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1 Definitions
Regular Sturm-Liouville ODE is an eigenvalue boundary value ODE. This means
the ODE has an eigenvalue in it λ, where solutions exists only for specific values of
eigenvalues. The ODE is

d

dx

(
p(x) dy

dx

)
+ q(x) y(x) + λσ(x) y(x) = 0 a < x < b

Some books use −q(x) y(x) in the above instead of +q(x) y(x). The above also can be
written as

py′′ + p′y′ + (q + λσ) y = 0 (1)
(py′)′ + qy = −λσy (2)

With the restrictions that p(x) , q(x) , σ(x) are real functions that are continuous every-
where over a ≤ x ≤ b and also we need p(x) > 0, σ(x) > 0. The σ(x) is called the weight
function. But this is not all. The boundary conditions must be linear homogeneous, of
this form

β1y(a) + β2y
′(a) = 0

β3y(b) + β4y
′(b) = 0

Where βi are just real constants. Some of them can be zero but not all. For example,
β1y(a) = 0, β4y

′(b) = 0 is OK.

Boundary conditions do not have to mixed, but they can be in general. But they must
be homogeneous.

Notice that periodic boundary conditions are not allowed. Well, they are allowed, but
then the problem is no longer called Sturm-Liouville. The above is just the definition
of the equation and its boundary conditions. Below is list of the important properties
of this ODE. Each one of these properties have a proof.

The standard way to write S.L. is in the form (2) and not (1) above. This is because
the S.L. operator L is defined

L[y] = −λσy

Where L[y] ≡ (py′)′ + qy. So we break (q + λσ) y into two parts, putting the part with
the eigenvalue to the right.

� All eigenvalues λn are real. No complex λn.
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� Each eigenvalue λn, will have one and only one real eigenfunction φn(x) associated
with it. (in higher dimensions, the eigenvalue problem can have more than one eigen-
function associated with one eigenvalue. For example, heat PDE in rectangle). But we
can use Gram-schmidt to make these eigenfunctions orthogonal if we need to). But for
exam, just worry about 1D for now.

� There is smallest λ, called λ1 and there are infinite number of eigenvalues. Hence
eigenvalues are ordered λ1 < λ2 < λ3· · ·

� Each eigenfunction φn(x) will have n− 1 zeros in a < x < b. Note that this does not
include the end points. This means, φ3(x) will have two zeros inside the domain. i.e.
there are two x locations where φ3(x) = 0 in a < x < b.

� Eigenfunctions φn(x) make a complete set of basis. This means any piecewise con-
tinuous function f(x) can be represented as f(x) ∼

∑∞
n=1 anφn(x). This is called the

generalized Fourier series.

� This follows from (5). Each eigenfunction is orthogonal to another eigenfunction, but
with the weight in there. This means

∫ b

a
φn(x)φm(x)σ(x) dx = 0 if n 6= m.

� Rayleigh quotient relates an eigenvalue to its eigenfunction. Starting with the SL
ODE (pφ′)′+ qφ = −λσφ, then multiplying by φ and integrating, we obtain

∫ b

a
φ(pφ′)′+

qφ2dx = −
∫ b

a
λσφ2dx and solving for λ, gives

λ =
∫ b

a
φ(pφ′)′ + qφ2dx∫ b

a
φ2σ (x) dx

Carrying integration by parts on first part of the integral in numerator, it becomes

λ =
(−pφφ′)ab +

∫ b

a
p(φ′)2 − qφ2dx∫ b

a
φ2σ (x) dx

But this becomes much simpler when we plug-in the boundary conditions that we must
use, making the above

λ =
∫ b

a
p(φ′)2 − qφ2dx∫ b

a
φ2σ (x) dx

And if q = 0, p = 1 and σ(x) = 1, then it becomes λ =
∫ b
a (φ

′)2dx∫ b
a φ2dx

. Rayleigh quotient is
useful to show that λ can be positive without solving for φ and also used to estimate
the value of the minimum λ by replacing φ by a trial function and actually solving for
λ using λ =

∫ b
a φ(pφ′)′+qφ2dx∫ b

a φ2σ(x)dx
to obtain a numerical estimate of λ1.

� There is symmetry relation. In operator form, let L ≡ d
dx

(
p(x) d

dx

)
+ q(x), then we

have
∫ b

a
uL[v]− vL[u] dx = 0 where u, v are any two different eigenfunctions.
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� There is also what is called Lagrange identity, which says uL[v]−vL[u] = d
dx
(p(uv′ − vu′)).

This comes from simply expanding L[v], L[u] and simplifying things. Just calculus.

� Green formula, follows from Lagrange identity, which just gives the integral form∫ b

a
uL[v]−vL[u] dx = [p(uv′ − vu′)]ba. But form Sturm-Liouville, we know that

∫ b

a
uL[v]−

vL[u] dx = 0 (from 8). So this really just says that [p(uv′ − vu′)]ba = 0. But we know
this already from boundary conditions. So I am not sure why this is useful for Sturm-
Liouville now. Since it is just saying the same thing again.

