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CHAPTER 1
Introduction

A short review for solving the beam problem in 2D is given. The deflection curve,
bending moment and shear force diagrams are calculated for a beam subject to bending
moment and shear force using direct stiffness method and then using finite elements
method by adding more elements. The problem is solved first by finding the stiffness
matrix using the direct method and then using the virtual work method.
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CHAPTER 2
Direct method

2.1 Examples using the direct beam stiffness matrix . . . . . . . . . . . . . . . 16

Starting with only one element beam which is subject to bending and shear forces.
There are 4 nodal degrees of freedom. Rotation at the left and right nodes of the
beam and transverse displacements at the left and right nodes. The following diagram
shows the sign convention used for external forces. Moments are always positive when
anti-clockwise direction and vertical forces are positive when in the positive y direction.

The two nodes are numbered 1 and 2 from left to right. M1 is the moment at the left
node (node 1), M2 is the moment at the right node (node 2). V1 is the vertical force at
the left node and V2 is the vertical force at the right node.

x

y

1 2

M1 M2

V1
V2

The above diagram shows the signs used for the applied forces direction when acting in
the positive sense. Since this is a one dimensional problem, the displacement field (the
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unknown being solved for) will be a function of one independent variable which is the
x coordinate. The displacement field in the vertical direction is called v(x). This is the
vertical displacement of point x on the beam from the original x− axis. The following
diagram shows the notation used for the coordinates.

x,u

y,v

Angular displacement at distance x on the beam is found using θ(x) = dv(x)
dx

. At the
left node, the degrees of freedom or the displacements, are called v1, θ1 and at the
right node they are called v2, θ2. At an arbitrary location x in the beam, the vertical
displacement is v(x) and the rotation at that location is θ(x).

The following diagram shows the displacement field v(x)

1 2
1 2

main displacement field 
quantity we need to find

x  dvx

dx

v 1 v 2

vx

x,u

y,v

In the direct method of finding the stiffness matrix, the forces at the ends of the beam
are found directly by the use of beam theory. In beam theory the signs are different
from what is given in the first diagram above. Therefore, the moment and shear forces
obtained using beam theory (MB and VB in the diagram below) will have different
signs when compared to the external forces. The signs are then adjusted to reflect the
convention as shown in the diagram above using M and V .
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For an example, the external moment M1 is opposite in sign to MB1 and the reaction
V2 is opposite to VB2. To illustrate this more, a diagram with both sign conventions is
given below.



Beam theory positive sign directions for 
bending moments and shear forces

Applied external moments and end forces shown in positive sense directions

M1 M2

V1
V2

1 2

MB1 MB2

VB1 VB2

The goal now is to obtain expressions for external loads Mi and Ri in the above diagram
as function of the displacements at the nodes {d} = {v1, θ1, v2, θ2}T .
In other words, the goal is to obtain an expression of the form {p} = [K] {d} where
[K] is the stiffness matrix where {p} = {V1,M1, R2,M2}T is the nodal forces or load
vector, and {d} is the nodal displacement vector.
In this case [K] will be a 4 × 4 matrix and {p} is a 4 × 1 vector and {d} is a 4 × 1
vector.
Starting with V1. It is in the same direction as the shear force VB1. Since VB1 = dMB1

dx

then
V1 =

dMB1

dx
Since from beam theory MB1 = −σ(x) I

y
, the above becomes

V1 = −I

y

dσ(x)
dx
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But σ(x) = Eε(x) and ε(x) = −y
ρ

where ρ is radius of curvature, therefore the above
becomes

V1 = EI
d

dx

(
1
ρ

)
Since 1

ρ
=

(
d2u
dx2

)
(
1+

(
du
dx

)2
)3/2 and for a small angle of deflection du

dx
� 1 then 1

ρ
=
(

d2u
dx2

)
, and

the above now becomes
V1 = EI

d3u(x)
dx3

Before continuing, the following diagram illustrates the above derivation. This comes
from beam theory.

Deflection curve

x

x

Radius of 
curvature

vx

x  dv

dx

1
  d 2v

dx2

Now M1 is obtained. M1 is in the opposite sense of the bending moment MB1 hence a
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negative sign is added giving M1 = −MB1. But MB1 = −σ(x) I
y
therefore

M1 = σ(x) I
y

= Eε(x) I
y

= E

(
−y

ρ

)
I

y

= −EI

(
1
ρ

)
= −EI

d2w

dx2

V2 is now found. It is in the opposite sense of the shear force VB2, hence a negative sign
is added giving

V2 = −VB2

= −dMB2

dx

Since MB2 = −σ(x) I
y
, the above becomes

V2 =
I

y

dσ(x)
dx

But σ(x) = Eε(x) and ε(x) = −y
ρ

where ρ is radius of curvature. The above becomes

V2 = −EI
d

dx

(
1
ρ

)

But 1
ρ
=

(
d2w
dx2

)
(
1+

(
dw
dx

)2
)3/2 and for small angle of deflection dw

dx
� 1 hence 1

ρ
=
(

d2u
dx2

)
then

the above becomes
V2 = −EI

d3u(x)
dx3

Finally M2 is in the same direction as MB2 so no sign change is needed. MB2 = −σ(x) I
y
,



chapter 2 . direct method 10

therefore

M2 = −σ(x) I
y

= −Eε(x) I
y

= −E

(
−y

ρ

)
I

y

= EI

(
1
ρ

)
= EI

d2u

dx2

The following is a summary of what was found so far. Notice that the above expressions
are evaluates at x = 0 and at x = L. Accordingly to obtain the nodal end forces vector
{p}

{p} =


V1

M1

V2

M2

 =



EI d3u(x)
dx3

∣∣∣
x=0

−EI d2u
dx2

∣∣∣
x=0

−EI d3u(x)
dx3

∣∣∣
x=L

EI d2u
dx2

∣∣∣
x=L


(1)

