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Problem statement

Determine Sx, Sy, Sz angular momentum spin matrices for the electron using spin 1.
The given is that experiments show that Sz has three possible values (eigenvalues).
These are 1, 0,−1.

Solution

Using eigenbasis for Sz as the following

|Sz=1〉 = |1〉 =

10
0

 (1)

|Sz=0〉 = |2〉 =

01
0


|Sz=−1〉 = |3〉 =

00
1


Then the following three equations result from writing Sz|Sz=ωi〉 = ωi|Sz=ωi〉 where ωi is

the eigenvalue. These three equation are solved to determine Sz. Let Sz =

a b c

d e f

g h m

.
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Therefore a b c

d e f

g h m


10
0

 = 1

10
0


a b c

d e f

g h m


01
0

 = 0

01
0


a b c

d e f

g h m


00
1

 = −1

00
1


Or ad

g

 =

10
0


be
h

 =

00
0


 c

f

m

 =

 0
0
−1


Which gives

Sz =

a b c

d e f

g h m


=

1 0 0
0 0 0
0 0 −1

 (1A)

Now that Sz is found, the goal is to determine Sx, Sy. Let S− = Sx − iSy and S+ =
Sx+ iSy. We start with S+ (starting with S− will not work, as it will not be possible to
determine S2 that way. So we have to start with S+). We always start with commutator
[Sz, S+]

[Sz, S+] = [Sz, Sx + iSy]
= [Sz, Sx] + i[Sz, Sy]
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But [Sz, Sx] = i
∑

k εijkSk. Here i = 3, j = 1 since z = 3, x = 1. Then [Sz, Sx] =
iε312S2 = iSy and similarly [SzSy] = i

∑
k εijkSk. Here i = 3, j = 2 since z = 3, y = 1.

Then [Sz, Sy] = iε321S1 = −iSx. The above becomes

[Sz, S+] = iSy + i(−iSx)
= iSy + Sx

= S+

This implies

[Sz, S+] = S+

SzS+ − S+Sz = S+

SzS+ = S+Sz + S+ (2)

Picking |1〉 to start with, as it lead to finding S2, which we must find before making
any progress. S2 is proportional for the identity matrix I. From the above we obtain

SzS+|1〉 = (S+Sz + S+) |1〉
= S+Sz|1〉+ S+|1〉 (3)

But Sz|1〉 = |1〉 since the eigenvalue is 1 associated with |1〉 eigenvector. The above
becomes

SzS+|1〉 = S+|1〉+ S+|1〉
= 2S+|1〉

The above shows that S+|1〉 is eigenvector of Sz associated with the eigenvalue 2 which
is not compatible with experiments. Therefore the only logical result is that

S+|1〉 = 0|1〉 (4)

Taking the adjoint gives

(S+|1〉)† = 0|1〉†

〈1|S†
+ = 0〈1|

Hence

〈1|S†
+S+|1〉 = 0〈1|1〉

〈1|S†
+S+|1〉 = 0 (4A)
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The above is used to find S2. Since S+ = Sx + iSy then the above becomes

〈1|
(
S†
x − iS†

y

)
(Sx + iSy) |1〉 = 0

〈1|S†
xSx + iS†

xSy − iS†
ySx + S†

ySy|1〉 = 0

But Sx, Sy are Hermitian. Therefore S†
x = Sx, S

†
y = Sy and the above reduces to

〈1|S2
x + iSxSy − iSySx + S2

y |1〉 = 0
〈1|S2

x + i(SxSy − SySx) + S2
y |1〉 = 0

〈1|S2
x + i[Sx, Sy] + S2

y |1〉 = 0

But [Sx, Sy] = iSz, therefore the above becomes

〈1|S2
x − Sz + S2

y |1〉 = 0

And S2 = S2
x + S2

y + S2
z , therefore S2

x + S2
y = S2 − S2

z . Hence

S†
+S+ = S2 − S2

z − Sz (4B)

Therefore (4A) becomes
〈1|S2 − S2

z − Sz|1〉 = 0
Expanding the above gives

〈1|S2|1〉 − 〈1|S2
z |1〉 − 〈1|Sz|1〉 = 0

〈1|S2|1〉 = 〈1|S2
z |1〉+ 〈1|Sz|1〉

But 〈1|Sz|1〉 = 1 and 〈1|S2
z |1〉 = 1, therefore the above becomes

〈1|S2|1〉 = 2 (5)