� If p(x) = 0 at the left or right end (boundaries), then the problem is now called
singular Sturm-Liouville. This is actually the important case. In regular S.L., p(x) must
be positive everywhere. We only consider p(x) = 0 at the ends, not in the middle
or any other place. When this happens, then solutions to the ODE generate special
functions, such as Bessel, Legendre, Chebyshev. These special functions are solution to
the Singular S.L. ODE, not the regular S.L. ODE. In addition, at the end where p(x) = 0,
the boundary conditions must be bounded. Not the regular boundary conditions above.
For example, if p(a) = 0 where x = a is say the left end, the the boundary conditions
at the left end must be y(a) < ∞, y′(a) < ∞. Notice that singular can be at left end,
right end or at both at same time. At the end where p(x) = 0, the boundary conditions
must be bounded type.

� Symmetry relation ∫ b

a

uL[v]− vL[u] dx = 0

where u, v are are two eigenfunction. But remember, this does NOT mean the integrand
is identically zero, or uL[v] − vL[u] = 0. Only when u, v happened to have same
eigenvalue we can say that uL[v]− vL[u] = 0. But for unique eigenfunctions only the
integral form is zero

∫ b

a
uL[v] − vL[u] dx = 0. This is important difference, used in

the proof below, that different eigenfunctions have different eigenvalues (for the scalar
SL case). For higher dimensions, we can have more than one eigenfunction for same
eigenvalue.

Small note added April 18, 2021. The above is the same as showing the operator L is
Hermitian. In bra/ket Dirac notation, an operator L is Hermitian when

〈u|L|v〉∗ = 〈v|L|u〉(∫
u∗(x)L[v(x)] dx

)∗

=
∫

v∗(x)L[u(x)] dx∫
u(x)L[v∗(x)] dx =

∫
v∗(x)L[u(x)] dx
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In the proofs below, I did not do the complex conjugate, since it is assumed all eigen-
functions u, v are real, and I only wrote that the symmetry relation implies

∫
u(x)L[v(x)] dx =

∫
v(x)L[u(x)] dx

It should be really called the Hermitian relation to be more accurate. But for real
eigenfunctions, it is the same.

2 Proofs

2.1 Proof symmetry of operator
Given regular Sturm-Liouville (RSL) ODE

(py′)′ + qy = −λσy (1)
py′′ + p′y′ + qy = −λσy

In operator form
L ≡ d

dx

(
p(x) d

dx

)
+ q(x)

And (1) becomes
L[y] = −λσy

When solving RSL ode, since it is an eigenvalue ODE with associated boundary condi-
tions, we will get infinite number of non-negative eigenvalues.

For each eigenvalue, there is associated with it one eigenfunction (for 1D case). Looking
at any two different eigenfunctions, say u, v, then the symmetry relation says the
following ∫ b

a

uL[v] dx =
∫ b

a

vL[u] dx

Now we will show the above is true. This requires integration by parts two times. We
start from the LHS expression and at the end we should end up with the integral on
the RHS. Let I =

∫ b

a
uL[v] dx, then

I =
∫ b

a

uL[v] dx (1)

=
∫ b

a

u

(
d

dx

(
p
d

dx
v

)
+ qv

)
dx
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Where we used L[v] =
(

d
dx

(
p d
dx

)
+ q
)
v =

(
d
dx

(
p d
dx
v
)
+ qv

)
in the above. Hence

I =
∫ b

a

u

dV︷ ︸︸ ︷
d

dx

(
p
dv

dx

)
dx+

∫ b

a

qvudx (2)

Now we will do integration by parts on the first integral. Let I2 =
∫ b

a
u d
dx

(
p dv
dx

)
dx. Using∫

UdV = UV −
∫
V dU , and if we let U = u, dV = d

dx

(
p dv
dx

)
, then dU = du

dx
, V = p dv

dx
.

Hence

I2 =
(
up

dv

dx

)b

a

−
∫ b

a

dV︷︸︸︷
dv

dx

U︷︸︸︷
p
du

dx
dx

We now apply integration by parts again to the second integral above. But now let
U = pdu

dx
and dV = dv

dx
, hence dU = d

dx

(
pdu
dx

)
and V = v, therefore the above becomes

I2 =
(
up

dv

dx

)b

a

−

[(
p
du

dx
v

)b

a

−
∫ b

a

v
d

dx

(
p
du

dx

)
dx

]
Substituting the above into (2) gives

I =
(
up

dv

dx

)b

a

−

[(
p
du

dx
v

)b

a

−
∫ b

a

v
d

dx

(
p
du

dx

)
dx

]
+
∫ b

a

qvudx (3)

Now comes the part where the boundary conditions are important. In RSL, the boundary
conditions are such that all the terms

(
up dv

dx

)b
a
,
(
pdu
dx
v
)b
a
vanish. This is because the

boundary conditions are

β1u(a) + β2u
′(a) = 0

β3u(b) + β4u
′(b) = 0

And

β1v(a) + β2v
′(a) = 0

β3v(b) + β4v
′(b) = 0

So now (3) becomes

I = −
[
−
∫ b

a

v
d

dx

(
p
du

dx

)
dx

]
+
∫ b

a

qvudx

=
∫ b

a

v
d

dx

(
p
du

dx

)
dx+

∫ b

a

qvudx

=
∫ b

a

v

(
d

dx

(
p
du

dx

)
+ qu

)
dx

=
∫ b

a

vL[u] dx

6



Therefore, we showed that
∫ b

a
uL[v] dx =

∫ b

a
vL[u] dx. The only thing to watch for here,

is which term to make U and which to make dV when making integration by parts.
To remember, always start with uL[v] and make dV the term with dv

dx
in them during

integration parts.