The RHS of the above is now expressed as function of the nodal displacements v1, θ1, v2, θ2.
To do that, the field displacement v(x) which is the transverse displacement of the
beam is assumed to be a polynomial in x of degree 3 or

v(x) = a0 + a1x+ a2x
2 + a3x

3

θ(x) = dv(x)
dx

= a1 + 2a2x+ 3a3x2 (A)

Polynomial of degree 3 is used since there are 4 degrees of freedom, and a minimum of
4 free parameters is needed. Hence

v1 = v(x)|x=0 = a0 (2)

And
θ1 = θ(x)|x=0 = a1 (3)

Assuming the length of the beam is L, then

v2 = v(x)|x=L = a0 + a1L+ a2L
2 + a3L

3 (4)
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And
θ2 = θ(x)|x=L = a1 + 2a2L+ 3a3L2 (5)

Equations (2-5) gives

{d} =


v1
θ1
v2
θ2

 =


a0
a1

a0 + a1L+ a2L
2 + a3L

3

a1 + 2a2L+ 3a3L2

 =


1 0 0 0
0 1 0 0
1 L L2 L3

0 1 2L 3L2



a0
a1
a2
a3


Solving for ai gives 

a0
a1
a2
a3

 =


1 0 0 0
0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L

2
L3

1
L2 − 2

L3
1
L2



v1
θ1
v2
θ2



=


v1
θ1

3
L2v2 − 1

L
θ2 − 3

L2v1 − 2
L
θ1

1
L2 θ1 + 1

L2 θ2 + 2
L3v1 − 2

L3v2


v(x), the field displacement function from Eq. (A) can now be written as a function of
the nodal displacements

v(x) = a0 + a1x+ a2x
2 + a3x

3

= v1 + θ1x+
(

3
L2v2 −

1
L
θ2 −

3
L2v1 −

2
L
θ1

)
x2 +

(
1
L2 θ1 +

1
L2 θ2 +

2
L3v1 −

2
L3v2

)
x3

= v1 + xθ1 − 2x
2

L
θ1 +

x3

L2 θ1 −
x2

L
θ2 +

x3

L2 θ2 − 3x
2

L2v1 + 2x
3

L3v1 + 3x
2

L2v2 − 2x
3

L3v2

Or in matrix form

v(x) =
(
1− 3 x2

L2 + 2 x3

L3 x− 2x2

L
+ x3

L2 3 x2

L2 − 2 x3

L3 −x2

L
+ x3

L2

)
v1
θ1
v2
θ2


=
(

1
L3 (L3 − 3Lx2 + 2x3) 1

L2 (L2x− 2Lx2 + x3) 1
L3 (3Lx2 − 2x3) 1

L2 (−Lx2 + x3)
)

v1
θ1
v2
θ2


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The above can be written as

v(x) =
(
N1(x) N2(x) N3(x) N4(x)

)
v1
θ1
v2
θ2

 (5A)

v(x) = [N ] {d}

Where Ni are called the shape functions. The shape functions are
N1(x)
N2(x)
N3(x)
N4(x)

 =


1
L3 (L3 − 3Lx2 + 2x3)
1
L2 (L2x− 2Lx2 + x3)

1
L3 (3Lx2 − 2x3)
1
L2 (−Lx2 + x3)


We notice that N1(0) = 1 and N1(L) = 0 as expected. Also

dN2(x)
dx

∣∣∣∣
x=0

= 1
L2

(
L2 − 4Lx+ 3x2)∣∣∣∣

x=0
= 1

And
dN2(x)
dx

∣∣∣∣
x=L

= 1
L2

(
L2 − 4Lx+ 3x2)∣∣∣∣

x=L

= 0

Also N3(0) = 0 and N3(L) = 1 and

dN4(x)
dx

∣∣∣∣
x=0

= 1
L2

(
−2Lx+ 3x2)∣∣∣∣

x=0
= 0

and
dN4(x)
dx

∣∣∣∣
x=L

= 1
L2

(
−2Lx+ 3x2)∣∣∣∣

x=L

= 1

The shape functions have thus been verified. The stiffness matrix is now found by
substituting Eq. (5A) into Eq. (1), repeated below

{p} =


V1

M1

V2

M2

 =



EI d3v(x)
dx3

∣∣∣
x=0

−EI d2v
dx2

∣∣∣
x=0

−EI d3v(x)
dx3

∣∣∣
x=L

EI d2v
dx2

∣∣∣
x=L


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Hence

{p} =


V1

M1

V2

M2

 =


EI d3

dx3 (N1v1 +N2θ1 +N3v2 +N4θ2)

−EI d2

dx2 (N1v1 +N2θ1 +N3v2 +N4θ2)

−EI d3

dx3 (N1v1 +N2θ1 +N3v2 +N4θ2)

EI d2

dx2 (N1v1 +N2θ1 +N3v2 +N4θ2)

 (6)

But

d3

dx3N1(x) =
1
L3

d3

dx3

(
L3 − 3Lx2 + 2x3)

= 12
L3

And

d3

dx3N2(x) =
1
L2

d3

dx3

(
L2x− 2Lx2 + x3)

= 6
L2

And

d3

dx3N3(x) =
1
L3

d3

dx3

(
3Lx2 − 2x3)

= −12
L3

And

d3

dx3N4(x) =
1
L2

d3

dx3

(
−Lx2 + x3)

= 6
L2

For the second derivatives

d2

dx2N1(x) =
1
L3

d2

dx2

(
L3 − 3Lx2 + 2x3)

= 1
L3 (12x− 6L)

And

d2

dx2N2(x) =
1
L2

d2

dx2

(
L2x− 2Lx2 + x3)

= 1
L2 (6x− 4L)
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And

d2

dx2N3(x) =
1
L3

d2

dx2

(
3Lx2 − 2x3)

= 1
L3 (6L− 12x)