It is not possible to use the above to solve for a general S2 which is 3× 3 matrix. But
since S2 must be proportional to the Identity matrix for all spin numbers, then it must
diagonal matrix with same element on the diagonal, then let S bea 0 0

0 a 0
0 0 a


Substituting this in (5) gives

〈1|

a 0 0
0 a 0
0 0 a

2

|1〉 = 2

〈1|

a2 0 0
0 a2 0
0 0 a2

 |1〉 = 2 =

a2 = 2
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Hence a =
√
2. Therefore

S =
√
2

1 0 0
0 1 0
0 0 1

 (6)

Now that S is found, the next step is to find S+|2〉 and S+|3〉. Starting with (2), but
now applying it to |2〉 gives

SzS+|2〉 = S+Sz|2〉+ S+|2〉

But Sz|2〉 = 0|2〉 since |2〉 is the eigenvector associated with 0 eigenvalue, the above
becomes

SzS+|2〉 = S+|2〉
Which means S+|2〉 is eigenvector of Sz associated with eigenvalue +1 which is com-
patible with experiment. Hence

S+|2〉 = c|1〉
Where we used |1〉 since that is the eigenvector of Sz associated with +1 eigenvalue.
Now we need to find c. Taking adjoint of both sides of the above gives

(S+|2〉)† = (c|1〉)†

〈2|S†
+ = c∗〈1|

Therefore

〈2|S†
+S+|2〉 = c∗c〈1|1〉 (7)

= |c|2

But S†
+S+ = S2 − S2

z − Sz which was found earlier above in (4B). Therefore the above
equation becomes

〈2|
(
S2 − S2

z − Sz

)
|2〉 = |c|2

Using S2 found in (6) the above becomes

〈2|

2

1 0 0
0 1 0
0 0 1

−

1 0 0
0 0 0
0 0 1

−

1 0 0
0 0 0
0 0 −1

 |2〉 = |c|2

〈2|

0 0 0
0 2 0
0 0 2

 |2〉 = |c|2

[
0 1 0

] 0 0 0
0 2 0
0 0 2

01
0

 = |c|2

2 = |c|2
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which implies c =
√
2. Therefore

S+|2〉 =
√
2|1〉 (8)

Finally, to find S+|3〉, starting again with (2), but now applying it to |3〉 gives

SzS+|3〉 = S+Sz|3〉+ S+|3〉

But Sz|3〉 = −|3〉 since |3〉 is the eigenvector associated with −1 eigenvalue, the above
becomes

SzS+|3〉 = −S+|3〉+ S+|3〉
= 0S+|3〉

Which means S+|3〉 is eigenvector of Sz associated with eigenvalue 0 which is compatible
with experiment. Hence

S+|3〉 = b|2〉
Where we used |2〉 since that is the eigenvector of Sz associated with 0 eigenvalue. Now
we need to find b. Taking adjoint of both sides of the above gives

(S+|3〉)† = (b|2〉)†

〈3|S†
+ = b∗〈2|

Therefore

〈3|S†
+S+|3〉 = b∗b〈2|2〉 (9)

= |b|2

But S†
+S+ = S2−S2

z−Sz which was found earlier in (4B). Therefore the above equation
becomes

〈3|
(
S2 − S2

z − Sz

)
|3〉 = |b|2

Using S2 from eq (6) the above becomes

〈3|

2

1 0 0
0 1 0
0 0 1

−

1 0 0
0 0 0
0 0 1

−

1 0 0
0 0 0
0 0 −1

 |3〉 = |b|2

〈3|

0 0 0
0 2 0
0 0 2

 |3〉 = |b|2

[
0 0 1

] 0 0 0
0 2 0
0 0 2

00
1

 = |b|2

2 = |b|2
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which implies b =
√
2. Therefore

S+|3〉 =
√
2|2〉 (10)

Now that S+|1〉, S+|2〉, S+|3〉 are found, S+ can be calculated. From (4,6,8) the result
is