2.2 Proof eigenvalues are real
Assume λ is complex. The corresponding eigenfunctions are complex also. Let φ be
corresponding eigenfunction

L[φ] = −λσφ (1)

Taking complex conjugate of both sides, and since σ is real, we obtain

L [φ] = −λσφ

But L [φ] = L
[
φ
]
since all the coefficients of the ODE are real. The above becomes

L
[
φ
]
= −λσφ (2)

But by symmetry, we know that∫ b

a

φL
[
φ
]
− φL[φ] dx = 0

Substituting (1),(2) into the above gives∫ b

a

φ
(
−λσφ

)
− φ(−λσφ) dx = 0∫ b

a

−λσφφ+ λσφφdx = 0∫ b

a

(
λ− λ

) (
σφφ

)
dx = 0

(
λ− λ

) ∫ b

a

σφφdx = 0

But φφ = |φ| which is positive. Also the weight σ(x) is positive by definition. Hence
for the above to zero, it must be that λ = λ. Which means λ is real. QED.

So the main tools to use in this proof: Definition of L[φ] = −λσφ , and symmetry
relation and that L [φ] = L

[
φ
]
. This might come up in the exam.
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2.3 Proof eigenfunctions are unique
Now will show that there is one eigenfunction associated with each eigenvalue (Again,
this is for 1D, it is possible to get more than one eigenfunction for same eigenvalue
for 2D, as mentioned earlier). By contradiction, assume that λ has two eigenfunctions
φ1, φ2 associated with it. Hence

L[φ1] = −λσφ1

L[φ2] = −λσφ2

From the first equation, λ = −L[φ1]
σφ1

, substituting this into the second equation gives

L[φ2] =
L[φ1]
φ1

φ2

φ1L[φ2]− φ2L[φ1] = 0

By Lagrange identity, φ1L[φ2]− φ2L[φ1] = d
dx
(p(φ1φ

′
2 − φ2φ

′
1)), hence this means that

d

dx
(p(φ1φ

′
2 − φ2φ

′
1)) = 0

p(φ1φ
′
2 − φ2φ

′
1) = c1

Where c1 is some constant. This is the main difference between the above argument,
and between Lagrange identity. This can be confusing. So let me talk more about this.
In Lagrange identity, we write

φ1L[φ2]− φ2L[φ1] =
d

dx
(p(φ1φ

′
2 − φ2φ

′
1))

And when φ2, φ1 also satisfy the SL boundary condition, only then we say that∫ b

a

φ1L[φ2]− φ2L[φ1] dx = 0

p(φ1φ
′
2 − φ2φ

′
1)|

b
a = 0

But the above is not the same as saying φ1L[φ2] − φ2L[φ1] = 0. This is important to
keep in mind. Only the integral form is zero for any two functions with the SL B.C..Now
we continue. We showed that p(φ1φ

′
2 − φ2φ

′
1) = c. In SL, this constant is zero due to

B.C. Hence
p(φ1φ

′
2 − φ2φ

′
1) = 0

But p > 0 by definition. Hence φ1φ
′
2 − φ2φ

′
1 = 0 or

d

dx

(
φ2

φ1

)
= 0

φ2

φ1
= c2
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or φ2 = c2φ1. So the eigenfunctions are linearly dependent. One is just scaled version
of the other. But eigenfunction must be linearly independent.
Hence assumption is not valid, and there can not be two linearly independent eigenfunc-
tions for same eigenvalue. Notice also that φ1φ

′
2 − φ2φ

′
1 = 0 is the just the Wronskian.

When it is zero, we know the functions are linearly dependent. The important part
in the above proof, is that φ1φ

′
2 − φ2φ

′
1 = 0 only when φ1, φ2 happened to have same

eigenvalue.

2.4 Proof eigenfunctions are real
The idea of this proof is to assume the eigenfunction is complex, then show that its real
part and its complex part both satisfy the ODE and the boundary conditions. But since
they are both use the same eigenvalue, then the real part and the complex part must
be linearly dependent. This implies the eigenfunction must be real. (think of Argand
diagram)
Assume that φ = U + iV is complex eigenfunction with real part U and complex part
V . Then since

L[φ] = −λσφ

The above is just writing the Sturm-Liouville ODE in operator form, where L is the
operator as above. Now we have

L[U + iV ] = −λσ(U + iV )

By linearity of operator L

L[U ] + iL[V ] = −λσU − iλσV

Which implies

L[U ] = −λσU

L[V ] = −λσV

So we showed that the real and complex part satisfy S.L. Now we need to show they
are satisfy S.L. boundary conditions. Since

β1φ(a) + β2φ
′(a) = 0

β3φ(b) + β4φ
′(b) = 0

Where x = a, x = b are the left and right ends of the domain. Then

β1(U(a) + iV (a)) + β2(U ′(a) + iV ′(a)) = 0
β3(U(b) + iV (b)) + β4(U ′(b) + iV ′(b)) = 0
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Hence

β1U(a) + β2U
′(a) = 0

β1V (a) + β2V
′(a) = 0

β3U(b) + β4U
′(b) = 0

β3V (b) + β4V
′(b) = 0

So the above means both U and V satisfy the boundary conditions of S.L. But since
both U, V have the same eigenvalue, then they must be linearly dependent, since we
know with S.L. each eigenfunction (or one linearly dependent to it) have only one
eigenvalue. This means

V = cU

Where c is some constant. In other words,

φ = U + iV

= U + icU

= U(1 + ic)
= c0U

Where c0 is new constant. (OK it happens to be complex constant, but it is OK to do
so, we always do this trick in other places, if it will make me feel better, I could take
the magnitude of the constant). So all what the above says, is that we assumed φ to
be complex, and found that it is real. So it can’t be complex.