And

d2

dx2N4(x) =
1
L2

d2

dx2

(
−Lx2 + x3)

= 1
L2 (6x− 2L)

Hence Eq. (6) becomes

{p} =


V1

M1

V2

M2

 =



EI d3

dx3 (N1v1 +N2θ1 +N3v2 +N4θ2)
∣∣∣
x=0

−EI d2

dx2 (N1v1 +N2θ1 +N3v2 +N4θ2)
∣∣∣
x=0

−EI d3

dx3 (N1v1 +N2θ1 +N3v2 +N4θ2)
∣∣∣
x=L

EI d2

dx2 (N1v1 +N2θ1 +N3v2 +N4θ2)
∣∣∣
x=L



=


EI
( 12
L3v1 + 6

L2 θ1 − 12
L3v2 + 6

L2 θ2
)
x=0

−EI
( 1
L3 (12x− 6L) v1 + 1

L2 (6x− 4L) θ1 + 1
L3 (6L− 12x) v2 + 1

L2 (6x− 2L) θ2
)
x=0

−EI
( 12
L3v1 + 6

L2 θ1 − 12
L3v2 + 6

L2 θ2
)
x=L

EI
( 1
L3 (12x− 6L) v1 + 1

L2 (6x− 4L) θ1 + 1
L3 (6L− 12x) v2 + 1

L2 (6x− 2L) θ2
)
x=L



= EI

L3


12 6L −12 6L

−(12x− 6L)x=0 −L(6x− 4L)x=0 −(6L− 12x)x=0 −L(6x− 2L)x=0

−12 −6L 12 −6L
(12x− 6L)x=L L(6x− 4L)x=L (6L− 12x)x=L L(6x− 2L)x=L



v1
θ1
v2
θ2


(7)
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Or in matrix form, after evaluating the expressions above for x = L and x = 0 as
V1

M1

V2

M2

 = EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

− 12
L3 − 6

L2
12
L3 − 6

L2

(12L− 6L) L(6L− 4L) (6L− 12L) L(6L− 2L)



v1
θ1
v2
θ2


= EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2



v1
θ1
v2
θ2


The above now is in the form

{p} = [K] {d}
Hence the stiffness matrix is

[K] = EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


Knowing the stiffness matrix means knowing the nodal displacements {d} when given
the forces at the nodes. The power of the finite element method now comes after all
the nodal displacements v1, θ1, v2, θ2 are calculated by solving {p} = [K] {d}. This is
because the polynomial v(x) is now completely determined and hence v(x) and θ(x)
can now be evaluated for any x along the beam and not just at its end nodes as the case
with finite difference method. Eq. 5A above can now be used to find the displacement
v(x) and θ(x) everywhere.

v(x) = [N ] {d}

v(x) =
(
N1(x) N2(x) N3(x) N4(x)

)
v1
θ1
v2
θ2


To summarise, these are the steps to obtain v(x)

1. An expression for [K] is found.

2. {p} = [K] {d} is solved for {d}

3. v(x) = [N ] {d} is calculated by assuming v(x) is a polynomial. This gives the
displacement v(x) to use to evaluate the transverse displacement anywhere on
the beam and not just at the end nodes.
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4. θ(x) = dv(x)
dx

= d
dx
[N ] {d} is obtained to evaluate the rotation of the beam any

where and not just at the end nodes.

5. The strain ε(x) = −y[B] {d} is found, where [B] is the gradient matrix [B] =
d2

dx2 [N ].

6. The stress from σ = Eε = −Ey[B] {d} is found.

7. The bending moment diagram from M(x) = EI[B] {d} is found.

8. The shear force diagram from V (x) = d
dx
M(x) is found.

2.1 Examples using the direct beam stiffness
matrix

The beam stiffness matrix is now used to solve few beam problems. Starting with simple
one span beam

2.1.1 Example 1
A one span beam, a cantilever beam of length L, with point load P at the free end

L

P

The first step is to make the free body diagram and show all moments and forces at
the nodes
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L

P

R

M1
M2

P is the given force. M2 = 0 since there is no external moment at the right end. Hence
{p} = [K] {d} for this system is

R

M1

−P

0

 = EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2



v1
θ1
v2
θ2


Now is an important step. The known end displacements from boundary conditions is
substituted into {d}, and the corresponding row and columns from the above system
of equations are removed1. Boundary conditions indicates that there is no rotation on
the left end (since fixed). Hence v1 = 0 and θ1 = 0. Hence the only unknowns are v2
and θ2. Therefore the first and the second rows and columns are removed, giving{

−P

0

}
= EI

L3

(
12 −6L
−6L 4L2

){
v2
θ2

}

Now the above is solved for
{
v2
θ2

}
. Let E = 30× 106 psi (steel), I = 57 in4, L = 144 in,

and P = 400 lb, hence� �
P=400;
L=144;
E=30*10^6;
I=57.1;
A=(E*I/L^3)*[12 6*L -12 6*L;

1Instead of removing rows/columns for known boundary conditions, we can also just put a 1 on
the diagonal of the stiffness matrix for that boundary conditions. I will do this example again using
this method
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6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2
];
load=[P;P*L;-P;0];
x=A(3:end,3:end)\load(3:end)� �
which gives� �
x =
-0.2324
-0.0024� �
Therefore the vertical displacement at the right end is v2 = 0.2324 inches (downwards)
and θ2 = −0.0024 radians. Now that all nodal displacements are found, the field
displacement function is completely determined.

