frac{1}{2j} \left[\frac{1}{1 + j2\pi \left(f - f_c\right)} - \frac{1}{1 + j2\pi \left(f + f_c\right)}\right]$$

3.1 part(a)

$$egin{aligned} g\left(t
ight) &= A \; rect\left(rac{t}{T} - rac{1}{2}
ight) \ &= A \; rect\left(rac{t - rac{T}{2}}{T}
ight) \end{aligned}$$

hence it is a rect function with duration T and centered at $\frac{T}{2}$ and it has height A

$$g_{e} = \frac{g(t) + g(-t)}{2}$$

$$g_{o} = \frac{g(t) - g(-t)}{2}$$
(1)

Hence $g_e = \frac{1}{2} \left[A \ rect \left(\frac{t}{T} - \frac{1}{2} \right) + A \ rect \left(\frac{-t}{T} - \frac{1}{2} \right) \right]$ which is a rectangular pulse of duration 2T and centered at zero and height A

 $g_o=rac{1}{2}\left[A\ rect\left(rac{t}{T}-rac{1}{2}
ight)-A\ rect\left(rac{-t}{T}-rac{1}{2}
ight)
ight]$ which is shown in the figure below

3.2part(b)

$$F(g(t)) = F\left(A \operatorname{rect}\left(\frac{t - \frac{T}{2}}{T}\right)\right)$$

$$= AT \operatorname{sinc}(fT) e^{-j2\pi f\frac{T}{2}}$$

$$= AT \operatorname{sinc}(fT) e^{-j\pi fT}$$
(2)

Now using the property that $g(t) \Leftrightarrow G(f)$, then $g(-t) \Leftrightarrow G(-f)$, then we write

$$F(g(-t)) = G(-f)$$

$$= AT \operatorname{sinc}(-fT) e^{j\pi fT}$$
(3)

Now, using linearity of Fourier transform, then from (1) we obtain

$$\begin{split} F\left(g_{e}\left(t\right)\right) &= F\left(\frac{g\left(t\right) + g\left(-t\right)}{2}\right) \\ &= \frac{1}{2}\left[F\left(g\left(t\right)\right) + F\left(g\left(-t\right)\right)\right] \\ &= \frac{1}{2}\left[AT\ \operatorname{sinc}\left(fT\right)\ e^{-j\pi fT} + AT\ \operatorname{sinc}\left(-fT\right)\ e^{j\pi fT}\right] \\ &= \frac{AT}{2}\left[\operatorname{sinc}\left(fT\right)\ e^{-j\pi fT} + \operatorname{sinc}\left(-fT\right)\ e^{j\pi fT}\right] \end{split}$$

now sinc $(-fT) = \frac{\sin(-\pi fT)}{-\pi fT} = \frac{-\sin(\pi fT)}{-\pi fT} = \text{sinc}\,(fT)$, hence the above becomes

$$F\left(g_{e}\left(t\right)\right) = \frac{AT\operatorname{sinc}\left(fT\right)}{2} \left[e^{-j\pi fT} + e^{j\pi fT}\right]$$
$$= \frac{AT\operatorname{sinc}\left(fT\right)}{2} \left[2\cos\left(\pi fT\right)\right]$$

Hence

 $F\left(g_{e}\left(t\right)\right) = AT \operatorname{sinc}\left(fT\right) \operatorname{cov}\left(\pi fT\right)$ Now to find the Fourier transform of the odd part.

$$g_o = \frac{g\left(t\right) - g\left(-t\right)}{2}$$

Hence

$$\begin{split} F\left(g_{o}\left(t\right)\right) &= F\left(\frac{g\left(t\right) - g\left(-t\right)}{2}\right) \\ &= \frac{1}{2}\left[F\left(g\left(t\right)\right) - F\left(g\left(-t\right)\right)\right] \\ &= \frac{1}{2}\left[AT \operatorname{sinc}\left(fT\right) \ e^{-j\pi fT} - AT \operatorname{sinc}\left(-fT\right) \ e^{j\pi fT}\right] \\ &= \frac{AT}{2}\left[\operatorname{sinc}\left(fT\right) \ e^{-j\pi fT} - \operatorname{sinc}\left(fT\right) \ e^{j\pi fT}\right] \\ &= \frac{AT\operatorname{sinc}\left(fT\right)}{2}\left[\ e^{-j\pi fT} - \ e^{j\pi fT}\right] \\ &= \frac{-AT\operatorname{sinc}\left(fT\right)}{2}\left[\ e^{j\pi fT} - e^{-j\pi fT}\right] \\ &= \frac{-AT\operatorname{sinc}\left(fT\right)}{2}\left[\ 2j\sin\left(\pi fT\right)\right] \end{split}$$

