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Abstract

A two degrees of freedom system consisting of two masses connected by
springs and subject to 3 different type of input forces is analyzed and simulated
using Simulink
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1 Introduction and Theory
The system that is being analyzed is show in the following diagram

F(t)

m1

m2

k1

k2

x1

x2

Figure 1: Free body diagram

In the above, F (t) is to be taken as each of the following

1. Unit impulse force.

2. Unit step force.

3. sinωt

It is required to find x1(t) and x2(t) analytically and then to use Matlab’s Simulink
software for the analysis.

The mathematical model of the system is first developed and the equation of motions
obtained using Lagrangian formulation then the analytical solution is found by solving
the resulting coupled second order differential equations form1 andm2. Next, a simulink
model is developed to implement the differential equations and the output x1(t) and
x2(t) from Simulink is shown and compared to the output from the analytical solution.
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2 Analytical solution
The following is the free body diagram of the above system

F(t)

m1

m2

K1(x2-x1)
x1

x2

K1(x2-x1)

K2x2

Figure 2: Free body diagram

Assuming positive is downwards and that x2 > x1, force-balance equations for m1

results in
m1ẍ1 = F (t) + k1(x2 − x1)

And force-balance equations for m2 results in

m2ẍ2 = −k1(x2 − x1)− k2x2

Hence the EQM for the system become

m1ẍ1 − k1x2 + k1x1 = F (t)
m2ẍ2 + (k1 + k2)x2 − k1x1 = 0

Or in matrix form(
m1 0
0 m2

)(
ẍ1

ẍ2

)
+
(

k1 −k1
−k1 (k1 + k2)

)(
x1

x2

)
=
(
F (t)
0

)
The above can be written in matrix form as

M ẍ +Kx = F

Where ẍ,x,F are 2 by 1 vectors and M and K are the mass and stiffness matrices.
The solution to the above is

x = xh + xp (1)
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2.1 Finding the homogenous solution
We start by finding xh from the following(

m1 0
0 m2

)(
ẍ1

ẍ2

)
+
(

k1 −k1
−k1 (k1 + k2)

)(
x1

x2

)
=
(
0
0

)
Assuming that x1(t) = A1 cos (ωt+ φ) and x2(t) = A2 cos (ωt+ φ), hence ẋ1(t) =
−ωA1 sin (ωt+ φ) and ẋ2(t) = −ωA2 sin (ωt+ φ) and ẍ1(t) = −ω2A1 cos (ωt+ φ) and
ẋ2(t) = −ω2A2 cos (ωt+ φ). Substituting the above values in the above system results
in(

m1 0
0 m2

)(−ω2A1 cos (ωt+ φ)
−ω2A2 cos (ωt+ φ)

)
+
(

k1 −k1
−k1 (k1 + k2)

)(
A1 cos (ωt+ φ)
A2 cos (ωt+ φ)

)
=
(
0
0

)
Divide by cos (ωt+ φ) since not zero (else no solution exist) we obtain(

m1 0
0 m2

)(
−ω2A1

−ω2A2

)
+
(

k1 −k1
−k1 (k1 + k2)

)(
A1

A2

)
=
(
0
0

)
Rewrite the above as(

−ω2m1A1

−ω2m2A2

)
+
(

k1A1 − k1A2

−k1A1 + (k1 + k2)A2

)
=
(
0
0

)
(

−ω2m1A1 + k1A1 − k1A2

−ω2m2A2 − k1A1 + (k1 + k2)A2

)
=
(
0
0

)
(

(−ω2m1 + k1)A1 − k1A2

−ω2m2A2 + (k1 + k2)A2 − k1A1

)
=
(
0
0

)
(
−ω2m1 + k1 −k1

−k1 −ω2m2 + (k1 + k2)

)(
A1

A2

)
=
(
0
0

)
(2)

From the last equation above, we see that to obtain a solution we must have∣∣∣∣∣−ω2m1 + k1 −k1

−k1 −ω2m2 + (k1 + k2)

∣∣∣∣∣ = 0

since if we had
(
A1

A2

)
= 0 then no solution will exist. Therefore, taking the determinant

and setting it to zero results in
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(
−ω2m1 + k1

) (
−ω2m2 + (k1 + k2)