{d} =


v1
θ1
v2
θ2

 =


0
0

−0.2324
−0.0024


From Eq. 5A

v(x) = [N ] {d}

=
(
N1(x) N2(x) N3(x) N4(x)

)
0
0

−0.2324
−0.0024


=
(

1
L3 (L3 − 3Lx2 + 2x3) 1

L2 (L2x− 2Lx2 + x3) 1
L3 (3Lx2 − 2x3) 1

L2 (−Lx2 + x3)
)

0
0

−0.2324
−0.0024


= 0.002 4

L2

(
Lx2 − x3)+ 0.232 4

L3

(
2x3 − 3Lx2)

But L = 144 inches, and the above becomes

v(x) = 3.992 0× 10−8x3 − 1.695 6× 10−5x2
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To verify, let x = 144 in the above

v(x = 144) = 3.992 0× 10−81443 − 1.695 6× 10−51442

= −0.232 40

The following is a plot of the deflection curve for the beam� �
v=@(x) 3.992*10^-8*x.^3-1.6956*10^-5*x.^2
x=0:0.1:144;
plot(x,v(x),'r-','LineWidth',2);
ylim([-0.8 0.3]);
title('beam deflection curve');
xlabel('x inch'); ylabel('deflection inch');
grid� �

Now instead of removing rows/columns for the known boundary conditions, a 1 is put
on the diagonal. Starting again with

R

M1

−P

0

 = EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2



v1
θ1
v2
θ2


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Since v1 = 0 and θ1 = 0, then
0
0

−P

0

 = EI

L3


1 0 0 0
0 1 0 0
0 0 12 −6L
0 0 −6L 4L2




0
0
v2
θ2


The above system is now solved as before. E = 30 × 106 psi, I = 57 in4, L = 144 in,
P = 400 lb� �
P=400;
L=144;
E=30*10^6;
I=57.1;
A=(E*I/L^3)*[12 6*L -12 6*L;
6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2
];
load=[0;0;-P;0]; %put zeros for known B.C.
A(:,1)=0; A(1,:)=0; A(1,1)=1; %put 1 on diagonal
A(:,2)=0; A(2,:)=0; A(2,2)=1; %put 1 on diagonal
A� �
Gives� �
A =
1.0e+07 *
0.0000 0 0 0
0 0.0000 0 0
0 0 0.0007 -0.0496
0 0 -0.0496 4.7583� �
Then� �
sol=A\load %SOLVE� �
Gives� �
sol =
0
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0
-0.2324
-0.0024� �
The same solution is obtained as before, but without the need to remove rows/column
from the stiffness matrix. This method might be easier for programming than the first
method of removing rows/columns.

The rest now is the same as was done earlier and will not be repeated.

2.1.2 Example 2
This is the same example as above, but the vertical load P is now placed in the middle
of the beam

L

P

In using stiffness method, all loads must be on the nodes. The vector {p} is the nodal
forces vector. Hence equivalent nodal loads are found for the load in the middle of the
beam. The equivalent loading is the following

L

P/2P/2 PL/8
PL/8

Therefore, the problem is as if it was the following problem
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L

P/2
P/2

PL/8
PL/8

Now that equivalent loading is in place, we continue as before. Making a free body
diagram showing all loads (including reaction forces)

L

P/2

P/2

PL/8
PL/8

M1

R

The stiffness equation is now written as

{p} = [K] {d}
R− P/2

M1 − PL/8
−P/2
PL/8

 = EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2



v1
θ1
v2
θ2


There is no need to determine R and M1 at this point since these rows will be removed
due to boundary conditions v1 = 0 and θ1 = 0 and hence those quantities are not
needed to solve the equations. Note that the rows and columns are removed for the
known boundary displacements before solving {p} = [K] {d}. Hence, after removing
the first two rows and columns, the above system simplifies to{

−P/2
PL/8

}
= EI

L3

(
12 −6L
−6L 4L2

){
v2
θ2

}

The above is now solved for
{
v2
θ2

}
using the same numerical values for P,E, I, L as in

the first example
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� �
P=400;
L=144;
E=30*10^6;
I=57.1;
A=(E*I/L^3)*[12 6*L -12 6*L;
6*L 4*L^2 -6*L 2*L^2;
-12 -6*L 12 -6*L;
6*L 2*L^2 -6*L 4*L^2
];
load=[-P/2;P*L/8];
x=A(3:end,3:end)\load� �
Gives� �
x =
-0.072630472854641
-0.000605253940455� �
Therefore

{d} =


v1
θ1
v2
θ2

 =


0
0

−0.072630472854641
−0.000605253940455


This is enough to obtain v(x) as before. Now the reactions R and M1 can be determined
if needed. Going back to the full {p} = [K] {d}, results in

R− P/2
M1 − PL/8

−P/2
PL/8

 = EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2




0
0

−0.072630472854641
−0.000605253940455



= EI

L3


0.871 57− 3.631 5× 10−3L

0.435 78L− 1.210 5× 10−3L2

3.631 5× 10−3L− 0.871 57
0.435 78L− 2.421× 10−3L2


Hence the first equation becomes

R− P/2 = EI

L3

(
0.871 57− 3.631 5× 10−3L

)
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and since E = 30× 106 psi (steel) and I = 57 in4and L = 144 in and P = 400 lb, then

R =
(
30×106

)
57

1443 (0.871 57− 3.631 5× 10−3 (144)) + 400/2 . Therefore

R = 400 lb

and M1 − PL/8 = EI
L3 (0.435 78L− 1.210 5× 10−3L2) + PL/8 , hence

M1 = 28 762 lb-ft

Now that all nodal reactions are found, the displacement field is found and the deflection
curve can be plotted.

v(x) = [N ] {d}

v(x) =
(
N1(x) N2(x) N3(x) N4(x)

)
v1
θ1
v2
θ2


=
(
N1(x) N2(x) N3(x) N4(x)

)
0
0

−0.072630472854641
−0.000605253940455


=
(

1
L3 (3Lx2 − 2x3) 1

L2 (−Lx2 + x3)
)(−0.072630472854641

−0.000605253940455

)
= 6.052 5× 10−4

L2

(
Lx2 − x3)+ 0.072 63

L3

(
2x3 − 3Lx2)

Since L = 144 inches, the above becomes

v(x) = 6.052 5× 10−4

(144)2
(
(144)x2 − x3)+ 0.072 63

(144)3
(
2x3 − 3(144)x2)

= 1.945 9× 10−8x3 − 6.304 7× 10−6x2

The following is the plot� �
clear all; close all;
v=@(x) 1.9459*10^-8*x.^3-6.3047*10^-6*x.^2
x=0:0.1:144;
plot(x,v(x),'r-','LineWidth',2);
ylim([-0.8 0.3]);
title('beam deflection curve');
xlabel('x inch'); ylabel('deflection inch');
grid� �
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2.1.3 Example 3
Assuming the beam is fixed on the left end as above, but simply supported on the right
end, and the vertical load P now at distance a from the left end and at distance b from
the right end, and a uniform distributed load of density m lb/in is on the beam.