2.5 Proof eigenfunctions are orthogonal with weight
Given two different eigenfunctions φ1, φ2. Hence

L[φ1] = −λ1σφ1 (1)
L[φ2] = −λ2σφ2 (2)

From symmetry integral relation, since these eigenfunctions also satisfy S.L. boundary
conditions, we can write ∫ b

a

φ1L[φ2]− φ2L[φ1] dx = 0
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Replacing (1,2) into the above∫ b

a

φ1(−λ2σφ2)− φ2(−λ1σφ1) dx = 0∫ b

a

−λ2σφ1φ2 + λ1σφ2φ1dx = 0∫ b

a

(λ1 − λ2) (σφ1φ2) dx = 0

(λ1 − λ2)
∫ b

a

σφ1φ2dx = 0

But (λ1 − λ2) 6= 0 since there are different eigenvalues for different eigenfunctions.
Hence ∫ b

a

σφ1(x)φ2(x) dx = 0

Which means φ1,φ2 are orthogonal to each others with weight σ(x)

3 Special functions generated from solving
singular Sturm-Liouville

When S.L. is singular, meaning p = 0 at one or both ends, we end with important class
of ODE’s, whose solutions are special functions (not sin or cos) as the case with the
regular S.L. Recall that S.L. is

d

dx

(
p(x) dy

dx

)
+ q(x) y(x) + λσ(x) y(x) = 0 (1)

py′′ + p′y′ + qy = −λσy

With the regular S.L., we say that p(x) > 0 over the whole domain, including end
points. But with singular, this is not the case. Here are three important S.L. ODE’s
that are singular.

Bessel equation:

x2y′′ + xy + λx2y = 0 0 < x < 1
xy′′ + y + λxy = 0

Or in standard form
(xy′)′ = −λxy

Comparing to SL form, then p(x) = x, q(x) = 0, σ(x) = x. At x = 0, then p(x) = 0,
which is what makes it singular. (also the weight happens to be zero), but we only care
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about p being zero or not, at one of the ends. So to check if S.L. is singular or not, just
need to check if p(x) is zero or not at one of the ends.

As mentioned before, when p = 0 at one of the ends, we can’t use the standard B.C. for
the regular S.L. instead, at the end where p = 0, we must use what is called bounded
boundary conditions, which is in this case y(0) < ∞, y′(0) < ∞. The solution to this
ODE will be in terms of Bessel functions. Notice that this happened to be singular,
due to the domain starting at x = 0. If the domain happened to be from x = 0.5 to say
x = 1, then it is no longer singular S.L. but regular one.

Legendre equation ((
1− x2) y′)′ = −λy 0 < x < 1

Or it can be written as (
1− x2) y′′ − 2xy′ = −λy

We see that p = 1− x2. And now it happens to be that p = 0 at x = 1. So it is singular
at the other end compared to Bessel. In this case q = 0, σ = 1. Again, the boundary
conditions at x = 1 must now be bounded. i.e. y(1) < ∞, y′(1) < ∞. On the other end,
where p is not zero, we still use the standard boundary conditions β1y(0)+β2y

′(0) = 0.

Chebyshev equation(√
1− x2y′

)′
= −λ

√
1− x2y − 1 < x < 1

Or √
1− x2y′′ − 1

2
2x√
1− x2

y′ = −λ
√
1− x2y

So we see that p =
√
1− x2, q = 0, σ =

√
1− x2. So where is p = 0 here? At x = −1

then p =
√
1− 1 = 0 and at x = −1 then p = 0 also. So this is singular at both ends.

So we need to use bounded boundary conditions at both ends now to solve this.

y(−1) < ∞
y′(−1) < ∞
y(+1) < ∞
y′(+1) < ∞

The solution to this singular S.L. is given in terms of special function Chebyshev.
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4 General notes on S-L

� Solution to xy′′ + y′ = −λxy. Set in S-L form, we get (py′)′ + qy = −λσy, then
p = x, q = 0, σ = x. For 0 < x < b with y(b) = 0, y(0) < ∞. This is singular S-L
since p = x is zero at one end. Using Frobenius series, the solution comes out to be
y(x) =

∑∞
n=1 cnJ0

(√
λnx

)
, where J0 is Bessel function of first kind.

√
λn are roots of

0 = J0
(√

λb
)
. (check if this should be 0 = J0

(√
λ(b− a)

)
. cn is constant, which still

needs to be found.

� We can find approximate solution to S-L ODE for large eigenvalue using WKB so
we do not have to solve the ode using series method. Given (py′)′ + qy = −λσy which
is standard form S-L. Using physical optics correction, we obtain the solution as

y(x) ∼ (σ(x) p(x))
−1
4

(
c1 cos

(
√
λ

∫ x

0

√
σ (t)
p (t)dt

)
+ c1 sin

(
√
λ

∫ x

0

√
σ (t)
p (t)dt

))

Where c1, c2 are found from boundary conditions now. The above is valid for large λ, and
is found by first letting ε2 = 1

λ
and then assuming y(x) = exp

(1
ε

∑∞
n=0 ε

nSn(x)
)
. And

working though the WKB method. Remember, WKB only works for linear homogeneous
ODE and is used to estimate solution for large λ (or small ε).

