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Abstract

Using a simple problem, it is shown that, using a global trial function, the Rayleigh Ritz variational
method and the Galerkin method give the same solution. These solutions are compared to the
exact solution. It is found that one can determine that the exact solution was reached by
increasing the order of the trial function polynomial until the solution returned by Rayleigh Ritz or
Galerkin method no longer changes.

The problem

A cantilever beam is loaded with traction load of g = ¢ x (for some constant c). It is fixed on the left side. We need to

find axial deformation u (x)
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Solving using variational Ritz method
Set up the potential energy m, and Minimize it
L1 duy2
iy = EAE(ﬁ) dx—ﬂqu(x)dx

where u (x) is the trial function . The trial function needs to satisfy only the essential conditions, which in this prob-

lem is given as u (0) = 0, so we start by assuming a trial function u(x).
U(X) = ag+ay X+ ay X2
Since u(0) = 0, we find that ag = 0 hence

U=a;X+ayX?
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This trial function has 2 degrees of freedom they are called the generalized degrees of freedom. The trial function

could have been selected to have only one degree of freedom i.e. u(x) = a; x and this would also have worked but 2

degrees of freedom will give more accurate solution.

Start by defining the trial function

Renove[" d obal ™ %" ]
u=Sumfa; x"i, {i, 0, 2}]

ap + X a; +x2ay,
Make the trial function satisfy essential boundary condition
sol =Firste Solve[(u/. x-0) =0, ag]
{ap » 0}
u=u/. sol
X a; + X° a,

Set up the potential energy functional
L1 L
H:j — AE (06 u)zdx—chudx
02 0
-—cl%a; + 1ALE:aZ— EcL4a2+AL2Eala2+ 3AL3Ea2
3 2 Yy 3 2

dI1
Solve for d_ = 0fori =1, 2inorder to solve for a; and a,
8

eql =0, n=0

c L3

+ALEa; +AL?Ea, =0

€02 = 0,, M==0

c L4

4
+AL2Eal+§AL3Ea2==

sol =First @eSol ve[{eql, eq2}, {a;, a}]

{ 7cL? CL}
a; - , do = -
YU oA P T 4AE

Now that we found a; and a, we have found our solution
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solutionByRitzMethod =u /. %

7cl?2x cLx?

12 AE 4 AE

Solving the problem using Galerkin method
In this method, we start with the differential equation itself and integrate it with a test function we call g (x). The

differential equation for axial deformation with traction load q(x) is AE dd% = —(q(x), hence our starting point is to

d?u
I:fAE—+q g(x)dx=0
0 dx?

We start by assuming a trial function u = ag + a; X + a, x2. Now due to u (0) = 0 we find that ag = 0, hence

solve the integral equation

u =aj; X + a, x2 Next, we do integration by parts the above integral and obtain

| ae(S) fAEdu i f d
=g (&]]0_0 &+q] ——dx+ | agood

But

du), - du(L) du(0)
[g(x)AE —] - g(L)AE —— —g(0)AE ——
dx ), dx dx
and now since a test function must also satisfy the essential conditions, hence g(0) = 0 and also the trial function
satisfies the natural boundary conditions at x = L which is that there is no load at that point, hence this means

A E (du/dx) = 0 since this is the load at the end. Hence the integral becomes

du dg (x)
I=—fAE—+q —clx+qug(x)dx:0
0 dx dx 0

We now pick the test function g(x). In Galerkin method, g;(x) = %hence 91(x) = (%”1 =xand g,(X) = %’2 = x2 s0 now

we set up the 2 equations and solve for a; and a,

U=xaj +x2ay;

d1 =X,
92‘X2;
g= CX,

Printed by Mathematica for Students



4 | compare_ritz_to_galerkin.nb

L
eq1=J (-AEOx U 84 g1 +QQg,) dx
0

clLs 5
T—ALEal—AL Ea,

L
eq2=j (-AEOx U 8¢ 0o +qQgy) dx
0

c L4 5 4 s
- _AlL?Ea; - —AlL%Ea,
4 3

Now solve for a; and a,

sol =First @eSolve[{eql ==0, eq2 =0}, {a;, ar}]

{a 7 c L2 . cL}
- , - -
YU 1oAY T 4AE

Substitute the above into the original u(x)

sol uti onBy@al er ki nMet hod =u /. sol

7cl?2x cLx?