Pm (lb/in

a b

M1

Using the following values: a = 0.625L, b = 0.375L,E = 30× 106 psi (steel), I = 57 in4,
L = 144 in, P = 1000 lb, m = 200 lb/in.
In the above, the left end reaction forces are shown as R1 and moment reaction as M1

and the reaction at the right end as R2. Starting by finding equivalent loads for the
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point load P and equivalent loads for for the uniform distributed load m. All external
loads must be transferred to the nodes for the stiffness method to work. Equivalent
load for the above point load is

Pb2L2a

L3
Pa2L2b

L3

a b

Pab2

L2

Pa2b

L2

Equivalent load for the uniform distributed loading is

mL
2

mL2

12
mL
2

mL2

12

Using free body diagram, with all the loads on it gives the following diagram (In this
diagram M is the reaction moment and R1, R2 are the reaction forces)
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Now that all loads are on the nodes, the stiffness equation is applied

{p} = [K] {d}

R1 − Pb2(L+2a)
L3 − mL

2

M − Pab2

L2 − mL2

12

R2 − Pa2(L+2b)
L3 − mL

2
Pa2b
L2 + mL2

12


= EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2



v1
θ1
v2
θ2


Boundary conditions are now applied. v1 = 0, θ1 = 0,v2 = 0. Therefore the first, second
and third rows/columns are removed giving

Pa2b

L2 + mL2

12 = EI

L3 4L
2θ2

Hence
θ2 =

(
Pa2b

L2 + mL2

12

)(
L

4EI

)
Substituting numerical values for the above as given at the top of the problem results
in

θ2 =
(
(1000) (0.625(144))2 (0.375(144))

(144)2
+ (200) (144)2

12

)(
144

4 (30× 106) (57)

)
= 7.719 9× 10−3rad
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Hence the field displacement u(x) is now found

v(x) = [N ] {d}

v(x) =
(
N1(x) N2(x) N3(x) N4(x)

)
v1
θ1
v2
θ2


=
(
N1(x) N2(x) N3(x) N4(x)

)
0
0
0

7.719 9× 10−3


= 1

L2

(
−Lx2 + x3) (7.719 9× 10−3)

= 3.722 9× 10−7x3 − 5.361× 10−5x2

And a plot of the deflection curve is� �
clear all; close all;
v=@(x) 3.7229*10^-7*x.^3-5.361*10^-5*x.^2
x=0:0.1:144;
plot(x,v(x),'r-','LineWidth',2);
ylim([-0.5 0.3]);
title('beam deflection curve');
xlabel('x inch'); ylabel('deflection inch');
grid� �
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CHAPTER 3
Finite elements (adding more elements)

3.1 Example 3 redone with 2 elements . . . . . . . . . . . . . . . . . . . . . . 31
Finite elements generated displacements are smaller in value than the actual analytical
values. To improve the accuracy, more elements are added. To add more elements, the
beam is divided into 2,3,4 and more beam elements. To show how this works, example
3 above is solved again using two elements. It is found that displacement field v(x)
becomes more accurate (By comparing the the result with the exact solution based on
using the beam 4th order differential equation. It is found to be almost the same with
only 2 elements)

3.1 Example 3 redone with 2 elements
The first step is to divide the beam into two elements and number the degrees of
freedom and global nodes as follows

Pm (lb/in
P

L

L/2 L/2

m (lb/in)Divide into 2 
elements

There is 6 total degrees of freedom. two at each node. Hence the stiffness matrix for
the whole beam (including both elements) will be 6 by 6. For each element however,
the same stiffness matrix will be used as above and that will remain as before 4 by 4.

31



chapter 3 . f inite elements (adding more elements) 32

1 2 3

1 2 3

v 1 v 2 v 3

The stiffness matrix for each element is found and then the global stiffness matrix is
assembled. Then {pglobal} = [Kglobal] {dglobal} is solved as before. The first step is to
move all loads to the nodes as was done before. This is done for each element. The
formulas for equivalent loads remain the same, but now L becomes L/2. The following
diagram show the equivalent loading for P

1 2 3

a b

L/2 L/2

Pb2L/22a

L/23
Pa2L/22b

L/23
Pab2

L/22
Pa2b

L/22

a  0.125L

b  0.375L

Equivalent loading of point 
load P after moving to nodes 

of second element

The equivalent loading for distributed load m is
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1 2 3

L/2 L/2

mL/2
2

mL/2
2

mL/2
2

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Now the above two diagrams are put together to show all equivalent loads with the
original reaction forces to obtain the following diagram
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1 2 3

L/2 L/2

mL/2
2

mL/2
2

mL/2
2

mL/22

12

mL/22

12

mL/22

12

mL/22

12

Pb2L/22a

L/23

Pa2L/22b

L/23

Pab2

L/22

Pa2b

L/22

R1
R3

M1

Nodal loading for 2 elements beam after performing equivalent loading

{p} = [K] {d} for each element is now constructed. Starting with the first element

