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Abstract

Different known stress measures used in continuum mechanics during defor-
mation analysis are derived and geometrically illustrated. The deformed solid
body is subjected to rigid body rotation tensor Q̃. Expressions formulated show-
ing how the deformation geometrical tensors Ũ , Ṽ and R̃ are transformed under
this rigid body motion. Each stress measure is analyzed under this rigid rotation.

For each stress tensor, the appropriate strain tensor used in the material
stress-strain constitutive relation is derived analytically. The famous paper by
Professor Satya N. Atluri [2] was used as the main framework and guide for all
these derivations.
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1 Conclusion and results

1.1 Different stress tensors

Stress Stress measure Generally Symmetrical ?
τ̃ Cauchy df = (da n) · τ̃ Yes
t̃ First Piola-Kirchhoff t̃ = J F̃−1 · τ̃ No
s̃1Second Piola-Kirchhoff s̃1 = J F̃−1 · τ̃ · F̃−T Yes
σ̃ Kirchhoff σ̃ = J τ̃ Yes

Γ̃ Γ̃ = R̃
T · τ̃ · R̃ Yes

r̃∗ Biot-Lure r̃∗ = J F̃−1·τ̃ · R̃ No

r̃ Jaumann r̃ =
(
r̃∗+r̃∗T

)
2 Yes

T̃∗ J Ṽ−1· τ̃ No

T̃ T̃ =
(
T̃∗+T̃∗T )

2 Yes

1.2 Deformation gradient tensor under rigid body
transformation Q̃

Tensor Q̃ based transformation
F̃ The deformation gradient F̃q = Q̃ · F̃

Ũ Stretch before rotation R̃ Ũq = Ũ

Ṽ Stretch after rotation R̃ Ṽq = Q̃ · Ṽ · Q̃T
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1.3 Stress tensors under rigid body transformation Q̃

Stress Q̃ based transformation Transforms Similar to

τ̃ Cauchy τ̃q = Q̃ · τ̃ · Q̃T Ṽ

t̃ First Piola-Kirchhoff t̃q = Q̃ · t̃ F̃

s̃1Second Piola-Kirchhoff s̃1q = s̃1 Ũ

σ̃ Kirchhoff σ̃ = J
(
Q̃ · τ̃ · Q̃T

)
Ṽ

Γ̃ Γ̃q = Γ̃ Ũ

r̃∗ Biot-Lure r̃∗q = r̃∗ Ũ

r̃ Jaumann r̃q= r̃ Ũ

T̃∗ T̃∗
q = T̃∗ Ũ

T̃ T̃q = T̃ Ũ

1.4 Conjugate pairs (Stress tensor/Strain tensor)
Let W be the current amount of energy stored in a unit volume as a result of the body
undergoing deformation, then the time rate at which this energy changes will equal the
stress tensor B̃ multiplied by the strain rate ∂Ã

∂t
. Therefore

Ẇ = B̃
∂Ã
∂t

The following table gives the stress tensor B̃, the strain rate ∂Ã
∂t

and the strain Ã
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Stress tensor B̃ Strain tensor rate ∂Ã
∂t

Strain tensor Ã

τ̃ Cauchy 1
J
1
2

(
Ḟ · F̃−1 +

(
Ḟ · F̃−1

)T)
Almansi strain tensor µ̃ = 1

J
1
2

(
F̃−T · F̃−1 − Ĩ

)
σ̃ Kirchhoff 1

2

(
Ḟ · F̃−1 +

(
Ḟ · F̃−1

)T)
1
2

(
F̃−T · F̃−1 − Ĩ

)
t̃ 1st Piola-Kirchhoff 1

J
ḞT 1

J
F̃T

s̃1 2nd Piola-Kirchhoff 1
J
γ̇ Green-Lagrange strain tensor 1

J
Γ̃ = 1

2J

(
F̃T · F̃− Ĩ

)
r̃∗ Biot-Lure 1

J
U̇ 1

J
U

r̃ Jaumann U̇ Ũ

Γ̃ 1
2

(
Ũ−1 · U̇+ U̇ · Ũ−1

)
ln
(
Ũ
)

(For isotropic material only)

T̃ V̇ (for isotropic only) Ṽ (For isotropic material only)

2 Overview of geometry and mathematical
notations used

Position and deformation measurements are of central importance in continuum me-
chanics. Two methods are employed : The Lagrangian method and the Eulerian method.

In the Lagrangian method, the particle position and speed are measured in reference
to a fixed stationary observer based coordinates systems. This is called the referential
coordinates system where the observer is located. Hence in the Lagrangian method, the
particle state is measured from a global fixed frame of reference.

In Eulerian methods,a frame of reference is attached locally to the area of interest
where the measurement is to be made, and the particle state is measured relative to
the local coordinates systems (also called the body coordinates system). In continuum
mechanics the Lagrangian method is used and in fluid mechanics the Eulerian method
is used, but it is also possible to attach a local frame of reference to the body itself and
then convert these measurements back relative to the global frame of reference.

A coordinate transformation gives back the coordinates of a point on a body relative to
the global fixed reference frame, given the coordinates of the same point as measured
in the local reference frame. This transformation is given by

X = Ax + d

Where X is the coordinate vector relative the global frame of reference, x is the
coordinate vector relative the local/body frame of reference and A is the n×n rotation
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matrix (where n = 3 for normal 3D space) that represents pure rotation, and d is an
n-dimensional vector that represents pure translation.

The following diagram illustrates these differences.

Global Observer 

(Reference) 

coordinates system. 

Stationary coordinates

X coordinates

Body (local) coordinates system

X coordinates

Vector x

Vector X

Point on 

body 

Point P has coordinates

In general, the interest is in finding differential changes that occur when a body deformed.
This mean measuring how a differential vector that represents the orientation of one
point relative to another changes as a body deformed.

Considering the Lagrangian method from now on. Attention is now shifted to what
happens when the body starts to deform. The global reference frame is selected, this is
where all measurements are made with reference to.

Measurements made when the body is undeformed is distinguished from those measure-
ments made when the body has deformed. Upper case Xi is used for the coordinates
of a point on the body when the body is undeformed, and lower case xi is used for
the coordinates of the same point when measured in reference to this same global
coordinate system but after the body has deformed.

Diagram below takes a snap shot of the system after 5 units of time and measures the
deformation to illustrate the notation used.
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Observer 

(Reference) 

coordinates system. 

Stationary 

coordinates

X coordinates

Vector R

Time=0

Undeformed state

dR

X i

Observer 

(Reference) 

coordinates system. 

Stationary 

coordinates

X coordinates

Vector r

Time=5

deformed state

dr

xi

Another way to represent the above is by using the same diagram to show both the
undeformed and the deformed configuration as follows.

Observer (Reference) 

coordinates system. Stationary 

coordinates

Vector R

dR

X i

dr

xi

Vector r
Vector du

Undeformed 

configuration

deformed 

configuration

Let B be the undeformed configuration, referred to as the body state. By state it is
meant the set of independent variables needed to fully describe the forces and geometry
of the body.