� in 1D, regular S-L is (py′)′+qy = −λσy with 0 < x < L, with B.C. given by β1y(0)+
β2y

′(0) = 0 and β1y(L) + β2y
′(L) = 0, and in higher dimensions, this problem becomes

∇· (p∇φ)+ qφ = −λσφ with boundary conditions now written as β1φ+β2(∇φ · n̂) = 0
on boundary Γ. In higher dimensions, φ ≡ φ(x̄).

� Lagrange’s identity in 1D is

uL(v)− vL(u) = d

dx

(
p

(
u
dv

dx
− v

du

dx

))
where L above is the S-L operator, as in L ≡ d

dx

(
p d
dx

)
+q so that we write L(u) = −λσy .

�When it says eigenfunctions are normalized, it should mean that
∫ b

a
φ2
n(x)σ(x) dx = 1

where σ(x) is the weight function (comes from SL equation) and a < x < b is the
domain. This is for 1D SL. Remember for example, that

∫ L

0 cos2
(√

λnx
)
dx = L

2 . where√
λn = nπ

L
. Here, it is not normalized since the result is not one. The weight here is

just one and here φn(x) = cos
(
nπ
L
x
)

� Heat PDE in cylinder is ∂T (r,z,θ,t)
∂t

= k
(

∂2T
∂r2

+ 1
r
∂T
∂r

+ ∂2T
∂z2

+ 1
r2

∂2T
∂θ2

)
. For steady state,
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it becomes, say cylinder has length L

0 = ∇2T (r, z, θ) = ∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂z2
+ 1

r2
∂2T

∂θ2

|T (0, z, θ)| < ∞
|T ′(0, z, θ)| < ∞

T (r, 0) = f(r)
R(r, L) = g(r)

And for axis symmetric (no θ dependency), it becomes

0 = ∇2T (r, z) = ∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂z2

The solution is found by separation of variables. For the above is in terms of Bessel
function order zero

T (r, z) =
∞∑
n=1

J0
(√

λ0r
)(

Ane
√
λnz +Bne

√
λnz
)

which is found using series method T =
∑∞

n=0 anr
n+α. The eigenvalues λn are zeros of

0 = J0
(√

λr0
)
where r0 is disk radius.

� Heat PDE in 2D polar is ∂T (r,θ,t)
∂t

= k
(

∂2T
∂r2

+ 1
r
∂T
∂r

+ 1
r2

∂2T
∂θ2

)
and for steady state it

becomes 0 = ∂2T
∂r2

+ 1
r
∂T
∂r

+ 1
r2

∂2T
∂θ2

. After separating, the r ODE becomes Euler ODE. Use
guess R(r) = rp for solution. The solution will be

T (r, z) = A0 +
∞∑
n=1

An cos (nθ) rn +
∞∑
n=1

Bn sin (nθ) rn

� To change p(x) y′′ + q(x) y′ + r(x) y(x) = 0 to S.L. form, multiply the ODE by
µ = 1

p(x) exp
(∫ q(x)

p(x)dx
)

� In using method of eigenfunction expansion to solve nonhomogeneous B.C. PDE, the
eigenfunction used φn(x) are the ones from solving the PDE with homogeneous B.C. For
example, if given ∂u

∂t
= k ∂2u

∂x2 with nonhomogeneous B.C. , say u(0, t) = A, u(L, t) = B,
and we want to use u(x, t) ∼

∑∞
n=1 bn(t)φn(x) on the nonhomogeneous B.C. PDE,

then those φn(x) are from the corresponding homogeneous B.C. PDE. They should be
something like sin

(
nπ
L
x
)
and so on.

See the table at the top. That is why we write ∼ above and not = and remember not
to do term-by-term differentiation in x when this is the case. We can do term-by-term

14



differentiation only of the PDE itself also has homogeneous B.C. , even if it had a
source term there also. The point is, φn(x) always come from solving the homogeneous
B.C. PDE. (This normally means solving a Sturm-Liouville ODE).

� I found new relation for eigenvalue λ, but it is probably not useful as the one the
book has. Here how to derive it
Given S-L

d

dx

(
p
dy

dx

)
+ qy = −λσy (1)

Let φn(x) be the eigenfunction associated with eigenvalue λn. Since eigenfunctions
satisfy the ODE itself, then we can write, for any arbitrary eigenfunction (subscript
removed for clarity in what follows)

d

dx
(pφ′) + qφ = −λσφ

p′φ′ + pφ′′ + qφ = −λσφ

Integrating both sides∫ b

a

p′φ′dx+
∫ b

a

pφ′′dx+
∫ b

a

qφdx = −λ

∫ b

a

σφdx (2)

Looking at
∫ b

a
pφ′′dx. Integrating by part. Let u = p, dv = φ′′ → du = p′, v = φ′, hence∫ b

a

pφ′′dx = [uv]ba −
∫ b

a

vdu

= [pφ′]ba −
∫ b

a

p′φ′dx (3)

Substituting (3) into (2) gives∫ b

a

p′φ′dx+ [pφ′]L0 −
∫ b

a

p′φ′dx+
∫ b

a

qφdx = −λ

∫ b

a

σφdx

[pφ′]L0 +
∫ b

a

qφdx = −λ

∫ b

a

σφdx

Hence

λ = −
[pφ′]ba +

∫ b

a
qφdx∫ b

a
σφdx

compare to the one in the book λ = (−pφφ′)ab+
∫ b
a p(φ′)2−qφ2dx∫ b

a φ2σ(x)dx
.