R1 −
m
(

L
2

)
2

M1 −
m
(

L
2

)2

12

−
Pb2

(
L
2 +2a

)
(L/2)3 −

m
(

L
2

)
2

m
(

L
2

)2

12 −
m
(

L
2

)2

12 − Pab2(
L
2

)2


= EI(

L
2

)3


12 6
(
L
2

)
−12 6

(
L
2

)
6
(
L
2

)
4
(
L
2

)2 −6
(
L
2

)
2
(
L
2

)2
−12 −6

(
L
2

)
12 −6

(
L
2

)
6
(
L
2

)
2
(
L
2

)2 −6
(
L
2

)
4
(
L
2

)2



v1
θ1
v2
θ2


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And for the second element

−
Pb2

(
L
2 +2a

)
(L/2)3 −

m
(

L
2

)
2

m
(

L
2

)2

12 −
m
(

L
2

)2

12 − Pab2(
L
2

)2

R3 −
Pa2

(
L
2 +2b

)
(

L
2

)3 −
m
(

L
2

)
2

m
(

L
2

)2

12 + Pa2b(
L
2

)2


= EI(

L
2

)3


12 6
(
L
2

)
−12 6

(
L
2

)
6
(
L
2

)
4
(
L
2

)2 −6
(
L
2

)
2
(
L
2

)2
−12 −6

(
L
2

)
12 −6

(
L
2

)
6
(
L
2

)
2
(
L
2

)2 −6
(
L
2

)
4
(
L
2

)2



v2
θ2
v3
θ3



The 2 systems above are assembled to obtain the global stiffness matrix equation giving

R1 −
m
(

L
2

)
2

M1 −
m
(

L
2

)2

12

−2
Pb2

(
L
2 +2a

)
(

L
2

)3 − 2
m
(

L
2

)
2

−2 Pab2(
L
2

)2

R3 −
Pa2

(
L
2 +2b

)
(

L
2

)3 −
m
(

L
2

)
2

m
(

L
2

)2

12 + Pa2b(
L
2

)2



= EI(
L
2

)3



12 6
(
L
2

)
−12 6

(
L
2

)
0 0

6
(
L
2

)
4
(
L
2

)2 −6
(
L
2

)
2
(
L
2

)2 0 0
−12 −6

(
L
2

)
12 + 12 −6

(
L
2

)
+ 6
(
L
2

)
−12 6

(
L
2

)
6
(
L
2

)
2
(
L
2

)2 −6
(
L
2

)
+ 6
(
L
2

)
4
(
L
2

)2 + 4
(
L
2

)2 −6
(
L
2

)
2
(
L
2

)2
0 0 −12 −6

(
L
2

)
12 −6

(
L
2

)
0 0 6

(
L
2

)
2
(
L
2

)2 −6
(
L
2

)
4
(
L
2

)2





v1
θ1
v2
θ2
v3
θ3



The boundary conditions are now applied giving v1 = 0, θ1 = 0 since the first node is
fixed, and v3 = 0. And putting 1 on the diagonal of the stiffness matrix corresponding
to these known boundary conditions results in

0
0

−2
Pb2

(
L
2 +2a

)
(L/2)3 − 2m(L/2)

2

−2 Pab2

(L/2)2

0
m
(

L
2

)2

12 + Pa2b(
L
2

)2


= EI(

L
2

)3



1 0 0 0 0 0
0 1 0 0 0 0
0 0 24 0 0 6

(
L
2

)
0 0 0 8

(
L
2

)2 0 2
(
L
2

)2
0 0 0 0 1 0
0 0 6

(
L
2

)
2
(
L
2

)2 0 4
(
L
2

)2





0
0
v2
θ2
0
θ3





chapter 3 . f inite elements (adding more elements) 36

As was mentioned earlier, another method would be to remove the rows/columns which
results in 

−2
Pb2

(
L
2 +2a

)
(L/2)3 − 2

m
(

L
2

)
2

−2 Pab2(
L
2

)2

m
(

L
2

)2

12 + Pa2b(
L
2

)2


= EI(

L
2

)3


24 0 6
(
L
2

)
0 8

(
L
2

)2 2
(
L
2

)2
6
(
L
2

)
2
(
L
2

)2 4
(
L
2

)2

v2
θ2
θ3



Giving the same solution. There are 3 unknowns to solve for. Once these unknowns are
solved for, v(x) for the first element and for the second element are fully determined.
The following code displays the deflection curve for the above beam� �
clear all; close all;
P=400;
L=144;
E=30*10^6;
I=57.1;
m=200;
a=0.125*L;
b=0.375*L;
A=E*I/(L/2)^3*[1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 24 0 0 6*L/2;
0 0 0 8*(L/2)^2 0 2*(L/2)^2;
0 0 0 0 1 0;
0 0 6*L/2 2*(L/2)^2 0 4*(L/2)^2];
A
load = [0;
0;
-(m*L/2) - 2*P*b^2*(L/2+2*a)/(L/2)^3;
-2*P*a*b^2/(L/2)^2;
0;
P*a^2*b/(L/2)^2+(m*(L/2)^2)/12]
sol=A\load� �
Gives� �
A =
1.0e+08 *
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0.0000 0 0 0 0 0
0 0.0000 0 0 0 0
0 0 0.0011 0 0 0.0198
0 0 0 1.9033 0 0.4758
0 0 0 0 0.0000 0
0 0 0.0198 0.4758 0 0.9517
load =
0
0
-15075
-8100
0
87750
sol =
0
0
-0.2735
-0.0019
0
0.0076� �
The above solution gives v2 = −0.2735 in (downwards displacement) and θ2 = −0.0019
radians and θ3 = 0.0076 radians. v(x) polynomial is now found for each element

velem1(x) =
(
N1(x) N2(x) N3(x) N4(x)

)
v1
θ1
v2
θ2


(
N1(x) N2(x) N3(x) N4(x)