When the body is in the undeformed state B, it is assumed to be free of internal stresses
and that no traction forces act on it.
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External loads are now applied to the body resulting in a change of state. The new
state can be a result of only a deformation in the body shape, or due to only a rigid
body translation/rotation, or it could be a result of a combination of deformation and
rigid body motion.

The deformation will take sometime t to complete. However, in this discussion the
interest is only in the final deformed state, which is called state b. Hence no function(s)
of time will be appear or be involved in this analysis.

The boundary conditions is assumed to be the same in state B and in state b. This
implied that if the solid body was in physical contact with some external non-moving
supporting configuration, then after the deformation is completed, the body will remain
in the same physical contact with these supports and at the same points of contact as
before the deformation began.

This implies the body is free to deform everywhere, except that it is constrained to
deform at those specific points it is in contact with the support. For the rigid body
rotation, it is assumed the body with its support will rotate together.

A very important operator in continuum mechanics is the deformation tensor F̃. (A
tensor can be viewed as an operator which takes a vector and maps it to another vector).
This tensor allows the determination of the deformed differential vector dr knowing the
undeformed differential vector dR as follows.

dr = F̃ · dR

The tensor F̃ is a field tensor in general, which mean the actual value of the tensor
changes depending on the location of the body where the tensor is evaluated. Hence it
is a function of the body coordinates. Reference [4] gives simple examples showing how
to calculate F̃ for simple cases of deformations in 2D. The appendix contains derivation
of F̃ in the specific case of normal Cartesian coordinates.
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Undeformed state

Deformed state

dr
dR

i

j

k R
r

du

dr  F  dR

Illustration showing the main vectors involved in the deformation analysis.

P
p

10



2.1 Illustration of the polar decomposition of the
deformation gradient tensor F̃

2.1.1 Polar decomposition applied to a vector

Undeformed 

state

Step 1. Original 

undeformed vector dR

undeformed 

state

Step 2. Apply stretch tensor U

dR
Ũ  dR

dR
(Stetch)

Deformed state

(Rotation)

R  dR


dr
dR

Deformed state

dr

Step 3. Apply rotation tensor R Final deformed vector dr

Polar decomposition 

applied on a differential 

vector dR
F  Ũ  R

P

Parallel 

translation

undeformed 

state

dR

Deformed state

D

dR

Deformed state

D

dR

D
D

Point D is image 

of point P in the 

deformed state

PP

The effect of applying the deformation gradient tensor F̃ on a vector dR can be
considered to have the same result as the effect of first applying a stretch deforming
tensor Ũ (Also called the deformation tensor) on dR, resulting in a vector dR∗, followed
by applying a rotation deforming tensor R̃ on this new vector dR∗ to produce the final
vector dr.

Hence F̃ = Ũ · R̃ and therefore

dr = F̃ · dR

Using polar decomposition gives
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F̃ · dR =
(
R̃ · Ũ

)
· dR

= R̃·

dR∗︷ ︸︸ ︷(
Ũ · dR

)
= R̃ · dR∗

= dr

This is called polar decomposition of F̃, and it is always possible to find such decompo-
sition. In addition, this decomposition is unique for each tensor F̃.

2.1.2 Polar decomposition applied to an oriented area

An oriented area in the undeformed state is dA N (Where N is a unit normal to dA).
This area becomes da n∗ after the application of the stretch tensor Ũ. It is clear that
rotation will not have an effect on the area da itself, but it will rotate the unit vector
n∗ which is normal to da to become the unit vector n. This is illustrated in the diagram
below.

Undeforme

d state

Step 1. Original 

oriented area dA

undeformed 

state*

Step 2. Apply stretch tensor U

(Stetch) (Rotation)

Polar decomposition 

applied on an oriented area

Ũ  dA N R  da n

Step 3. Apply 

rotation tensor. 

da is not 

changed, only the 

unit normal 

vector is affected.

N

dA

n

*

da

Now that a brief description of the geometry and the important tensor F̃ is given above,
discussion of the main topic of this paper will start.
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3 Stress Measures
Before outlining the different stress measures, the different entities involved are de-
scribed and illustrated.

Given the undeformed state B, let P a point in B where its location in the deformed
state becomes b (Lagrangian description). Let dA be a differential area at point P on
the surface of B where dN is a unit vector normal to this area in B. After deformation,
this differential area will is deformed to a new differential area da in the deformed state
b. Let dn be the unit vector normal to da in b.

Let df be the differential force vector which represents the resultant of the total internal
forces acting on da in the deformed state b.

The following diagram illustrates the above.

Deformed state

Differential area deformation and normal unit vectors used in stress measurment

P

dA dap

df

Undeformed state

Differential area dA image is da.

n
N

3.1 Cauchy stress measure
The Cauchy stress measure τ̃ is a measure of

force per unit area in the deformed state

It is called the true measure of stress. The followng follows from the above definition

df = (da n) · τ̃

Cauchy stress tensor is in general (in absence of body couples) a symmetric tensor.

13



3.2 First Piola-Kirchhoff or Piola-Lagrange stress measure

Deformed state

P

dA dap

df

Undeformed state

n
N

Deformed state

P

dA dap

df

Undeformed state

n
N

Parallel 

transport of df

Deformed state

P

dA
dap

df

Undeformed state

nN

Cauchy 

stress

First Piola-

Kirchhoff stress

Cauchy 

stress

Cauchy 

stress

df  da n  

df  N dA 

t 1st PK

JF
1

 

Step 1. Determine Cauchy stress in deformed state Step 2. Parallel transport forces from 

deformed state to undeformed state on 

area image.

Step 3. First piola-kirchhoff stress measure determined in the undeformed state.

The above diagram shows that this stress t̃ can be regarded as

The force in the deformed body per unit undeformed area .

The following shows the derivation of this stress tensor. Starting by moving the vector
df (the result of internal forces in the deformed state) which acts on the deformed area
da in a parallel transport to the image of da in the undeformed state, which will be the
differential area dA

Hence in the undeformed state the following results

df = (dA N) · t̃ (1)

Given that
N dA = 1

J
(da n) · F̃
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Which is a relationship derived from geometrical consideration [2], then from the above
equation the following results

da n = J (N dA) · F̃−1

Since df = (da n) · τ̃ , then using the above equation gives

df =
(
J (N dA) · F̃−1) · τ̃

= N dA ·
(
JF̃−1 · τ̃

)
(2)

Comparing (1) to (2) gives

(dA N) · t̃ = (N dA) · JF̃−1 · τ̃

Hence
t̃ = J F̃−1 · τ̃

First Piola-Kirchhoff stress tensor in general is unsymmetrical.
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3.3 Second Piola-Kirchhoff stress tensor

Deformed state

P

dA dap

df

Undeformed state

n
N

Deformed state

P

dA dap

Undeformed state

n
N

Parallel 

transport

Deformed 

state

P

dA dap

Undeformed 

state

n
N

Cauchy 

stress

First Piola-

Kirchhoff 

stress

Cauchy 

stress

Cauchy 

stress

df  da n  

Step 1. Determine Cauchy stress in deformed state

Step 3. Parallel transport new force vector from 

deformed state to undeformed state on area image.