)
− k2

1 = 0
k2
1 + k1k2 − ω2k1m1 − ω2k1m2 − ω2k2m1 + ω4m1m2 − k2

1 = 0
ω4m1m2 + ω2(−k1m1 − k2m1 − k1m2) +

(
k2
1 + k1k2 − k2

1
)
= 0

Let ω4 = λ2, hence the above becomes

λ2m1m2 + λ(−k1m1 − k2m1 − k1m2) +
(
k2
1 + k1k2 − k2

1
)
= 0

Solving for λ gives

λ1 = 1
2m1m2

(
k1m1 + k1m2 + k2m1 +

√
k2
1m

2
1 + k2

1m
2
2 + k2

2m
2
1 + 2k1k2m2

1 + 2k2
1m1m2 − 2k1k2m1m2

)
λ2 = 1

2m1m2

(
k1m1 + k1m2 + k2m1 −

√
k2
1m

2
1 + k2

1m
2
2 + k2

2m
2
1 + 2k1k2m2

1 + 2k2
1m1m2 − 2k1k2m1m2

)
(3)

For each of the above solutions, we obtain a different
(
A1

A2

)
from equation (2) as follows

For λ1, (2) becomes(
−λ1m1 + k1 −k1

−k1 −λ1m2 + (k1 + k2)

)(
A1

A2

)
=
(
0
0

)
(

(−λ1m1 + k1)A1 − k1A2

−k1A1 − λ1m2A2 + (k1 + k2)A2

)
=
(
0
0

)
From the first equation above, we have

(−λ1m1 + k1)A1 − k1A2 = 0
−λ1m1 + k1

k1
=
(
A2

A1

)(1)

Similarly for λ2,
−λ2m1 + k1

k1
=
(
A2

A1

)(2)

Let

r1 =
−λ1m1 + k1

k1
=
(
A2

A1

)(1)

(4)

r2 =
−λ2m1 + k1

k1
=
(
A2

A1

)(2)
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Hence now xh can be written as

(
x1

x2

)
h

=

A
(1)
1 cos (ω1t+ φ1) + A

(2)
1 cos (ω2t+ φ2)

A
(1)
2 cos (ω1t+ φ1) + A

(2)
2 cos (ω2t+ φ2)


But A(1)

2 = r1A
(1)
1 and A

(2)
2 = r2A

(2)
1 , hence the above becomes

(
x1

x2

)
h

=

 A
(1)
1 cos (ω1t+ φ1) + A

(2)
1 cos (ω2t+ φ2)

r1A
(1)
1 cos (ω1t+ φ1) + r2A

(2)
1 cos (ω2t+ φ2)

 (5)

Now, given numerical values for k1, k2,m1,m2 we can find ω1, ω2 from (3) above, and
next find r1, r2 from (4). Hence (5) contains 4 unknowns, A(1)

1 , A
(2)
1 , φ1, φ2 which now

can be found from initial conditions (after we find the particular solution) which we
will now proceed to do.

2.2 Finding particular solutions
There are 3 different F (t) which we are asked to consider

1. Unit impulse force.

2. Unit step force.

3. sinωt

For each of the above, we find xp and then add it to xh found above in (5) to obtain
(1).

2.2.1 Finding the particular solution for unit impulse input

Using the standard response for a unit impulse which for a single degree of freedom
system is x(t) = 1

mωn
sinωnt, then we write xp as

xp =
(
x1

x2

)
p

=
(

1
mω1

sinω1t+ 1
mω2

sinω2t

0

)

Hence, the general solution becomes

(
x1

x2

)
=

 A
(1)
1 cos (ω1t+ φ1) + A

(2)
1 cos (ω2t+ φ2)

r1A
(1)
1 cos (ω1t+ φ1) + r2A

(2)
1 cos (ω2t+ φ2)

+
(

1
mω1

sinω1t+ 1
mω2

sinω2t

0

)
(6)
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2.2.2 Finding the particular solution for unit step input

Since unit step is 1 for t > 0, then, using convolution we write

xp(t) =
∫ t

0
f(τ)h(t− τ) dτ

=
∫ t

0
h(t− τ) dτ

=
∫ t

0

1
mωn

sinωn(t− τ) dτ

= 1
mωn

[
− cos (ωn(t− τ))

−ωn

]t
0

= 1
mω2

n

[cos (ωn(t− τ))]t0

= 1
mω2

n

[1− cos (ωnt)]

Then, since now we have 2 natural frequencies, we can write xp as

xp =
(
x1

x2

)
p

=
(

1
mω2

1
[1− cos (ω1t)] + 1

mω2
2
[1− cos (ω2t)]

0

)