)
0
0
v2
θ2


=
(

1(
L
2

)3

(
3
(
L
2

)
x2 − 2x3) 1(

L
2

)2

(
−
(
L
2

)
x2 + x3))(−0.2735

−0.0019

)
= 2.188

L3

(
2x3 − 3

2Lx
2
)
− 0.007 6

L2

(
x3 − 1

2Lx
2
)

The above polynomial is the transverse deflection of the beam for the region 0 ≤ x
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≤ L/2. v(x) for the second element is found in similar way

velem2(x) =
(
N1(x) N2(x) N3(x) N4(x)

)
v2
θ2
0
θ3


=
(
N1(x) N2(x) N3(x) N4(x)

)
−0.2735
−0.0019

0
0.0076


=
(
N1(x) N2(x) N4(x)

)−0.2735
−0.0019
0.0076


=
(

1(
L
2

)3

((
L
2

)3 − 3
(
L
2

)
x2 + 2x3

)
1(
L
2

)2

((
L
2

)2
x− 2

(
L
2

)
x2 + x3

)
1(
L
2

)2

(
−
(
L
2

)
x2 + x3))−0.2735

−0.0019
0.0076


Hence

velem2(x) =
0.030 4
L2

(
x3 − 1

2Lx
2
)
−0.007 6

L2

(
1
4L

2x− Lx2 + x3
)
−2.188

L3

(
1
8L

3 − 3
2Lx

2 + 2x3
)

Which is valid for L/2 ≤ x ≤ L. The following is a plot of the deflection curve using
the above 2 equations

When the above plot is compared to the case with one element, the deflection is seen to
be larger now. Comparing the above to the analytical solution shows that the deflection



chapter 3 . f inite elements (adding more elements) 39

now is almost exactly the same as the analytical solution. Hence by using only two
elements instead of one element, the solution has become more accurate and almost
agrees with the analytical solution.
The following diagram shows the deflection curve of problem three above when using
one element and two elements on the same plot to help illustrate the difference in the
result more clearly.

The analytical deflection for the beam in problem three above (fixed on the left and
simply supported at the right end) when there is uniformly loaded with w lbs per unit
length is given by

v(x) = − wx2

48EI

(
3L2 − 5Lx+ 2x2)

While the analytical deflection for the same beam but when there is a point load P at
distance a from the left end is given by

v(x) = −P (〈L− a〉3 (3L− x)x2 + L2(3(L− a)(L− x)x2 + 2L〈x− a〉3))

Therefore, the analytical expression for deflection is given by the sum of the above
expressions, giving

v(x) = − wx2

48EI

(
3L2 − 5Lx+ 2x2)−P (〈L− a〉3 (3L−x)x2+L2(3(L−a)(L−x)x2+2L〈x− a〉3))

Where 〈x− a〉 means it is zero when x − a is negative. In other words 〈x− a〉 =
(x− a)UnitStep(x− a)
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The following diagram is a plot of the analytical deflection with the two elements
deflection calculated using Finite elements above.

In the above, the blue dashed curve is the analytical solution, and the red curve is the
finite elements solution using 2 elements. It can be seen that the finite element solution
for the deflection is now in a very good agreement with the analytical solution.



CHAPTER 4
Generating shear and bending moments
diagrams

After solving the problem using finite elements and obtaining the field displacement
function v(x) as was shown in the above examples, the shear force and bending moments
along the beam can be calculated. Since the bending moment is given by M(x) =
−EI d2v(x)

dx2 and shear force is given by V (x) = dM
dx

= −EI d3v(x)
dx3 then these diagrams are

now readily plotted as shown below for example three above using the result from the
finite elements with 2 elements. Recalling from above that

v(x) =
2.188
L3

(
2x3 − 3

2Lx
2)− 0.007 6

L2

(
x3 − 1

2Lx
2)

0.030 4
L2

(
x3 − 1

2Lx
2)− 0.007 6

L2

(1
4L

2x− Lx2 + x3)− 2.188
L3

(1
8L

3 − 3
2Lx

2 + 2x3)
 0 ≤ x ≤ L/2

L/2 ≤ x ≤ L

Hence

M(x) = −EI

−0.0076(6x−L)
L2 + 2.188(12x−3L)

L3

−0.0076(6x−2L)
L2 + 0.0304(6x−L)

L2 − 2.188(12x−3L)
L3

 0 ≤ x ≤ L/2
L/2 ≤ x ≤ L

using E = 30× 106 psi and I = 57 in4 and L = 144 in, the bending moment diagram
plot is

41
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The bending moment diagram clearly does not agree with the bending moment diagram
that can be generated from the analytical solution given below (generated using my
other program which solves this problem analytically)

The reason for this is because the solution v(x) obtained using the finite elements
method is a third degree polynomial and after differentiating twice to obtain the
bending moment (M(x) = −EI d2v

dx2 ) the result becomes a linear function in x while in
the analytical solution case, when the load is distributed, the solution v(x) is a fourth
degree polynomial. Hence the bending moment will be quadratic function in x in the
analytical case.

Therefore, in order to obtain good approximation for the bending moment and shear
force diagrams using finite elements, more elements will be needed.



CHAPTER 5
Finding the stiffness matrix using
methods other than direct method

5.1 Virtual work method for derivation of the stiffness matrix . . . . . . . . . 44
5.2 Potential energy (minimize a functional) method to derive the stiffness matrix 47
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There are three main methods to obtain the stiffness matrix
1. Variational method (minimizing a functional). This functional is the potential

energy of the structure and loads.

2. Weighted residual. Requires the differential equation as a starting point. Ap-
proximated in weighted average. Galerkin weighted residual method is the most
common method for implementation.