Step 4. Second piola-kirchhoff stress 

measure determined in the undeformed 

state.

Deformed state

P

dA dap

Undeformed state

n
N

Cauchy 

stress

Step 2. create new force vector

df  F 1  df

df

df  N dA 

s1 2nd PK stress tensor

JF
1

   F T

df
df

From the above diagram stress s̃1 can be regarded as

Modified version of forces in the deformed body per unit undeformed area .

The stress measure s̃1 is similar to the first Piola-Kirchhoff stress measure, except that
instead of parallel transporting the force df from the deformed state to the undeformed
state, a force vector df̂ is first created which is derived from df and then parallel
transport this new vector is made.
Everything else remains the same. The purpose of this is that the second Piola-Kirchhoff
stress tensor will now be a symmetric tensor while the first Piola-Kirchhoff stress tensor
was nonsymmetric.

df̂ = F̃−1 · df (1)

Hence in the undeformed state (after parallel transporting df̂ to dA) the following
relationship results
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df̂ = (dA N) · s̃1 (2)

In the deformed state the following relation applies

df = (da n) · τ̃ (3)

As before, an expression for s̃1 in terms of the Cauchy stress tensor τ̃ is now found.

Given that
da n = J (N dA) · F̃−1

Substituting the above in (3) gives

df =
(
J (N dA) · F̃−1) · τ̃

From (1) df = F̃T · df̂ , hence the above equation becomes

F̃T · df̂ =
(
J (N dA) · F̃−1) · τ̃

Therefore

df̂=
(
J (N dA) · F̃−1) · τ̃ · F̃−T

= (N dA) ·
(
JF̃−1 · τ̃ · F̃−T

)
(4)

Comparing (4) with (2) gives

df̂ = (N dA) ·
s̃1 2nd PK stress tensor︷ ︸︸ ︷(
JF̃−1 · τ̃ · F̃−T

)
= (dA N) · s̃1

Therefore the second Piola-Kirchhoff stress tensor is

s̃1 = J F̃−1 · τ̃ · F̃−T

The second Piola-Kirchhoff stress tensor is in general symmetric.
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3.4 Kirchhoff stress tensor
Kirchhoff stress tensor σ̃ is a scalar multiple of the true stress tensor τ̃ . The scale factor
is the determinant of F̃, the deformation gradient tensor.
Hence

σ̃ = J τ̃

σ̃ is symmetric when τ̃ is symmetric which is in general the case.

3.5 Γ̃ stress tensor

The Γ̃ stress tensor is a result of internal forces generated due to the application of
the stretch tensor only. Hence this stress acts on the area deformed due to stretch only.
Therefore this stress represents

forces due to stretch only in the stretched body per unit stretched area .

Assuming these are called df∗, then applying this definition results in

df∗ = (da n∗) · Γ̃ (1)

Undeformed state

Step 1. Original oriented 

area dA

Deformed state due to stretch only. State (*)

Step 2. After Applying stretch tensor U

(Stetch)

Ũ  dA N

N

dA

n*

df

da*

When in the final deformed state the following relation applies before

df = (da n) · τ̃ (2)

The above means that the stretched state can be considered as a partial deformed
state, and the final deformed state as the result of applying the rotation tensor on the

18



stretched state. In the final deformed state the result of the internal forces is df while
in the stretched state, in which all the variables in that state are designated with a star
*, the internal forces are called df∗

Therefore
df = R̃ · df∗ (3)

Undeformed 

state
Deformed state 

due to stretch 

only. State (*)

(Stetch)

N

d

A

n

*

da*

df

Final deformed state

n

da

(Rotation)

R

df

Ũ 

 Stress tensor exist in the stretched state only

Equation (3) can be written as df∗ = df · R̃. Substituting this into (1) gives

(da n)·τ̃︷︸︸︷
df ·R̃ = (da n∗) · Γ̃ (4)

Substituting for df in the above equation the expression for df in (2) results in

(da n) · τ̃ · R̃ = (da n∗) · Γ̃ (5)

But da n = R̃ · (da n∗) hence the above equation becomes

R̃ · (da n∗) · τ̃ · R̃ = (da n∗) · Γ̃
(da n∗) · R̃T ·τ̃ · R̃ = (da n∗) · Γ̃

(da n∗) ·
(
R̃T · τ̃ · R̃

)
=(da n∗) · Γ̃

Therefore

Γ̃ = R̃
T · τ̃ · R̃
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3.6 Biot-Lure r̃∗ stress tensor
This stress measure exists in the undeformed state as a result of parallel translation of
the df∗ forces generated in the stretched state back to the undeformed state and apply-
ing this force into the image of the stretched area in the undeformed state. Therefore
this stress can be considered as

forces due to stretch only applied in the undeformed body per unit undeformed area

In a sense, it is one step more involved than the Γ̃ stress tensor described earlier. The
following diagram illustrates the above.

Undeformed 

state
Deformed state 

due to stretch 

only. State (*)
(Stetch)

N

d

A

n

*

da

*

df

Final deformed state

n

d

a

(Rotation)
R

df
Ũ



Stress tensor exist in the undeformed state onlyBiot-Lure

r

r

From the above diagram an expression for the Biot-Lure stress tensor is now given

df∗ = (dA N) · r̃∗

Now an expression for r̃∗ is found. Since df∗ = df · R̃, the above equation becomes

df · R̃ = (dA N) · r̃∗

Given that df = da n · τ̃ , the above equation becomes

(da n · τ̃) · R̃ = (dA N) · r̃∗

But da n = J (dA N) · F̃−1 hence the above equation becomes
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(
J (dA N) · F̃−1·τ̃

)
· R̃ = (dA N) · r̃∗

(dA N) ·
(
J F̃−1·τ̃ · R̃

)
= (dA N) · r̃∗

By comparison it follows that

r̃∗ = J F̃−1·τ̃ · R̃

The stress tensor r̃∗ is un-symmetric when τ̃ is symmetric which is in the general is the
case.

3.7 Jaumann stress tensor r̃

This stress tensor is introduced to create a symmetric stress tensor from the Biot-Lure
stress tensor as follows

r̃ =
(
r̃∗+r̃∗T

)
2

No physical interpretation of this stress tensor can be made similar to the Biot-Lure
stress tensor.

3.8 The stress tensor T̃ ∗

This stress tensor is defined in the rotated state without any stretch being applied
before. The forces that act on the rotated area were parallel transported from the forces
that were generated in the final deformed state. Hence this stress can be considered as

forces due to final deformation applied in the rotated body per unit undeformed area

The following diagram illustrates this. Since rotation have been applied before stretch,
then the polar decomposition of F̃ becomes

F̃ = Ũ · Ṽ

Where Ṽ is the rotation tensor (which was called R̃ when it was applied after stretch),
and Ũ is the stretch tensor.