S+|1〉 = 0|1〉
S+|2〉 =

√
2|1〉

S+|3〉 =
√
2|2〉

Hence

S+ =

〈1|S+|1〉 〈1|S+|2〉 〈1|S+|3〉
〈2|S+|1〉 〈2|S+|2〉 〈2|S+|3〉
〈3|S+|1〉 〈3|S+|2〉 〈3|S+|3〉



=


0 〈1|

√
2|1〉 〈1|

√
2|2〉

0 〈2|
√
2|1〉 〈2|

√
2|2〉

0 〈3|
√
2|1〉 〈3|

√
2|2〉



=
√
2

0 〈1|1〉 〈1|2〉
0 〈2|1〉 〈2|2〉
0 〈3|1〉 〈3|2〉


Therefore

S+ =

0
√
2 0

0 0
√
2

0 0 0

 (11)

Now that we know S+ we turn our attention to finding S−. Considering the commutator
[Sz, S−]

[Sz, S−] = [Sz, Sx − iSy]
= [Sz, Sx]− i[Sz, Sy]

But [Sz, Sx] = iSy and [SzSy] = −iSx. The above becomes

[Sz, S−] = iSy − i(−iSx)
= iSy − Sx

= −S−
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This implies

[Sz, S−] = −S−

SzS− − S−Sz = −S−

SzS− = S−Sz − S− (12)

Picking |1〉 to start with, gives

SzS−|1〉 = (S−Sz − S−) |1〉
= S−Sz|1〉 − S−|1〉 (13)

But Sz|1〉 = |1〉 since the eigenvalue is 1 associated with |1〉 eigenvector from (1). The
above now becomes

SzS−|1〉 = S−|1〉 − S−|1〉
= 0S−|1〉

The above shows that S+|1〉 is eigenvector of Sz associated with the eigenvalue 0 which
is compatible with experiments. This implies

S−|1〉 = c|2〉 (14)

Where |2〉 was used above, since that is the eigenvector with 0 eigenvalue. c is constant
to be found. Taking adjoint of both sides of the above gives

(S−|1〉)† = (c|2〉)†

〈1|S†
− = c∗〈2|

Therefore

〈1|S†
−S−|1〉 = c∗c〈2|2〉 (15)

= |c|2

But

S†
−S− = (Sx − iSy)† (Sx − iSy)

=
(
S†
x + iS†

y

)
(Sx − iSy)

Since Sx, Sy are Hermitian, then S†
x = Sx and S†

y = Sy. The above becomes

S†
−S− = (Sx + iSy) (Sx − iSy)

= S2
x − iSxSy + iSySx + S2

y

= S2
x + i(SySx − SxSy) + S2

y

= S2
x + i[Sy, Sx] + S2

y
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But [Sy, Sx] = −iSz. The above becomes

S†
−S− = S2

x + i(−iSz) + S2
y

= S2
x + S2

y + Sz (16)

Since S2 = S2
x + S2

y + S2
z , then S2

x + S2
y = S2 − S2

z . This implies

S†
−S− = S2 − S2

z + Sz (16A)

Substituting (16A) in (15) gives

〈1|
(
S2 − S2

z + Sz

)
|1〉 = |c|2 (17)

But

S2
z =

1 0 0
0 0 0
0 0 −1

1 0 0
0 0 0
0 0 −1

 =

1 0 0
0 0 0
0 0 1

 (18)

And S2 was found in (6). Substituting (6,18) back in (17) gives an equation to solve
for c

〈1|

2 0 0
0 2 0
0 0 2

−

1 0 0
0 0 0
0 0 1

+

1 0 0
0 0 0
0 0 −1

 |1〉 = |c|2

〈1|

2 0 0
0 2 0
0 0 0

 |1〉 = |c|2

[
1 0 0

] 2 0 0
0 2 0
0 0 0

10
0

 = |c|2

2 = |c|2

Hence c =
√
2. From (14) this implies

S−|1〉 =
√
2|2〉 (19)

Now we pick |2〉 and using (12) gives

SzS−|2〉 = (S−Sz − S−) |2〉
= S−Sz|2〉 − S−|2〉 (20)