3. Virtual work method. Making the virtual work zero for an arbitrary allowed
displacement.

5.1 Virtual work method for derivation of the
stiffness matrix

In virtual work method, a small displacement is assumed to occur. Looking at small
volume element, the amount of work done by external loads to cause the small displace-
ment is set equal to amount of increased internal strain energy. Assuming the field of
displacement is given by u = {u, v, w} and assuming the external loads are given by
{p} acting on the nodes, hence these point loads will do work given by {δd}T {p} on
that unit volume where {d} is the nodal displacements. In all these derivations, only
loads acting directly on the nodes are considered for now. In other words, body forces
and traction forces are not considered in order to simplify the derivations.
The increase of strain energy is {δε}T {σ} in that same unit volume.





This area is the 
Strain energy per 

unit volume

Hence, for a unit volume
{δd}T {p} = {δε}T {σ}

And for the whole volume

{δd}T {p} =
∫
V

{δε}T {σ} dV (1)
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Assuming that displacement can be written as a function of the nodal displacements
of the element results in

u =[N ] {d}

Therefore

δu=[N ] {δd}
{δu}T={δd}T [N ]T (2)

Since {ε} = ∂{u} then {ε} = ∂[N ] {d} = [B] {d} where B is the strain displacement
matrix [B] = ∂[N ], hence

{ε} = [B] {d}
{δε} = [B] {δd}

{δε}T = {δd}T [B]T (3)

Now from the stress-strain relation {σ} = [E] {ε}, hence

{σ} = [E] [B] {d} (4)

Substituting Eqs. (2,3,4) into (1) results in

{δd}T {p} −
∫
V

{δd}T [B]T [E] [B] {d} dV = 0

Since {δd} and {d} do not depend on the integration variables they can be moved
outside the integral, giving

{δd}T
(
{p} − {d}

∫
V

[B]T [E] [B] dV
)

= 0

Since the above is true for any admissible δd then the only condition is that

{p} = {d}
∫
V

[B]T [E] [B] dV

This is in the form P = K∆, therefore

[K] =
∫
V

[B]T [E] [B] dV

knowing [B] allows finding [k] by integrating over the volume. For the beam element
though, u =v(x) the transverse displacement. This means [B] = d2

dx2 [N ]. Recalling from
the above that for the beam element,

[N ] =
(

1
L3 (L3 − 3Lx2 + 2x3) 1

L2 (L2x− 2Lx2 + x3) 1
L3 (3Lx2 − 2x3) 1

L2 (−Lx2 + x3)
)
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Hence

[B] = d2

dx2 [N ] =
(

1
L3 (−6L+ 12x) 1

L2 (−4L+ 6x) 1
L3 (6L− 12x) 1

L2 (−2L+ 6x)
)

Hence

[K] =
∫
V
[B]T [E] [B] dV

=
∫
V



1
L3 (−6L+ 12x)
1
L2 (−4L+ 6x)
1
L3 (6L− 12x)
1
L2 (−2L+ 6x)


E
(

1
L3 (−6L+ 12x) 1

L2 (−4L+ 6x) 1
L3 (6L− 12x) 1

L2 (−2L+ 6x)
)
dV

= EI

∫ L

0



1
L3 (−6L+ 12x)
1
L2 (−4L+ 6x)
1
L3 (6L− 12x)
1
L2 (−2L+ 6x)


(

1
L3 (−6L+ 12x) 1

L2 (−4L+ 6x) 1
L3 (6L− 12x) 1

L2 (−2L+ 6x)
)
dx

= EI

∫ L

0



1
L6 (6L− 12x)2 1

L5 (4L− 6x) (6L− 12x) − 1
L6 (6L− 12x)2 1

L5 (2L− 6x) (6L− 12x)
1
L5 (4L− 6x) (6L− 12x) 1

L4 (4L− 6x)2 − 1
L5 (4L− 6x) (6L− 12x) 1

L4 (2L− 6x) (4L− 6x)

− 1
L6 (6L− 12x)2 − 1

L5 (4L− 6x) (6L− 12x) 1
L6 (6L− 12x)2 − 1

L5 (2L− 6x) (6L− 12x)
1
L5 (2L− 6x) (6L− 12x) 1

L4 (2L− 6x) (4L− 6x) − 1
L5 (2L− 6x) (6L− 12x) 1

L4 (2L− 6x)2

 dx

= EI


12
L3

6
L2 − 12

L3
6
L2

6
L2

4
L − 6

L2
2
L

− 12
L3 − 6

L2
12
L3 − 6

L2

6
L2

2
L − 6

L2
4
L



= EI

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


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Which is the stiffness matrix found earlier.

5.2 Potential energy (minimize a functional)
method to derive the stiffness matrix

This method is very similar to the first method actually. It all comes down to finding
a functional, which is the potential energy of the system, and minimizing this with
respect to the nodal displacements. The result gives the stiffness matrix.
Let the system total potential energy by called Π and let the total internal energy in
the system be U and let the work done by external loads acting on the nodes be Ω,
then

Π = U − Ω
Work done by external loads have a negative sign since they are an external agent to
the system and work is being done onto the system. The internal strain energy is given
by 1

2

∫
V
{σ}T {ε} dV and the work done by external loads is {d}T {p}, hence

Π = 1
2

∫
V

{σ}T {ε} dV − {d}T {p} (1)

Now the rest follows as before. Assuming that displacement can be written as a function
of the nodal displacements {d}, hence

u =[N ] {d}

Since {ε} = ∂{u} then {ε} = ∂[N ] {d} = [B] {d} where B is the strain displacement
matrix [B] = ∂[N ], hence

{ε} = [B] {d}
Now from the stress-strain relation {σ} = [E] {ε}, hence

{σ}T = {d}T [B]T [E] (4)

Substituting Eqs. (2,3,4) into (1) results in

Π = 1
2

∫
V

{d}T [B]T [E] [B] {d} dV − {d}T {p}

Setting ∂Π
∂{d} = 0 gives

0 = {d}
∫
V

[B]T [E] [B] dV − {p}

Which is on the form P = [K]D which means that

[K] =
∫
V

[B]T [E] [B] dV

As was found by the virtual work method.
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