21



Undeformed state

Deformed state due to 

stretch only. State (*)

(Stetch)

da

(Rotation) df

Ũ

V

N

dAdA

N

n
df

Steps to construct the 

T


T


Stress measure
T_star_stress.vsdx

Nasser M. Abbasi

The above diagram shows that

df = (dA N∗) · T̃∗

Since df = da n · τ̃ , the above equation becomes

da n · τ̃ = (dA N∗) · T̃∗

But da n = J
(
dA N∗ · Ṽ−1) hence the above equation becomes

J
(
dA N∗ · Ṽ−1) · τ̃ = (dA N∗) · T̃∗

(dA N∗) · J Ṽ−1· τ̃ = (dA N∗) · T̃∗

Therefore

T̃∗ = J Ṽ−1· τ̃

T̃∗ is un-symmetric when τ̃ is symmetric.

3.9 The stress tensor T̃

This stress tensor is introduced to create a symmetric stress tensor from the T̃∗ stress
tensor as follows

T̃ =
(
T̃∗+T̃∗T )

2

No physical interpretation of this stress tensor can be made similar to the T̃∗ stress
tensor.
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4 Geometry and stress tensors transformation due
to rigid body rotation

Now consideration is given to changes of the geometrical deforming tensors F̃, Ũ and
Ṽ when the body is in its final deformed state and then subjected to a pure rigid body
rotation Q̃, and to what happens to the various stress tensors derived above under the
same Q̃.

Q

Rigid body 

rotation 

tensor
da

nq

q

State B

(undeformed 

configuration

)

State B*

(Deformed 

configuration 

due to stretch 

only)

State q

(Pure rigid 

body rotation 

applied to 

state b)

dfq

N

dA

dR
Ũ

N

df

dA

dR

State b

(final Deformed 

configuration due 

to stretch 

followed by 

rotation)

dr

n
df

da

R

F q R qŨq

F  R  Ũ

Polar decomposition of F̃ is given by

F̃ = R̃ · Ũ

where F̃ is the deformation gradient tensor and Ũ is the stretch before rotation R̃
tensor, and R̃ is the rotation tensor. The polar decomposition of F̃ is

F̃ = Ṽ · R̃

where Ṽ is the stretch after rotation R̃ tensor.

The effect of applying pure rigid body rotation Q̃ on F̃, Ũ and Ṽ is now determined.

In each of the following derivations the following setting is assumed to be in place:
There is a body originally in the undeformed state B and loads are applied on the
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body. The body undergoes deformation governed by the deformation gradient tensor F̃
resulting in the body being in the final deformed state state b with a stress tensor τ̃ at
point p. If the body is considered to be first under the effect of Ũ (stretch), then the
new state will be called B∗, and after applying the effect of R̃ (point to point rotation
tensor), then the state will be called b (which is the final deformation state).

If however R̃ (rotation) is applied first, then the new state will also be called B∗

and then when applying the stretch Ṽ the state will becomes b (which is the final
deformation state).

From state b, which is the final deformation state, a pure rigid body rotation tensor Q̃
is applied to the whole body (with its fixed supports if any). Hence there will be no
changes in the body shape, and the new state is called q.

Is also possible to consider the change of state from state B to state q to be the result
of a new deformation gradient tensor which is called F̃q. The polar decomposition of
F̃q can also be written as

F̃q= R̃q·Ũq

or as
F̃q= Ṽq·R̃q

F̃ is compared to F̃q, and Ũ is compared to Ũq and Ṽ is compared to Ṽq in order to
see the effect of the rigid body rotation on these tensors.

4.1 Deformation tensors transformation (F̃ , Ũ and Ṽ ) due to
rigid body rotation Q̃

4.1.1 Transformation of F̃ (the deformation gradient tensor)

The above diagram show that
F̃q = Q̃ · F̃
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4.1.2 Transformation of Ũ (the stretch before rotation R̃ tensor)

Given that

Ũ =
(
F̃T ·F̃

) 1
2 (1)

Similarly,
Ũq=

(
F̃T

q ·F̃q

) 1
2

Where F̃q = Q̃ · F̃, hence the above becomes

Ũq=
((

Q̃ · F̃
)T ·
(
Q̃ · F̃

)) 1
2

Using linear algebra it follows that
(
Q̃ · F̃

)T = F̃T · Q̃T . Therefore the above becomes

Ũq=
((
F̃T · Q̃T

)
·
(
Q̃ · F̃

)) 1
2

But Q̃T ·Q̃ = Ĩ since Q̃ is orthogonal. Hence the above becomes

Ũq=
(
F̃T ·F̃

) 1
2 (2)

Comparing (1) and (2) shows they are the same. Hence

Ũq= Ũ

Therefore

Ũ does not change under pure rigid rotation .

4.1.3 Transformation of Ṽ (The stretch after rotation R̃ tensor)

Since
F̃q = Q̃ · F̃ (1)

And F̃ = R̃ · Ũ by polar decomposition on F̃ the above can be written as

F̃q = Q̃·
(
R̃ · Ũ

)
Applying polar decomposition on F̃q results in F̃q = R̃q · Ũq and the above becomes
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R̃q · Ũq = Q̃ · R̃ · Ũ

It was found earlier that Ũq = Ũ, therefore the above becomes

R̃q · Ũ = Q̃ · R̃ · Ũ
R̃q = Q̃ · R̃ (2)

Now the second form of polar decomposition on F̃q is utilized giving

F̃q = Ṽq·R̃q

Substituting (2) into the above equation results in

F̃q = Ṽq·
(
Q̃ · R̃

)
Substituting (1) into the above gives

Q̃ · F̃ = Ṽq·Q̃ · R̃

Since Q̃ · R̃ is invertible (need to check), the above can be written as

Ṽq = Q̃ · F̃·
(
Q̃ · R̃

)−1

But
(
Q̃ · R̃

)−1 = R̃T ·Q̃T (Since Q̃ · R̃ is an orthogonal matrix. (check). Hence the
above becomes

Ṽq = Q̃ · F̃ · R̃T ·Q̃T (3)

From polar decomposition it is known that F̃ = Ṽ · R̃, hence Ṽ = F̃ · R̃−1, but R̃−1 =
R̃T since it is an orthogonal matrix, therefore

Ṽ = F̃ · R̃T (4)

Substituting (4) in (3) gives

Ṽq = Q̃ · Ṽ · Q̃T

This above is how Ṽ transforms due to rigid rotation Q̃.
Now that the transformation of F̃, Ũ and Ṽ was obtained, the next step is to find how
each one of the stress tensors derived earlier transforms due to Q̃.
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4.2 Stress tensors transformation due to rigid body rotation
Q̃

4.2.1 Transformation of stress tensor τ̃ (Cauchy stress tensor)

The stress τ̃q (Cauchy stress in state q) is calculated at the point bq. Since this is a rigid
body rotation, the area da will not change, only the unit normal vector n will change
to nq

F

dA da
n

N



df

Q

Deformation 

gradient 

tensor

Rigid body 

rotation 

tensor

da

nq

q

F
q

State B

(undeformed 

configuration)

State b

(Deformed 

configuration)

State q

(Pure rigid 

body rotation 

applied to state 

b)

dfq

The tensor Q̃ maps the vector df to the vector df q

df q = Q̃ · df (1)

But in state b (the deformed state), the Cauchy stress tensor is given by

df =(da n) · τ̃ (2)

Substituting (2) into (1) gives

df q = Q̃ · (da n) · τ̃

Exchanging the order of τ̃ and da n and using the transpose of τ̃ gives

df q = Q̃ · τ̃T ·(da n) (3)

Therefore since the tensor Q̃ maps the oriented area (da n) to the oriented area (da nq)
then
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(da nq) = Q̃ · (da n)

Or

Q̃T ·(da nq) = da n (4)

Substituting (4) into (3) gives

df q = Q̃ · τ̃T ·Q̃T ·(da nq)

= (da nq) · Q̃ · τ̃ · Q̃T (5)

However, the stress τ̃q in state q is given by df q = (da nq) · τ̃q, hence the above equation
becomes

(da nq) · τ̃q = (da nq) · Q̃ · τ̃ · Q̃T

Or

τ̃q = Q̃ · τ̃ · Q̃T

This implies

the true stress tensor has changed in the deformed body subjected to pure rigid rotation.