Hence, the general solution becomes

(
x1

x2

)
=

 A
(1)
1 cos (ω1t+ φ1) + A

(2)
1 cos (ω2t+ φ2)

r1A
(1)
1 cos (ω1t+ φ1) + r2A

(2)
1 cos (ω2t+ φ2)

+
(

1
mω2

1
[1− cos (ω1t)] + 1

mω2
2
[1− cos (ω2t)]

0

)

2.2.3 Finding the particular solution for sinωt

In this case, we guess that x1p = c1 cosωt + c2 sinωt, and since there is no forcing
function being applied directly on m2 then x2p = 0 hence

xp =
(
x1(t)
x2(t)

)
p

=
(
c1 cosωt+ c2 sinωt

0

)

Then ẋ1p(t) = −ωc1 sinωt+ωc2 cosωt and ẍ1p(t) = −ω2c1 cosωt+ω2c2 sinωt and now
we substitute these into the original ODE for x1 which is

m1ẍ1 − k1x2 + k1x1 = F (t)
m1ẍ1p − k1x2p + k1x1p = sinωt
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We obtain the following

m1
(
−ω2c1 cosωt+ ω2c2 sinωt

)
− k1(0) + k1(c1 cosωt+ c2 sinωt) = sinωt

cosωt
(
−ω2c1m1 + k1c1

)
+ sinωt

(
m1ω

2c2 + k1c2
)
= sinωt

Hence by comparing coefficients, we obtain

−ω2c1m1 + k1c1 = 0
m1ω

2c2 + k1c2 = 1

or

c1
(
−ω2m1 + k1

)
= 0

c2
(
m1ω

2 + k1
)
= 1

c1 must be zero since k1 − ω2m1 = 0 only when ω = ωn and we assume that this is not
the case here. Hence

c1 = 0

c2 =
1

(m1ω2 + k1)
Therefore xp becomes

xp =
(
x1(t)
x2(t)

)
p

=
(

1
(m1ω2+k1) sinωt

0

)
And the general solution becomes(

x1

x2

)
=

 A
(1)
1 cos (ω1t+ φ1) + A

(2)
1 cos (ω2t+ φ2)

r1A
(1)
1 cos (ω1t+ φ1) + r2A

(2)
1 cos (ω2t+ φ2)

+
(

1
(m1ω2+k1) sinωt

0

)
(8)

3 Simulink simulation and block diagrams
In simulink, we will directly solve the system from the original formulation

m1ẍ1 − k1x2 + k1x1 = F (t)
m2ẍ2 + (k1 + k2)x2 − k1x1 = 0

or

ẍ1 −
k1
m1

x2 +
k1
m1

x1 =
F (t)
m1

ẍ2 +
(k1 + k2)

m2
x2 −

k1
m2

x1 = 0
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Hence

ẍ1 =
F (t)
m1

+ k1
m1

x2 −
k1
m1

x1

ẍ2 = −(k1 + k2)
m2

x2 +
k1
m2

x1

3.1 Unit step simulink diagram and output
The simulink block diagram will be as follows for the unit step input

Figure 3: simulink block diagram

For an initial run with parameters m1 = m2 = k1 = k2 = 1 I get this warning below� �
EDU>> simulink
Warning: Using a default value of 0.2 for maximum step size. The simulation
step size will be equal to or less than this value. You can disable this
diagnostic by setting 'Automatic solver parameter selection' diagnostic to
'none' in the Diagnostics page of the configuration parameters dialog.� �
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And this is the output for x1(t) and x2(t) for the unit step response

Figure 4: simulink output for the unit step response

3.1.1 Verification of result from Simulink by Numerically solving the
differential equations

To verify the above output from Simulink, I solved the same coupled differential equa-
tions for zero initial conditions numerically (using a numerical differential equation
solver) and plotted the solution for x1(t) and x2(t) and the result matches that shown
above by simulink. Here is the code the plot as a result of this verification
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k1 = 1; k2 = 1; m1 = 1; m2 = 1;

eq1 = m1 x1 ''[t] - k1 x2[t] + k1 x1[t] ⩵ f[t]

eq2 = m2 x2 ''[t] + (k1 + k2) x2[t] - k1 x1[t] ⩵ 0

sol = NDSolve[{eq1, eq2, x1[0] ⩵ 0, x1 '[0] ⩵ 0, x2[0] ⩵ 0, x2 '[0] ⩵ 0}, {x1[t], x2[t]},

{t, 0, 35}];