But Sz|2〉 = 0|2〉 since the eigenvalue is 0 associated with |2〉 eigenvector. The above
now becomes

SzS−|2〉 = −S−|2〉
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The above shows that S−|2〉 is eigenvector of Sz associated with the eigenvalue −1
which is compatible with experiments. This implies

S−|2〉 = b|3〉 (21)

Where |3〉 was used above, since that is the eigenvector with −1 eigenvalue. b is constant
to be found. Taking adjoint of both sides of the above gives

(S−|2〉)† = (b|3〉)†

〈2|S†
− = b∗〈3|

Therefore

〈2|S†
−S−|2〉 = b∗b〈3|3〉

= |b|2

But S†
−S− = S2 − S2

z + Sz as calculated earlier in (16A). Hence the above becomes

〈2|
(
S2 − S2

z + Sz

)
|2〉 = |b|2

Using S2
z , S

2 calculated earlier in the above gives

〈2|

2 0 0
0 2 0
0 0 2

−

1 0 0
0 0 0
0 0 1

+

1 0 0
0 0 0
0 0 −1

 |2〉 = |b|2

〈2|

2 0 0
0 2 0
0 0 0

 |2〉 = |b|2

[
0 1 0

] 2 0 0
0 2 0
0 0 0

01
0

 = |b|2

2 = |b|2

Hence b =
√
2. From (21) this implies

S−|2〉 =
√
2|3〉 (22)

And finally using |3〉 in (12) results in

SzS−|3〉 = (S−Sz − S−) |3〉
= S−Sz|3〉 − S−|3〉
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But Sz|3〉 = −|3〉 since the eigenvalue is −1 associated with |3〉 eigenvector. The above
now becomes

SzS−|3〉 = −2S−|3〉

The above shows that S−|3〉 is eigenvector of Sz associated with the eigenvalue −2
which is not compatible with experiments. This implies

S−|3〉 = 0|1〉 (23)

Now that S−|1〉, S−|2〉, S−|3〉 are all known, we are ready to determine S−. From
(19,22,23)

S−|1〉 =
√
2|2〉

S−|2〉 =
√
2|3〉

S−|3〉 = 0|1〉

Therefore

S− =

〈1|S−|1〉 〈1|S−|2〉 〈1|S−|3〉
〈2|S−|1〉 〈2|S−|2〉 〈2|S−|3〉
〈3|S−|1〉 〈3|S−|2〉 〈3|S−|3〉



=


〈1|

√
2|2〉 〈1|

√
2|3〉 〈1|0|1〉

〈2|
√
2|2〉 〈2|

√
2|3〉 〈2|0|1〉

〈3|
√
2|2〉 〈3|

√
2|3〉 〈3|0|1〉


=

√
2

0 0 0
1 0 0
0 1 0


Therefore

S− =

 0 0 0
√
2 0 0
0

√
2 0

 (24)

Now that S+, S− are known, Sx, Sy can be found. Using

S− = Sx − iSy (25)
S+ = Sx + iSy (26)
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Adding the above two equations gives, and using (11,24)

S− + S+ = 2Sx 0 0 0
√
2 0 0
0

√
2 0

+

0
√
2 0

0 0
√
2

0 0 0

 = 2Sx

Sx = 1
2

 0
√
2 0

√
2 0

√
2

0
√
2 0


=

√
2
2

0 1 0
1 0 1
0 1 0


Hence

Sx = 1√
2

0 1 0
1 0 1
0 1 0

 (27)

And subtracting (25,26) gives

S− − Sx = −2iSy 0 0 0
√
2 0 0
0

√
2 0

−

0
√
2 0

0 0
√
2

0 0 0

 = −2iSy

 0 −
√
2 0

√
2 0 −

√
2

0
√
2 0

 = −2iSy

Sy =
−1
2i

 0 −
√
2 0

√
2 0 −

√
2

0
√
2 0



= i

2

 0 −
√
2 0

√
2 0 −

√
2

0
√
2 0


=

√
2
2

0 −i 0
i 0 −i

0 i 0


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Hence

Sy =
1√
2

0 −i 0
i 0 −i

0 i 0

 (28)

This completes the solution. We have found Sx, Sy, starting from just knowing the
eigenvalues of Sz.
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