Comparing the above transformation result with the deformation tensors transformation
results in

true Cauchy stress τ̃ transforms similarly to the tensor Ṽ
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4.2.2 Transformation of first Piola-Kirchhoff stress tensor

Undeformed 

state B

Deformed state due to 

stretch only. State (B*)

N

dA

Final deformed 

state b

n

da

R

df

Ũ

t

F

df

da

Q

q

nq

dfq

F q

State q after rigid 

body rotation

Diagram used for derivation of transformation of first Piola-

Kirchhoff stress tensor under rigid body rotation

first_PK_similarity.vsdx

Nasser M. Abbasi

The transformation of the first Piola-Kirchhoff stress tensor t̃ is given below.

Earlier it was shown that
t̃ = JF̃−1·τ̃

Which implies

t̃q = J F̃−1
q ·τ̃ q

However, it was found earlier that τ̃q = Q̃ · τ̃ · Q̃T therefore the above becomes

t̃q = J F̃−1
q ·Q̃ · τ̃ · Q̃T (1)

Now an expression for F̃−1
q is found.

Since F̃q = Q̃ · F̃, then F̃−1
q =

(
Q̃ · F̃

)−1, hence F̃−1
q = F̃−1 · Q̃−1. But since Q̃ is

orthogonal, then Q̃−1 = Q̃T , therefore

F̃−1
q = F̃−1 · Q̃T
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Substituting the above in (1) gives

t̃q = J F̃−1 · Q̃T ·Q̃ · τ̃ · Q̃T

= J F̃−1 · τ̃ · Q̃T

However, since t̃ = JF̃−1·τ̃ the above simplifies to

t̃q = t̃ · Q̃T

Hence
t̃q = Q̃ · t̃

By examining how the geometrical tensors transform, results from before showed that
F̃q = Q̃ · F̃ therefore

t̃transforms similarly toF̃

4.2.3 Transformation of second Piola-Kirchhoff stress tensor

Undeformed 

state B

Deformed state due to 

stretch only. State (B*)

N

dA

Final deformed 

state b

n

da

R

df

Ũ



F

da

Q

q

nq

dfq

F q

State q after rigid 

body rotation

Diagram used for derivation of transformation of second Piola-

Kirchhoff stress tensor under rigid body rotation
second_PK_similarity.vsd

Nasser Abbasi

df  F  df
df

s1

The transformation of the second Piola-Kirchhoff stress tensor s̃1 is given below.

From earlier
s̃1 = J F̃−1 · τ̃ · F̃−T
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Hence

s̃1q = J F̃−1
q · τ̃q · F̃−T

q

An expression for F̃−1
q is now found. Since F̃q = Q̃ · F̃, hence F̃−1

q =
(
Q̃ · F̃

)−1, hence
F̃−1

q = F̃−1 · Q̃−1. But since Q̃ is orthogonal, then Q̃−1 = Q̃T , hence

F̃−1
q = F̃−1 · Q̃T

The above equation becomes

s̃1q = J
(
F̃−1 · Q̃T

)
· τ̃q · F̃−T

q

F̃−T
q =

(
F̃−1

q

)T hence F̃−T
q =

(
F̃−1 · Q̃T

)T , therefore
F̃−T

q = Q̃ · F̃−T

The above equation becomes

s̃1q = J
(
F̃−1 · Q̃T

)
· τ̃q ·

(
Q̃ · F̃−T

)
From earlier it was found that τ̃q = Q̃ · τ̃ · Q̃T Therefore the above equation becomes

s̃1q = J
(
F̃−1 · Q̃T

)
·
(
Q̃ · τ̃ · Q̃T

)
·
(
Q̃ · F̃−T

)
= J F̃−1·τ̃ · F̃−T

Therefore

s̃1q = J F̃−1·τ̃ · F̃−T

This is the same as s̃1, hence
s̃1q = s̃1

Since it was found earlier that Ũq = Ũ therefore

s̃1transforms similarly toŨ
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4.2.4 Transformation of Kirchhoff stress tensor σ̃

Since σ̃ is a scalar multiple of τ̃ and from earlier it was found that τ̃ is a conjugate pair
with Ṽ then it is concluded that

σ̃ transforms similarly to Ṽ

4.2.5 Transformation of Γ̃ stress tensor

The transformation of the second Γ̃ stress tensor is shown below.

From earlier it is shown that
Γ̃ = R̃

T · τ̃ · R̃

Hence
Γ̃q= R̃T

q · τ̃q·R̃q

Since τ̃q = Q̃ · τ̃ · Q̃T the above becomes

Γ̃q= R̃T

q ·
(
Q̃ · τ̃ · Q̃T

)
·R̃q (1)

But F̃q = Q̃ · F̃ and using polar decomposition results in

F̃q = R̃q · Ũq

hence

Q̃ · F̃= R̃q · Ũq

Q̃= R̃q · Ũq · F̃−1

But F̃ = R̃ · Ũ hence F̃−1 =
(
R̃ · Ũ

)−1 = Ũ−1 · R̃−1, and the above becomes

Q̃= R̃q · Ũq ·
(
Ũ−1 · R̃−1)

Since Ũq = Ũ the above becomes

Q̃=R̃q ·
︷ ︸︸ ︷
Ũ · Ũ−1 ·R̃−1

= R̃q · R̃−1

But R̃−1 = R̃T therefore
Q̃ = R̃q · R̃T (2)
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Hence

Q̃T =
(
R̃q · R̃T

)T
= R̃ · R̃T

q (3)

Substituting (2) and (3) into (1) gives

Γ̃q= R̃T

q ·
(
R̃q · R̃T

)
·τ̃ ·
(
R̃ · R̃T

q

)
·R̃q

Since R̃ and R̃T
q are orthogonal, the above reduces to

Γ̃q = R̃T ·τ̃ · R̃

But Γ̃ = R̃
T · τ̃ · R̃ therefore

Γ̃q = Γ̃

Γ̃transforms similarly toŨ

4.2.6 Transformation of Biot-Lure stress tensor r̃∗

The transformation of the Biot-Lure stress tensor r̃∗ is given below.