� This is about using eigenfunction expansion to approximate f(x). Given the eigen-
functions Φn(x) found by solving SL L[y] = λry problem, then these eigenfunctions are
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called complete in the mean sense, if
∑∞

n=1 bnΦn(x) converges to the mean of f(x) at
each point in a ≤ x ≤ b.

This requires only that f(x) be square integrable over the domain. We can also say
that the eigenfunctions are complete, in pointwise sense, if

∑∞
n=1 bnΦn(x) converges to

f(x) at each point in a ≤ x ≤ b. This however requires that f(x) be continuous in
a ≤ x ≤ b and f ′(x) be piecewise continuous.

So clearly the first case is less strict than the second. This means if f(x) is only square
integrable (and not necessarily continuos), then convergence to the mean of f(x) at
each point can be obtained. To obtain the more strict point wise convergence, more
restrictions are needed on f(x) as mentioned above. Clearly point wise convergence
implies convergence in the mean. But not the other way around.

� For Sturm-Liouville, write it as py′′ + p′y′ + (q + λσ) y = 0. Now it is easy to
compare to. For example, x′′ + λx = 0, then we see that p = 1, q = 0, σ = 1. And
for xy′′ + x′ + λxy = 0 then p = 1, q = 0, σ = x. Do not divide by x first to re-write
xy′′ + x′ + λxy = 0 as y′′ + 1

x
x′ + λy = 0 and then compare, as this makes it hard

to compare to standard form and will make error. Books write Sturm-Liouville as
d
dx
(py′) + qy + λσy = 0 but I find this confusing to compare to this way. Better to

expand it to py′′ + p′y′ + (q + λσ) y = 0 first so now it is in a more familiar form and
can read it out more directly.

5 Methods of solutions to some Sturm Liouville
problems

Problem 1 If the problem gives S-L equations, and asks to find estimate on the smallest
eigenvalue, then use Rayleigh quotient for λ. And write λmin = λ1 ≤

(−pφφ′)ab+
∫ b
a p(φ′)2−qφ2dx∫ b

a φ2σ(x)dx
.

Now we do not need to solve the SL to find solution φ, this is the whole point. Everything
in RHS is given, except for, of course the solution φ.

Here comes the main idea: Come up with any trial φtrial and use it in place of φ. This
trial function just needs to satisfy the boundary conditions, which is also given. Then
all what we need to do is just evaluate the integral. Pick the simplest φtrial function
of x which satisfies boundary conditions. All other terms p, q, σ we can read from the
given problem.

At the end, we should get a numerical value for the integral. This is the upper limit of
the lowest eigenvalue λ1

Problem 2 We are given SL problem with boundary conditions, and asked to show that
λ ≥ 0 without solving the ODE to find φ:

16



Use Rayleigh quotient and argue that the denominator can’t be zero (else eigenfunction
is zero, which is not possible) and it also can’t be negative. Argue about the numerator
not being negative. Do not solve the ODE! this is the whole point of using Rayleigh
quotient.
Problem We are given an SL problem with boundary conditions and asked to estimate
large λ and corresponding eigenfunction.
This is different from being asked to estimate the smallest eigenvalue, where we
use Rayleigh quotient and trial function. In this one, we instead use WKB. For
1D, just use what is called the physical optics correction method, given by φ(x) ≈
(σp)

−1
4

(
c1 cos

(√
λ
∫ x

0

√
σ(t)
p(t)dt

)
+ c2 sin

(√
λ
∫ x

0

√
σ(t)
p(t)dt

))
. Where σ, p in this are all

known functions (from the problem itself). Notice that q is not there.
Now use the boundary conditions and solve for one of the constants, should come to
be zero. Use the second boundary condition and (remember, the boundary conditions
are homogenous), and we get one equation in λ and for non-trivial solution, solve for
allowed values of λn. This gives the large eigenvalue estimate. i.e. for λn when n is
very large. Depending on problem, n does not have be too large to get good accurate
estimate compared with exact solution. See HW7, problem 5.9.2 for example.
Problem We are given 1D heat ODE ∂u

∂t
= k ∂2u

∂x2 . If B.C. are homogenous, we are done.
We know the solution. Separation of variables. If the B.C. is not homogenous, then we
have a small problem. We can’t do separation of variables. If you can find equilibrium
solution, ur(x), where this solution only needs to satisfy the non-homogenous B.C. then
write solution as u(x, t) = v(x, t) + ur(x), and plug this in the PDE.
This will give ∂v

∂t
= k ∂2v

∂x2 but this now satisfies the homogenous B.C. This is the case if
the original non-homogenous B.C. were Dirichlet. If they were Neumann, then we will
get ∂v