$$F(g_o(t)) = -jAT\operatorname{sinc}(fT)\operatorname{sin}(\pi fT)$$

$$G(f) = |G(f)| e^{j \arg(G(f))}$$

Hence from the diagram given, we write

$$G\left(f\right) = \left\{ \begin{array}{ll} 1 \times e^{j\frac{\pi}{2}} & -W \leq f < 0 \\ 1 \times e^{-j\frac{\pi}{2}} & 0 \leq f \leq W \end{array} \right. \label{eq:G_f}$$

Therefore, we can use a rect function now to express G(f) over the whole f range as follows

$$G\left(f\right)=e^{j\frac{\pi}{2}}\;rect\left(\frac{f+\frac{W}{2}}{W}\right)-e^{-j\frac{\pi}{2}}rect\left(\frac{f-\frac{W}{2}}{W}\right)$$

Now, noting that $\delta(t-t_0) \Leftrightarrow e^{-j2\pi t_0}$ and $\delta(t+t_0) \Leftrightarrow e^{j2\pi t_0}$ and $W \operatorname{sinc}(tW) \Leftrightarrow \operatorname{rect}\left(\frac{f}{W}\right)$ and noting that shift in frequency by $\frac{W}{2}$ becomes multiplication by $e^{-j2\pi t}\frac{W}{2}$, then now we write

$$\begin{split} g\left(t\right) &= F^{-1}\left(e^{j\frac{\pi}{2}} \ rect\left(\frac{f+\frac{W}{2}}{W}\right)\right) - F^{-1}\left(e^{-j\frac{\pi}{2}} rect\left(\frac{f-\frac{W}{2}}{W}\right)\right) \\ &= F^{-1}\left(e^{j\frac{\pi}{2}}\right) \ \otimes F^{-1}\left(rect\left(\frac{f+\frac{W}{2}}{W}\right)\right) - F^{-1}\left(e^{-j\frac{\pi}{2}}\right) \ \otimes F^{-1}\left(rect\left(\frac{f-\frac{W}{2}}{W}\right)\right) \end{split}$$

Hence

$$\begin{split} g\left(t\right) &= \left[\delta\left(t + \frac{\pi}{2}\right) \otimes W \operatorname{sinc}\left(tW\right) e^{-j2\pi t \frac{W}{2}}\right] - \left[\delta\left(t - \frac{\pi}{2}\right) \otimes W \operatorname{sinc}\left(tW\right) e^{j2\pi t \frac{W}{2}}\right] \\ &= W \operatorname{sinc}\left(\left(t + \frac{\pi}{2}\right)W\right) e^{-j2\pi\left(t + \frac{\pi}{2}\right)\frac{W}{2}} - W \operatorname{sinc}\left(\left(t - \frac{\pi}{2}\right)W\right) e^{j2\pi\left(t - \frac{\pi}{2}\right)\frac{W}{2}} \\ &= W \operatorname{sinc}\left(\left(t + \frac{\pi}{2}\right)W\right) e^{-j\pi W t - j\pi W \frac{\pi}{2}} - W \operatorname{sinc}\left(\left(t - \frac{\pi}{2}\right)W\right) e^{j\pi W t - j\pi W \frac{\pi}{2}} \end{split}$$

$$g\left(t\right) = We^{-\frac{j\pi^{2}W}{2}}\left(\operatorname{sinc}\left(\left(t + \frac{\pi}{2}\right)W\right)e^{-j\pi Wt} - \operatorname{sinc}\left(\left(t - \frac{\pi}{2}\right)W\right)e^{j\pi Wt}\right)$$