From earlier

r̃∗ = J F̃−1·τ̃ · R̃ (1)

Hence

r̃∗q = J F̃−1
q ·τ̃ q · R̃q

But τ̃q = Q̃ · τ̃ · Q̃T therefore

r̃∗q = J F̃−1
q ·Q̃ · τ̃ · Q̃T · R̃q (2)

Since F̃q = Q̃ · F̃ then F̃−1
q =

(
Q̃ · F̃

)−1 = F̃−1 · Q̃−1 but Q̃ is orthogonal, hence
Q̃−1 = Q̃T , hence F̃−1

q = F̃−1 · Q̃T . Therefore (2) can be written as

r̃∗q = J
(
F̃−1 · Q̃T

)
·Q̃ · τ̃ · Q̃T · R̃q (3)
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Now R̃q is resolved.

Since F̃q = Q̃ · F̃ and by polar decomposition F̃q = R̃q·Ũq then

R̃q·Ũq = Q̃ · F̃

R̃q = Q̃ · F̃ · Ũ−1
q (4)

Substituting (4) into (3) gives

r̃∗q = J
(
F̃−1 · Q̃T

)
·Q̃ · τ̃ · Q̃T ·

(
Q̃ · F̃ · Ũ−1

q

)
= J F̃−1 ·

︷ ︸︸ ︷
Q̃T ·Q̃ ·τ̃ ·

︷ ︸︸ ︷
Q̃T · Q̃ ·F̃ · Ũ−1

q

= J F̃−1·τ̃ · F̃ · Ũ−1
q

Since F̃ = R̃ · Ũ the above becomes

r̃∗q = J F̃−1·τ̃ ·

R̃·Ũ︷︸︸︷
F̃ ·Ũ−1

q

= J F̃−1·τ̃ · R̃ · Ũ · Ũ−1
q

From earlier Ũ = Ũq, therefore the above becomes

r̃∗q = J F̃−1·τ̃ · R̃·
︷ ︸︸ ︷
Ũ · Ũ−1

= J F̃−1·τ̃ · R̃

From (1) gives
r̃∗q = r̃∗

And since Ũq= Ũ therefore

r̃∗transforms similarly toŨ
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4.2.7 Transformation of Juamann stress tensor r̃

The transformation of the Juamann stress tensor r̃ is shown below.

From earlier

r̃ =
(
r̃∗ + r̃∗T

)
2 (1)

From (1) results

r̃q=
(
r̃∗q + r̃∗Tq

)
2

Since it was found that r̃∗q = r̃∗ then the above becomes

r̃q=
(
r̃∗ + r̃∗T

)
2

Therefore

r̃q = r̃

Since Ũq= Ũ therefore

r̃transforms similarly toŨ

4.2.8 Transformation of T̃ ∗ stress tensor

From earlier

T̃∗ = J Ṽ−1· τ̃

Hence

T̃∗
q = J Ṽ−1

q · τ̃ q

But τ̃q = Q̃ · τ̃ · Q̃T and Ṽq = Q̃ · Ṽ · Q̃T Therefore
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T̃∗
q = J

(
Q̃ · Ṽ · Q̃T

)−1
·
(
Q̃ · τ̃ · Q̃T

)
= J Q̃−T ·

(
Q̃ · Ṽ

)−1 · Q̃ · τ̃ · Q̃T

= J Q̃−T · Ṽ−1·
︷ ︸︸ ︷
Q̃−1· Q̃ ·τ̃ · Q̃T

= J Q̃−T · Ṽ−1·τ̃ · Q̃T

= J Ṽ−1· τ̃
= T̃∗

Hence

T̃∗
q = T̃∗

Therefore

T̃∗is conjugate pair withŨ

4.2.9 Transformation of T̃ stress tensor

Since T̃ =
(
T̃∗+T̃∗T )

2 and T̃∗ is conjugate pair with Ũ then

T̃∗is conjugate pair withŨ

5 Constitutive Equations using conjugate pairs for
nonlinear elastic materials with large
deformations: Hyper-elasticity

Formulating the constitutive relation for a material seeks a formula that relates the
stress measure to the strain measure. Therefore, using a specific stress measure, the
correct strain measure must be used.

Therefore the problem at hand is the following: Given a stress tensor, one of the many
stress tensors discussed earlier, how to determine the correct strain tensor to use with
it?
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To make the discussion general, the stress tensor is designated by B̃ and its conjugate
pair, the strain tensor, by Ã.

The stress measure B̃ could be any of the stress measures discussed earlier, such as
the Cauchy stress tensor τ̃ , the second Piola-kirchhoff stress tensor s̃1. Now the strain
tensor to use is determined. Let

(
B̃, Ã

)
be the conjugate pair tensors.

Physics is used in finding of Ã for each specific B̃

Let the current amount of energy stored in a unit volume as a result of the body
undergoing deformation be W , then the time rate at which this energy changes will be
equal to the stress multiplied by the strain rate. Hence

Ẇ = B̃ : ∂Ã
∂t

Where : is the trace matrix operator. This is the rule used to determine Ã.

On a stress-strain diagram the following is drawn

B

Ã

W

This area is a measure 

of the energy stored 

during loading (Work 

done by stress)

Complementary W

B  W

Ã

Stress 

measure

Conjugate strain measure

Ã  Wc

B

Wc
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The strain measure Ã (the conjugate pair for the stress measure B̃) must satisfy the
relation

∂W

∂t
= ∂W

∂Ã
: ∂Ã
∂t

Ẇ = B̃ : Ȧ

For each stress/strain conjugate pair, the terms ∂W
∂t

, ∂Ã
∂t
, Ã are derived.

5.1 Conjugate pair for Cauchy stress tensor
In the deformed state, the stress tensor is the true stress tensor, which is the cauchy
stress τ̃ , and the strain rate in this state is known to be [2]

1
2
(
ẽ+ ẽT

)
Where ẽ is the velocity gradient tensor. It is shown in [2] that

ẽ = Ḟ · F̃−1

Hence in the deformed state

Ẇ = τ̃ : 12

(
Ḟ · F̃−1 + F̃−T ·Ḟ−1

)
In other words, the conjugate strain for the cauchy stress tensor is given by Ã such
that

∂Ã
∂t

= 1
2

(
Ḟ · F̃−1 + F̃−T ·Ḟ−1

)
Ã should come out to be the Almansi strain tensor, which is

Ã = 1
2

(
F̃−T · F̃−1 − Ĩ

)
(check)
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5.2 Conjugate pair for second Piola-kirchhoff stress tensor s̃1

Ẇ = B̃ : ∂Ã
∂t

= τ̃ : ẽ

Pre dot multiplying ẽ by Ĩ =
(
F̃−T · F̃T

)
and post dot multiplying it with Ĩ =

(
F̃ · F̃−1)

which will make no change in the value, results in

Ẇ = τ̃ :
(
F̃−T · F̃T) · ẽ·(F̃ · F̃−1)

Using the properties of : the above is written as

Ẇ =
(
F̃−1 · τ̃ · F̃−T

)
:
(
F̃T · ẽ · F̃

)
It was determined earlier that s̃1 = J F̃−1 · τ̃ · F̃−T hence F̃−1 · τ̃ · F̃−T = s̃1