Figure 5: Mathematica code the plot as a result of this verification

x1(t)

x2(t)

unit step

input

0 5 10 15 20 25 30 35

0

1

2

3

4

t

x(
t)

Solutions x1(t) and x2(t)

Figure 6: Mathematica output for verification
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4 Unit impulse simulink diagram and output

Figure 7: Simulink Unit impulse block

And the output for x1(t) and x2(t) is as follows
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Mass m1

Mass m2

INPUT

m1x1  k1x2  k1x1  Ft

m2x2  k1  k2x2  k1x1  0

Solution to the following coupled second order 

differential equations when F(t) is a unit impulse

run with parameters m1  m2  k1  k2  1

Mass m1

Mass m2

Figure 8: Simulink Unit impulse output

4.0.1 Verification of result from Simulink by Numerically solving the
differential equations

To verify the above output from Simulink, The same coupled differential equations were
solved numerically for zero initial conditions numerically and the solution plotted for
x1(t) and x2(t) and the result was found to match that shown above by simulink. Here
is the code used to do the verification.
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f[x_] := Piecewise[{{0, x < 0}, {0, x > 0.01}, {1, True}}]

k1 = 1; k2 = 1; m1 = 1; m2 = 1;

eq1 = m1 x1 ''[t] - k1 x2[t] + k1 x1[t] ⩵ f[t]

eq2 = m2 x2 ''[t] + (k1 + k2) x2[t] - k1 x1[t] ⩵ 0

sol = NDSolve[{eq1, eq2, x1[0] ⩵ 0, x1 '[0] ⩵ 0, x2[0] ⩵ 0, x2 '[0] ⩵ 0}, {x1[t], x2[t]},

{t, 0, 35}];

sol = Chop[sol]

sol1 = x1[t] /. sol

sol2 = x2[t] /. sol

Plot[Evaluate[{f[t], sol1, sol2}], {t, 0, 35}, Frame → True,

FrameLabel → {{"x(t)", None}, {"t", "Solutions x1(t) and x2(t)"}}]

x1(t)

x2(t)

0 5 10 15 20 25 30 35

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

t

x(
t)

Solutions x1(t) and x2(t)

Figure 9: Mathematica code for verification

4.1 sin (ωt) input simulink diagram and output
The simulink block diagram will be as follows for the sinωt input
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f[x_] := Piecewise[{{0, x < 0}, {0, x > 0.01}, {1, True}}]

k1 = 1; k2 = 1; m1 = 1; m2 = 1;

eq1 = m1 x1 ''[t] - k1 x2[t] + k1 x1[t] ⩵ f[t]

eq2 = m2 x2 ''[t] + (k1 + k2) x2[t] - k1 x1[t] ⩵ 0

sol = NDSolve[{eq1, eq2, x1[0] ⩵ 0, x1 '[0] ⩵ 0, x2[0] ⩵ 0, x2 '[0] ⩵ 0}, {x1[t], x2[t]},

{t, 0, 35}];

sol = Chop[sol]

sol1 = x1[t] /. sol

sol2 = x2[t] /. sol

Plot[Evaluate[{f[t], sol1, sol2}], {t, 0, 35}, Frame → True,

FrameLabel → {{"x(t)", None}, {"t", "Solutions x1(t) and x2(t)"}}]

x1(t)

x2(t)

0 5 10 15 20 25 30 35

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

t

x(
t)

Solutions x1(t) and x2(t)

Figure 10: Mathematica code for verification
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Figure 11: Simulink model for sin input

For an initial run with parameters m1 = m2 = k1 = k2 = 1 this is the output for x1(t)
and x2(t) and showing the input signal at the same time
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Input= sin(wt)

Using sin(wt) as forcing function. Case for w=2 rad/sec

Response, first mass
Response

second mass

Simulink ouput for parameters: m1=1,m2=1,k1=1,k2=1

Figure 12: Simulink output

5 Discussion
A coupled system of two masses and springs was analyzed using Simulink. The simu-
lation was done for one set of parameters (masses and stiffness). Simulink made the
simulation of this system under different loading conditions easy to do. The 2 masses
response were recorded using simulink scope and the signals captured on the same plot
to make it easy to compare the response of the first mass to the second mass.

The analytical analysis was more time consuming than actually making the simulation
in simulink. The ability to easily change different sources to the system was useful as
well as the ability to change the frequency of the input and immediately see the effect
on the response.

This was my first project using Simulink, and I can see that this tool will be useful to
learn more as it allows one to easily analyze engineering problems.
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