12 AE 4 AE

We see that this solution is the same as the one found from the Ritz method

sol uti onByGal er ki nMet hod - sol uti onByRi t zMet hod

0

Exact solution for the problem

The ODE is
AEU"[x]=-q

With the essential conditions u(0) = 0 and with natural boundary condition A E u‘[x] = 0 at x = L. Find exact solution:

Renove [u]

g= CX;

sol =First eDSol ve[{AEuU'"' [X] ==-q, u[0] =0, AEu"' [L] =0}, u[x], XI;
sol uti onExact =u[x] /. sol;

Col | ect [sol uti onExact, x]

clL?2x c¢cx3
2AE 6 AE
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Compare the above solution to the one found above, we see that the approximate solution is

7cL2x cLx?
u= -
12AE 4AE

while the exact solution is

cL2x c¢x®
2AE O6AE

Uexact=

here is a plot of both solutions. Assume A = 1,¢ = 1,E = 1and L = 1, we obtain
Needs [" Pl ot Legends " ]

c=1, E=1; L=1; A=1;
Pl ot [{sol uti onExact, sol uti onByRi t zMet hod},
{x, 0, L}, PlotStyle - {Red, Bl ue},
Pl ot Legend -» {"exact", "FEM'}, LegendPosition- {-2, -.4}]
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How can we improve the FEM solution, can we make it match the exact solution?

Make the trial function a polynomial of higher order. Try
U=ag+a X+ayx2 +agx°

and repeat Ritz method. Instead of making the same steps as above, let us write a function which accepts a trial func-

tion u(x) and returns back the solution. Find define the function

findSol uti onByRi t zMet hod [u_, x_] : = Modul e [{eqs, coef f Var, m},

Clear [A E, c, LI;
coeffVar = Fl atten [Normal [CoefficientArrays [u, x]]1;
coeffVar = Sel ect [coeffVar, UnsaneQ[#, 0] &];

L1 L
n=j — AE (D[u, x])zdlx—jcxuc'llx;
o 2 0

eqs = Tabl e[ D[m, coeffVar [[i1]11 =0, {i, 1, Length[coeffVar]}1;
Fi rst eSol ve [eqs, coeffVar ]

Now we can call the above function for the trial function shown above to dtermine the values of the a;"s

Printed by Mathematica for Students



6 | compare_ritz_to_galerkin.nb

trial Function =a; x +a, x? + ag x>;
sol uti onByRi t zMet hodMor eTer s =
findSol uti onByRi t zMet hod [tri al Functi on, x]

{a sl a 0, a ¢ }
- , - 0, - -
7oA 7P T TG AE

sol uti onByRi t zMet hodMoreTerns =tri al Functi on /. sol uti onByRi t zMet hodMor eTer s

clL?2x cx3

2AE 6AE

We see now that the FEM solution is the same as the exact solution. We can confirm this by taking the difference

between them

sol uti onByRi t zMet hodMor eTer s - sol uti onExact // Sinplify
0

What happens if we add more terms to the trial functions? We should expect that the solution would not change. This

is confirmed by the following table generated using the above function

nunmber O Tri al Functi ons = 5;
(trial Function = Tabl e[Sum[a; x™i, {i, 1, j}], {j, 1, nunberOf Tri al Functions }]) // Tabl eForm

X ax

xap +x2a,

xai+x%a,+x3a;
xap+x2a,+x3az+xtay
xai+x2a,+x3az+x*as+x°as

Now find the solution using each of the above trial functions using Ritz method

tbl = Tabl e [fi ndSol uti onByRi t zMet hod [trial Function [[i]], x], {i, 1, nunber O Tri al Functi ons }];
tbl =

Table[{trial Function[[i]], trial Function[[i1] /. tbl [[i11}, {i, 1, number O Tri al Functi ons }7;

Gid[{ {"Trial Function", "Solution"}, Sequence eetbl }, Frame -» Al l ]

Tri al Functi on Sol uti on
cL2x
Xd] 3AE

7cl?x _clLx?
12 AE 4 AE
cLZx c x3
2AE 6 AE

X a; + X2 a,

X a; + X% a, + X3 as

2 3 4 cl?x _ cx®
Xxay+x2a,+x3az+xtay T - A
cLZx c x3

2 3 4 5
Xag+Xcazx +Xaz + X" ag +X° as N 5 AR
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We see from the above that as more terms added to the trial function, after the cubic polynomial, the solution no
longer changes. This implies, at least in this example, that the exact solution was reached. (Need to find a formal

proof of this).
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