J
hence the

above equation becomes

Ẇ = s̃1
J

:
(
F̃T ·ẽ · F̃

)
But ẽ = Ḟ · F̃−1 therefore

Ẇ = s̃1
J

:
(
F̃T · Ḟ · F̃−1 · F̃

)
= s̃1 : 1

J

(
F̃T · Ḟ · F̃−1 · F̃

)
Therefore

∂Ã
∂t

= 1
J

(
F̃T ·Ḟ · F̃−1 · F̃

)
This shows that Ã =1

2

(
F̃T · F̃− Ĩ

)
, therefore ∂Ã

∂t
= ḞT ·F̃+ F̃T ·Ḟ

Or

Ã = 1
2J

(
F̃T · F̃− Ĩ

)
The advantage in using the second Piola Kirchhoff stress tensor instead of the Cauchy
or the first Piola Kirchhoff stress tensor, is that with the second Piola Kirchhoff stress
tensor, calculations are performed the reference configuration (undeformed state) where
the state measurements are known instead of using the deformed configuration where
state measurements are not known.
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5.3 Conjugate pair for first Piola-kirchhoff stress tensor t̃

Ẇ = B̃ : ∂Ã
∂t

= τ̃ : ẽ

But ẽ = Ḟ · F̃−1 hence the above becomes

Ẇ = τ̃ : Ḟ · F̃−1

Using the property of : A : B · C can be written as A · CT : B hence applying this
property to the above expression gives

Ẇ = τ̃ · F̃−T : Ḟ

Applying the property that A · CT : B → C · A : BT to the above results in

Ẇ = F̃−1·τ̃ : ḞT

It was found earlier that t̃ =J F̃−1 · τ̃ hence replacing this into the above gives

Ẇ = 1
J
t̃ : ḞT

This shows that ∂Ã
∂t

= 1
J
ḞT therefore

Ã = 1
J
FT

5.4 Conjugate pair for σ̃ Kirchhoff stress tensor
Since σ̃ is a scaled version of τ̃ where

σ̃ =J τ̃

It was found earlier that the strain tensor associated with τ̃ is 1
2J

(
F̃T · F̃− Ĩ

)
hence

the strain tensor associated with σ̃ is 1
2

(
F̃T · F̃− Ĩ

)
Therefore

Ã =1
2
(
F̃T · F̃− Ĩ

)
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5.5 Conjugate pair for r̃∗ Biot-Lure stress tensor

Ẇ = B̃ : ∂Ã
∂t

= τ̃ : ẽ

But ẽ = Ḟ · F̃−1 hence the above becomes

Ẇ = τ̃ : Ḟ · F̃−1

= τ̃ : 12
(
Ḟ+ Ḟ

)
·F̃−1

= τ̃ : 12
(
Ḟ · Ĩ+ Ĩ · Ḟ

)
·F̃−1 (1)

But
(
F̃−1 · F̃

)
= Ĩ. Using this the first Ĩ in (1) above is replaced. Also

(
F̃ · F̃−1) = Ĩ,

and using this, the second Ĩ in equation (1) above is replaced. Therefore (1) becomes

Ẇ = τ̃ : 12
(
Ḟ ·
(
F̃−1 · F̃

)
+
(
F̃ · F̃−1) · Ḟ) ·F̃−1

= τ̃ : 12

(︷ ︸︸ ︷
Ḟ · F̃−1 ·F̃+

︷ ︸︸ ︷
F̃ · F̃−1 ·Ḟ

)
·F̃−1

Switching the order of terms selected above by transposing them gives

Ẇ = τ̃ : 12

(︷ ︸︸ ︷
F̃−T ·ḞT ·F̃+

︷ ︸︸ ︷
F̃−T ·F̃T ·Ḟ

)
·F̃−1

Taking F̃−T as common factor gives

Ẇ = τ̃ : 12

{
F̃−T ·

(
ḞT ·F̃+ F̃T ·Ḟ

)}
·F̃−1 (2)

But
ḞT ·F̃+ F̃T ·Ḟ = d

dt

(
F̃T ·F

)
Hence (2) becomes

Ẇ = τ̃ : 12

{
F̃−T · d

dt

(
F̃T ·F

)}
·F̃−1 (3)
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But d
dt

(
F̃T ·F

)
= d

dt

(
Ũ2) since F̃T ·F = Ũ2

Therefore (3) becomes

Ẇ = τ̃ : 12

{
F̃−T · d

dt

(
Ũ2)} ·F̃−1 (4)

But
d

dt

(
Ũ2) = 2

(
Ũ · U̇

)
Hence (4) becomes

Ẇ = τ̃ : 12
{
F̃−T · 2

(
Ũ · U̇

)}
·F̃−1 (5)

But
Ũ · U̇ = U̇ ·U

From symmetry of U therefore

2
(
Ũ · U̇

)
= Ũ · U̇+ U̇ ·U

And (5) becomes

Ẇ = τ̃ : 12

(
F̃−T ·

(
Ũ · U̇+ U̇ ·U

)
·F̃−1

)
From property of : the above can be written as

Ẇ = F̃−1 · τ̃ · F̃−T : 12
(
Ũ · U̇+ U̇ ·U

)
But from above, 1

2

(
Ũ · U̇+ U̇ ·U

)
= Ũ · U̇ Hence

Ẇ = F̃−1 · τ̃ · F̃−T : Ũ · U̇

Using property of : the term Ũ is moved to the left of : to obtain

Ẇ = F̃−1 · τ̃ · F̃−T · Ũ : U̇

But F̃−T · Ũ = R̃ hence the above becomes
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Ẇ =
︷ ︸︸ ︷
F̃−1 · τ̃ · R̃ : U̇

But it was found earlier that r̃∗ = J F̃−1·τ̃ · R̃

Hence Ẇ = 1
J
r̃∗ : U̇ Hence

Ẇ = r̃∗ : 1
J
U̇

Therefore ∂Ã
∂t

= 1
J
U̇ which results in

Ã =1
J
U

5.6 Conjugate pair for r̃ Jaumann stress tensor

It was found earlier that r̃ =
(
r̃∗+r̃∗T

)
2 hence the conjugate pair for r̃ is

( 1
J
U+ 1

J
UT

)
2

Since Ũ is symmetrical, therefore conjugate pair for r̃ is 1
J
U Hence

Ã =1
J
U

The same as strain tensor associated with the Biot-Lure stress.

6 Stress-Strain relations using conjugate pairs
based on complementary strain energy

TO-DO for future work.

7 Appendix

7.1 Derivation of the deformation gradient tensor F̃ in
normal Cartesian coordinates system

In what follows the expression for the deformation gradient tensor F̃ is derived. This
tensor transform one vector into another vector.

For simplicity it is assumed that the deformed and the undeformed states are described
using the same coordinates system. In addition, it is assumed that this coordinates
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system is the normal Cartesian system with basis vectors i, j,k. Later these expression
will be written in the more general case where the coordinate systems are different and
use curvilinear coordinate. Other than using different notation, the derivation is the
same in both cases.

Considering a point P in the undeformed state. This point will have coordinates
(X1, X2, X3). When the body undergoes deformation, this point will be displaced to a
new location. The image of this point in the deformed state is called the point p. The
coordinates of the the point p is (x1, x2, x3).

The coordinates xi is function of the coordinates Xj. These functions constitute the
mapping between the undeformed shape and the deformed shape. These functions can
be written in general as

x1 = f1(X1, X2, X3)
x2 = f2(X1, X2, X3)
x3 = f3(X1, X2, X3)

Therefore by knowing the functions fi the position of any point in the deformed state
can be located if its position in the undeformed state is known. It is more customary
to write the function fi using the name of the coordinate itself. For example writing
x1 = x1(X1, X2, X3) instead of x1 = f1(X1, X2, X3) as was done above.

However this can be a little confusing since it uses the letter xi as function when on
the RHS and a variable on the LHS. Hence here the choice was to use a new name for
the mapping function.

From the above we the expression for a differential change in each of the 3 coordinates
using the differentiation chain rule is determined as follows

dx1 =
∂f1
∂X1

dX1 +
∂f1
∂X2

dX2 +
∂f1
∂X3

dX3

dx2 =
∂f2
∂X1

dX1 +
∂f2
∂X2

dX2 +
∂f2
∂X3

dX3

dx3 =
∂f3
∂X1

dX1 +
∂f3
∂X2

dX2 +
∂f3
∂X3

dX3 (1)

Considering now a differential vector element dr in the deformed state. This vector can
be written as
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dr = i dx1 + j dx2 + k dx3 (2)

Combining equations (1) and (2) gives

dr = i
(

∂f1
∂X1

dX1 +
∂f1
∂X2

dX2 +
∂f1
∂X3

dX3

)
+ j

(
∂f2
∂X1

dX1 +
∂f2
∂X2

dX2 +
∂f2
∂X3

dX3

)
+ k

(
∂f3
∂X1

dX1 +
∂f3
∂X2

dX2 +
∂f3
∂X3

dX3

)
The above equation can be written in matrix form as follows

dx1

dx2

dx3

 =


∂f1
∂X1

∂f1
∂X2

∂f1
∂X3

∂f2
∂X1

∂f2
∂X2

∂f2
∂X3

∂f3
∂X1

∂f3
∂X2

∂f3
∂X3


dX1

dX2

dX3

 (3)

It is seen that the components of dr can be obtained from the components dR by
pre-multiplying the components of dR by the above 3× 3 matrix. Hence this matrix
acts as a transformation rule which maps one vector to another, it is a second order
tensor, which is called the deformation gradient tensor F̃

dr = F̃ · dR (4)

This relation can be written also in dyadic form as follows

i dx1 + j dx2 + k dx3 =(
ii
∂f1
∂X1

+ ij
∂f1
∂X2

+ ik
∂f1
∂X3

+ ji
∂f2
∂X1

+ jj
∂f2
∂X2

+ jk
∂f2
∂X3

+ ki
∂f3
∂X1

+ kj
∂f3
∂X2

+ kk
∂f3
∂X3

)
·(i dX1 + j dX2 + k dX3) (5)

To carry the multiplication on the RHS in the above equation, the normal dot product
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convention is followed using the following rules.

ii · i= i(i · i) = 1
ij · i= i(j · i) = 0
ik · i= i(k · i) = 0
ji · i= j(i · i) = 1

etc· · ·

Performing the multiplication gives

i dx1 + j dx2 + k dx3 =(
ii
∂f1
∂X1

+ ij
∂f1
∂X2

+ ik
∂f1
∂X3

+ ji
∂f2
∂X1

+ jj
∂f2
∂X2

+ jk
∂f2
∂X3

+ ki
∂f3
∂X1

+ kj
∂f3
∂X2

+ kk
∂f3
∂X3

)
·i dX1

+
(
ii
∂f1
∂X1

+ ij
∂f1
∂X2

+ ik
∂f1
∂X3

+ ji
∂f2
∂X1

+ jj
∂f2
∂X2

+ jk
∂f2
∂X3

+ ki
∂f3
∂X1

+ kj
∂f3
∂X2

+ kk
∂f3
∂X3

)
·j dX2

+
(
ii
∂f1
∂X1

+ ij
∂f1
∂X2

+ ik
∂f1
∂X3

+ ji
∂f2
∂X1

+ jj
∂f2
∂X2

+ jk
∂f2
∂X3

+ ki
∂f3
∂X1

+ kj
∂f3
∂X2

+ kk
∂f3
∂X3

)
·k dX3

The dot multiplication is simplified using the above mentioned rules to obtain

i dx1 + j dx2 + k dx3 =(
i
∂f1
∂X1

dX1 + 0+ 0+ j
∂f2
∂X1

dX1 + 0+ 0+ k
∂f3
∂X1

dX1 + 0+ 0
)

+
(
0+ ij

∂f1
∂X2

dX2 + 0+ 0+ jj
∂f2
∂X2

dX2 + 0+ 0+ kj
∂f3
∂X2

dX2 + 0
)

+
(
0+ 0+ ik

∂f1
∂X3

dX3 + 0+ 0+ jk
∂f2
∂X3

dX3 + 0+ 0+ kk
∂f3
∂X3

dX3

)
Simplifying gives

i dx1 + j dx2 + k dx3 =(
i
∂f1
∂X1

dX1 + j
∂f2
∂X1

dX1 + k
∂f3
∂X1

dX1

)
+
(
i
∂f1
∂X2

dX2 + j
∂f2
∂X2

dX2 + k
∂f3
∂X2

dX2

)
+
(
i
∂f1
∂X3

dX3 + j
∂f2
∂X3

dX3 + k
∂f3
∂X3

dX3

)
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Collecting similar terms on the RHS gives

i dx1 + j dx2 + k dx3 =

i
(

∂f1
∂X1

dX1 +
∂f1
∂X2

dX2 +
∂f1
∂X3

dX3

)
+ j
(

∂f2
∂X1

dX1 +
∂f2
∂X2

dX2 +
∂f2
∂X3

dX3

)
+ k

(
∂f3
∂X1

dX1 +
∂f3
∂X2

dX2 +
∂f3
∂X3

dX3

)
comparing the components of the vector on the LHS with those component of the
vector on the RHS gives equation (1) as expected.

In addition to the matrix form and the dyadic form, the transformation from dR to
dr can be expressed using indices notation as follows

dxi =
∂fi
∂Xj

dXj

7.2 Useful identities and formulas
A matrix A is orthogonal if AAT = I where I is the identity matrix.

If a matrix/tensor A is orthogonal then A−1 = AT . In component form, a−1
ij = aji(

Ã · B̃
)−1 = B̃−1 · Ã−1(

Ã · B̃
)T = B̃T · ÃT(

Ã · B̃
)−T =

((
Ã · B̃

)T)−1
=
(
B̃T · ÃT

)−1

F̃ = R̃ · Ũ

F̃ = Ṽ · R̃

Ũ = R̃T · Ṽ · R̃

Ṽ = R̃ · Ũ · R̃T

Ũ =
(
F̃T · F̃

) 1
2

F̃q = Q̃ · F̃
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