different transforms used in signal processing

Nasser M. Abbasi

September 9, 2023 Compiled on September 9, 2023 at 9:54am

Note: Ω measured is in rad/sec is the radian frequency used for the continuous time case. ω measured is in radians only (not radians/sec) and is the radian frequency used for the discrete time case. *f* is in Hz (cycles per second) for continuous time case and in cycles per sample for the discrete time case

The book signals and systems by Oppenheim, Willsky, Young, also has a nice diagram, here is pic of it (click to enlarge)

	Continuous-time		Discrete-time	
	Time domain	Frequency domain	Time domain	Frequency domain
Fourier Series	$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = \sum_{k = \langle N \rangle} a_k e^{jk (2\pi/N)n}$	$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk \langle 2\pi/N \rangle n}$
	continuous time periodic in time	discrete frequency aperiodic in frequency	discrete time periodic in time	discrete frequency periodic in frequency
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$ continuous time assertionic in time duality	$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt$ continuous frequency aperiodic in frequency	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n}$ discrete time aperiodic in time	$X(\Omega) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\Omega n}$ continuous frequency periodic in frequency

BLE 5.4 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS