CAS simplification comparison between Maple and Mathematica

Nasser M. Abbasi

May 10, 2012 Compiled on January 31, 2024 at 3:27am

Contents

1	\mathbf{intr}	oduction	1
	1.1	links to older version using Maple 11 and Mathematica 5.2	1
	1.2	updated results using Maple 14 and Mathematica 8.04	2
2	resu	lts	3
	2.1	Mathematica	3
		2.1.1 using Simplify[]	4
		2.1.2 using FullSimplify[]	4
	2.2	Maple	5
		2.2.1 using LeafCount()	5
		2.2.2 using length()	6
3	side	-by-side	7

1 introduction

1.1 links to older version using Maple 11 and Mathematica 5.2

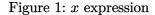
A detailed but older version that used Maple 11 and Mathematica 5.2 is here which contains images to each expression used.

1.2 updated results using Maple 14 and Mathematica 8.04

This version only shows the final result using an updated version of Mathematica and Maple, but does not show each expression generated. When I have more time I hope to also show those in this updated version.

For this version I used Mathematica 8.04 and Maple 14, both on windows 7. The PC is intel i7 930 © 2.8 Ghz with 8 GB memory

This is the result of doing a simplification measure on an expression using Maple and Mathematica using an expression posted on sci.math.symbolic by Dr Carlos.


The expression given in the original post can be found at http://sci4um.com/about26200. html

```
xnum = ((6-4*Sqrt[2])*Log[3-2*Sqrt[2]]+(3-2*Sqrt[2])*Log[17-12*Sqrt[2]]+32-24*Sqrt[2]);
xden = (48*Sqrt[2]-72)*(Log[Sqrt[2]+1]+Sqrt[2])/3;
x = xnum/xden;
```

The answer is x = 1.

Where x is the following expression

$$In[247]:= xnum = ((6 - 4 * Sqrt[2]) * Log[3 - 2 * Sqrt[2]] + (3 - 2 * Sqrt[2]) *
Log[17 - 12 * Sqrt[2]] + 32 - 24 * Sqrt[2]);
xden = (48 * Sqrt[2] - 72) * (Log[Sqrt[2] + 1] + Sqrt[2]) / 3;
x = xnum / xden
Out[249]=
$$\frac{3 (32 - 24 \sqrt{2} + (3 - 2 \sqrt{2}) Log[17 - 12 \sqrt{2}] + (6 - 4 \sqrt{2}) Log[3 - 2 \sqrt{2}])}{(-72 + 48 \sqrt{2}) (\sqrt{2} + Log[1 + \sqrt{2}])}$$$$

and in expanded form

Out [49]=	96	72 √2	9 Log[17 - 12 √2]
oorlaal-	$\left(-72+48\sqrt{2}\right)\left(\sqrt{2}+\text{Log}\left[1+\sqrt{2}\right]\right)$	$(-72+48\sqrt{2})(\sqrt{2}+\text{Log}[1+\sqrt{2}])$	$\left(-72+48\sqrt{2}\right)\left(\sqrt{2}+\text{Log}\left[1+\sqrt{2}\right]\right)$
	$6\sqrt{2} \log[17 - 12\sqrt{2}]$	18 Log $\left[3-2\sqrt{2}\right]$	$12\sqrt{2} \log[3-2\sqrt{2}]$
	$\overline{\left(-72+48\sqrt{2}\right)\left(\sqrt{2}+\text{Log}\left[1+\sqrt{2}\right]\right)}$	$+ \frac{1}{(-72 + 48\sqrt{2})} \left(\sqrt{2} + \text{Log}\left[1 + \sqrt{2}\right]\right)$	$\frac{1}{\left(-72+48\sqrt{2}\right)\left(\sqrt{2}+\log\left[1+\sqrt{2}\right]\right)}$

Figure 2: x expression expanded

Using x as shown above, the function Expand[] in Mathematica and expand() in Maple are then applied to $x, x^2, x^4, x^8, x^{16}, x^{32}$, then the result is fully simplified again, and the leaf

count (measure of simplification) is compared to the original expression to obtain a measure of the system simplification.

Mathematica has both Simplify[expr] and FullSimplify[expr] and Maple has simplify(expr, size) and simplify(expr). Here, I used only the simplify(expr, size) since LeafCount was used.

The tables below show the result of using both functions in each system.

The tables show the size of the expression before and after simplification, the percentage in size reduction and the cpu time used.

2 results

2.1 Mathematica

Source code used is

```
xnum = ((6-4*Sqrt[2])*Log[3-2*Sqrt[2]]+(3-2*Sqrt[2])*Log[17-12*Sqrt[2]]+32-24*Sqrt[2]);
xden = (48*Sqrt[2]-72)*(Log[Sqrt[2]+1]+Sqrt[2])/3;
     = xnum/xden;
х
xtab = Expand[{x,x^2,x^4,x^8,x^{-16}}];
     = Length[xtab];
n
stab = Table[0,{n},{4}];
For[i=1,i<= n,i++,</pre>
 {
 stab[[i,1]] = LeafCount[xtab[[i]]];
  s = Timing[Simplify[ xtab[[i]] ]]; (*use FullSimplify or Simplify *)
  stab[[i,2]] = LeafCount[ s[[2]] ];
  stab[[i,3]] = s[[1]];
  stab[[i,4]] = Round[100.0*stab[[i,2]]/stab[[i,1]]];
  }
];
Grid[Join[{{"leaf count before","leaf count after","cpu","% reduction"}},stab],
     Frame->All
    ]
```

2.1.1 using Simplify[]

When running the above code, using Simplify[], this is the result

leaf count before	leaf count after	cpu	<pre>% reduction</pre>
230	50	0.093	22
507	96	0.156	19
1394	362	0.265	26
4500	1052	0.702	23
16040	3533	2.231	22

Figure 3: Output from Simpli	шту	
------------------------------	-----	--

2.1.2 using FullSimplify[]

When running the above code, using FullSimplify[], this is the result

leaf count before	leaf count after	cpu	<pre>% reduction</pre>
230	32	0.296	14
507	90	0.78	18
1394	232	888.894	17
4500	1043	65.302	23
16040	3525	393.637	22

Figure 4: Output from FullSimplify

2.2 Maple

2.2.1 using LeafCount()

In maple, using with(MmaTranslator[Mma]) to access the function LeafCount().

Source code

```
restart;
with(MmaTranslator[Mma]):
xnum := ((6-4*sqrt(2))*ln(3-2*sqrt(2))+(3-2*sqrt(2))*ln(17-12*sqrt(2))+32-24*sqrt(2)):
xden := (48*sqrt(2)-72)*(ln(sqrt(2)+1)+sqrt(2))/3:
     := xnum/xden:
х
n:=5:
stab := Matrix(5,4,0): #Matrix where to keep track of stats
xtab : =expand({x,x<sup>2</sup>,x<sup>4</sup>,x<sup>8</sup>,x<sup>16</sup>}):
for i from 1 to n do
    stab[i,1]:= LeafCount(xtab[i]):
    startingTime := time():
    s
           := simplify(xtab[i],size):
    stab[i,3] := time()-startingTime:
    stab[i,2] := LeafCount(s):
    stab[i,4] := ceil(100.*stab[i,2]/stab[i,1]):
od:
stab;
```

Columns have the same meaning as above.

```
180620.353991140.2911042720.2535828040.231281027320.22
```

Figure 5: Output from Maple

2.2.2 using length()

Source code used is

```
restart;
xnum := ((6-4*sqrt(2))*ln(3-2*sqrt(2))+(3-2*sqrt(2))*ln(17-12*sqrt(2))+32-24*sqrt(2)):
xden := (48*sqrt(2)-72)*(ln(sqrt(2)+1)+sqrt(2))/3:
     := xnum/xden:
х
     := 5:
n
stab := Matrix(5,4,0): #Matrix where to keep track of stats
xtab := expand({x,x<sup>2</sup>,x<sup>4</sup>,x<sup>8</sup>,x<sup>16</sup>}):
for i from 1 to n do
    stab[i,1]:=length(xtab[i]):
    startingTime := time():
         := simplify(xtab[i],size):
    s
    stab[i,3] := time() - startingTime:
    stab[i,2] := length(s):
    stab[i,4] := ceil(100.*stab[i,2]/stab[i,1]):
od:
stab;
```

Columns have the same meaning as above.

555	198	0.	36
1245	372	0.015	30
3509	956	0.016	28
11905	3316	0.031	28
47654	14960	0.094	32

Figure 6: Output from Maple simplify size

3 side-by-side

This shows Mathematica Simplify result against Maple simplify(expr,size) both using LeafCount.

Maple 14		Mathematica 8.04	L	
[180 62 0.35]				
399 114 0. 29				
1104 272 0. 25	leaf count before	leaf count after	cpu	<pre>% reduction</pre>
1104 272 0.25	leaf count before 230	leaf count after 50	cpu 0.093	<pre>% reduction 22</pre>
	Surveyore a manufactor defaute conserve and	And the constant of the second second		Mana-and a date of a constant
3582 804 0.23	230	50	0.093	22
	230 507	50 96	0.093	22 19

And this shows Mathematica FullSimplify result against Maple simplify (expr,size) both using LeafCount.

Maple 14	Mathematica 8.04
180 62 0.35 399 114 0.29	
1104 272 0 25	
1104 272 0.25	leaf count before leaf count after cpu & reduction
	leaf count beforeleaf count aftercpu% reduction230320.29614
1104 272 0.25 3582 804 0.23	
3582 804 0.23	230 32 0.296 14
	230 32 0.296 14 507 90 0.78 18