∂t
= k ∂2v

∂x2 + extra where extra is extra term that do not vanish because ur(x) do
not vanish in this case after double differentiating. We solve for v(x, t) now, since it has
homogenous B.C., but it has extra term there, which we treat as new source. We apply
initial conditions now also to final all the eigenfunction expansion coefficients. We are
done. Now we know u(x, t) .
But if we can find the reference function ur or we do not want to use this method,
then we can use another method, called eigenfunction expansion. We assume u(x, t) =∑∞

n=1 an(t)φn(x) and plug this in the PDE. But now we can’t do term by term
differentiation, since φn are the eigenfunctions that satisfies the homogenous B.C.,
while u(x, t) has non-homogenous B.C.
So the trick is to use Green formula, to rewrite

∫ L

0 k ∂2u
∂x2φn(x) dx as

∫ L

0 ku∂2φn(x)
∂x2 dx plus

the contribution from the boundary terms. (this is like doing integration by parts twice,
but much easier). Now rewrite ∂2φn(x)

∂x2 = −λnφn(x). See page 355-356, Haberman.
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6 Examples converting second order linear ODE
to Sturm-Liouville

Any linear second order ODE can be converted to S-L form. The S-L form is the
following (

p(x) dy
dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)

Some books write the above with a plus sign +q(x) y(x) there (for example, Haberman)
and some with −q(x) y(x) for example Boyce/DiPrima. I really never understood why
some put a minus sign and some do not. May be I’ll find out one day. But for now will
use (1) is used as the S-L form. If your book uses the plus sign, the same process works,
just flip the sign.

The goal now, is given any general form eigenvalue ODE or second order ODE (with no
eigenvalue λ), we want to convert it (rewrite it) in the above form. The second order
linear ODE will have this form

a(x) y′′ + b(x) y′ + (c(x) + λ) y = 0 (2)

The parameter λ in the S-L form, is the eigenvalue. We really only use S-L form for
eigenvalue problems, but if the λ is missing, then the form of the input will be

a(x) y′′ + b(x) y′ + c(x) y = 0

And the process will work the same way.

First, we will show how to convert (2) to (1), and then show few examples. We are
given (2), and want to convert it to (1). The first step is to convert (2) to standard
form

y′′ + b(x)
a (x)y

′ + c(x) + λ

a (x) y = 0

Then multiply the above by some unknown p(x) which is assumed positive. This is
called the integrating factor

p(x) y′′ + p(x) b(x)
a (x)y

′ + p(x) c(x) + λ

a (x) y = 0

Now, rewrite p(x) y′′ as (p(x) y′)′ − p′(x) y′ in the above(
(p(x) y′)′ − p′(x) y′

)
+ p(x) b(x)

a (x)y
′ + p(x) (c(x) + λ)

a (x) y = 0

(p(x) y′)′ + y′
(
p(x) b(x)

a (x) − p′(x)
)
+ p(x) (c(x) + λ)

a (x) y = 0 (3)

18



Here comes the main trick in all of this. We want to force p(x) b(x)
a(x) − p′(x) to be zero.

This implies
p(x) = e

∫ b(x)
a(x)dx

This comes from just solving the ODE p(x) b(x)
a(x)−p′(x) = 0. Therefore, if p(x) = e

∫ b(x)
a(x)dx,

then (3) becomes

(p(x) y′)′ +
(
p(x) c(x) + λ

a (x)

)
y = 0

(p(x) y′)′ +
(
p(x) c(x)

a (x) +
p(x)
a (x)λ

)
y = 0

(p(x) y′)′ + p(x) c(x)
a (x)y +

p(x)
a (x)λy = 0 (4)

We are done. Compare (4) to the SL form(
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0

We see that, given a(x) y′′ + b(x) y′ + (c(x) + λd) y = 0 then

p(x) = e
∫

b
a
dx

q(x) = −p
c

a

r(x) = p

a
d

Let see how this works on some examples

6.1 Example 1
Convert y′′ + 5λy = 0 to S-L. We see the general form here is a(x) y′′ + b(x) y′ +
(c(x) + λd) y = 0, with a = 1, b = 0, c = 0, d = 5. Hence p(x) = e

∫ b(x)
a(x)dx = 1, therefore

the SL form is (
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)

Where

p(x) = 1

q(x) = −p(x) c(x)
a (x) = 0

r(x) = p(x)
a (x)d = 5
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Hence (1) becomes
(y′)′ + 5λy = 0

This was easy, since the ODE given was already in SL form.

6.2 Example 2
Convert Bessel ODE to SL

x2y′′ + xy′ +
(
x2 − n2) y = 0

Comparing the above to a(x) y′′ + b(x) y′ + (c(x) + λ) y = 0, we see that a = x2, b =
x, c = x2, d = 1, λ = −n2. Hence

p(x) = e
∫ b(x)

a(x)dx = e
∫

x
x2 dx = elnx = x

Therefore the SL form is(
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)

Where

p(x) = x

q(x) = −p(x) c(x)
a (x) = −x

(
x2

x2

)
= −x

r(x) = p(x)
a (x)d = 1

x

Therefore (1) becomes

(xy′)′ + xy − n2

x
y(x) = 0 (2)

Let check if the above gives back x2y′′ + xy′ + (x2 − n2) y = 0. Expanding the above
gives

xy′′ + y′ + xy − n2

x
y = 0

Multiplying by x

x2y′′ + xy′ + x2y − n2y = 0
x2y′′ + xy′ +

(
x2 − n2) y = 0

This verifies that (2) is the Sturm-Liouville form for Bessel ODE
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6.3 Example 3
Convert Legendre ODE to SL(

1− x2) y′′ − 2xy′ + n(n+ 1) y = 0

The general form here is a(x) y′′ + b(x) y′ + (c(x) + λ) y = 0, with a = (1− x2) , b =
−2x, c = 0, d = 1 and λ = n(n+ 1). Hence

p(x) = e

∫ −2x(
1−x2

)dx
= eln

(
x2−1

)
= x2 − 1

q(x) = −p
c

a
= 0

r(x) = p

a
d = x2 − 1

1− x2 = −1

Hence SL is

(py′)′ − qy + λry = 0((
x2 − 1

)
y′
)′ − n(n+ 1) y = 0

Let check. Expanding the above gives(
x2 − 1

)
y′′ + 2xy′ − n(n+ 1) y = 0

Multiplying both sides by −1 gives(
1− x2) y′′ − 2xy′ + n(n+ 1) y = 0

Which is the original form of Legendre ODE

6.4 Example 4
Convert

y′′ − 2x
1− x2y

′ + λ

1− x2y = 0

Rewrite as (
1− x2) y′′ − 2xy′ + λy = 0

The general form here is a(x) y′′ + b(x) y′ + (c(x) + λ) y = 0, with a = (1− x2) , b =
−2x, c = 0, d = 1. Hence

µ(x) = e
∫

b
a
dx = e

−
∫ 2x

1−x2 dx = e−(− ln(x−1)−ln(x+1)) = eln(x−1)eln(x+1) = (x− 1) (x+ 1) = x2−1

Therefore the SL form is(
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)
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Where

p(x) = x2 − 1

q(x) = −p(x) c(x)
a (x) = 0

r(x) = p(x)
a (x)d = x2 − 1

x2 − 1 = 1

Hence (1) becomes ((
x2 − 1

) dy
dx

)′

+ λy(x) = 0

6.5 Example 5
Convert (

1− x2) y′′ − xy′ + λy = 0

We see the general form here is a(x) y′′+b(x) y′+(c(x) + λ) y = 0, with a = (1− x2) , b =
−x, c = 0, d = 1. Hence

p(x) = e
∫

b
a
dx = e

−
∫

x
1−x2 dx

But
∫

x
1−x2dx = −1

2 ln |1− x2|, therefore µ(x) = e
1
2 ln

∣∣1−x2∣∣ = √
1− x2. Therefore the

SL form is (
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)

Where

p(x) =
√
1− x2

q(x) = −p(x) c(x)
a (x) = 0

r(x) = p(x)
a (x)d =

√
1− x2

(1− x2) = 1√
1− x2

Hence (1) becomes (√
1− x2 dy

dx

)′

+ λ√
1− x2

y(x) = 0
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6.6 Example 6
Convert

a(x) y′′ + b(x) y′ + c(x) y = 0

The general form here is a(x) y′′+b(x) y′+(c(x) + λ) y = 0, with a = a(x) , b = b(x) , c =
c(x) , d = 1 and λ = 0. Hence

p(x) = e
∫

b
a
dx

Therefore the SL form is(
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)

Where

p(x) = e
∫

b
a
dx

q(x) = −p(x) c(x)
a (x) = −e

∫
b
a
dx c(x)
a (x)

r(x) = p(x)
a (x)d = e

∫
b
a
dx

Hence (1) becomes (
e
∫

b
a
dxy′
)′

+ e
∫

b
a
dx c(x)
a (x)y(x) = 0 (2)

We see that the above is the same as a(x) y′′ + b(x) y′ + c(x) y = 0 because(
e
∫

b
a
dxy′
)′

= b

a
e
∫

b
a
dxy′ + e

∫
b
a
dxy′′

And hence (2) becomes

b

a
e
∫

b
a
dxy′ + e

∫
b
a
dxy′′ + e

∫
b
a
dx c(x)
a (x)y(x) = 0

Canceling e
∫

b
a
dx gives

b

a
y′ + y′′ + c(x)

a (x)y(x) = 0

ay′′ + by′ + cy = 0

Which is the original ODE.
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6.7 Example 7
Convert

3y′′ + 2y′ + 5y = 0

The general form here is a(x) y′′ + b(x) y′ + (c(x) + λ) y = 0, with a = 3, b = 2, c =
5, d = 1 and λ = 0. Hence

p(x) = e
∫

b
a
dx = e

∫ 2
3dx = e

2
3x

Therefore the SL form is(
p(x) dy

dx

)′

− q(x) y(x) + λr(x) y(x) = 0 (1)

Where

p(x) = e
2
3x

q(x) = −p(x) c(x)
a (x) = −e

2
3x

(
5
2

)
r(x) = p(x)

a (x)d = e
2
3x

3

Hence (1) becomes (
e

2
3xy′

)′
+ e

2
3x

(
5
2

)
y(x) = 0 (2)

The above is the same as 3y′′ + 2y′ + 5y = 0 because(
e

2
3xy′

)′
= 2

3e
2
3xy′ + e

2
3xy′′

And hence (2) becomes

2
3e

2
3xy′ + e

2
3xy′′ + e

2
3x

(
5
2

)
y(x) = 0

Canceling e
2
3x gives

2
3y

′ + y′′ + 5
2y(x) = 0

2y′′ + 3y′ + 5y = 0

Which is the original ODE.
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