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1 Similarity transformation
A similarity transformation is

B = M−1AM

Where B,A,M are square matrices. The goal of similarity transformation is to find
a B matrix which has a simpler form than A so that we can use B in place of A to
ease some computational work. Lets set our goal in having B be a diagonal matrix (a
general diagonal form is called block diagonal or Jordan form, but here we are just
looking at the case of B being a diagonal matrix).
The question becomes: Given A, can we find M such that M−1AM is diagonal?
The standard method to show the above is via an algebraic method, which we show first.
Next we show a geometric method that explains similarity transformation geometrically.

1.1 Derivation of similarity transformation based on
algebraic method

Starting with
B = M−1AM

Our goal is to find a real matrix B such that it is diagonal. From the above, by pre
multiplying each side by M we obtain

AM = MB

Now, since our goal is to make B diagonal, let us select the eigenvalues of A to be the
diagonal of B. Now we write the above in expanded form as followsa11 · · · a1n

... . . . ...
an1 · · · ann


m11 · · · m1n

... . . . ...
mn1 · · · mnn

 =

m11 · · · m1n
... . . . ...

mn1 · · · mnn


λ1 0 0

0 . . . 0
0 0 λn


The above can be written as n separate equations by looking at the column view of
matrix multiplication a11 · · · a1n

... . . . ...
an1 · · · ann


m11

...
mn1

 = λ1

m11
...

mn1


And a11 · · · a1n

... . . . ...
an1 · · · ann


m12

...
mn2

 = λ2

m12
...

mn2


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All the way to the nth column of Ma11 · · · a1n
... . . . ...

an1 · · · ann


m1n

...
mnn

 = λn

m1n
...

mnn


Each of the above n equations is in the form

Ax =λx

and this is the key idea.

The above shows that if we take the diagonal elements of B to be the eigenvalues of A
then the M matrix is the (right) eigenvectors of A.

Hence, if we want the B matrix to be diagonal and real, this means the A matrix itself
must have some conditions put on it. Specifically, A eigenvalues must be all distinct
and real. This happens when A is real and symmetric. Therefore, we have the general
result that given a matrix A which has distinct and real eigenvalues, only then can we
find a similar matrix to it which is real and diagonal, and these diagonal values are the
eigenvalues of A.

1.2 Derivation of similarity transformation based on
geometric method

It turns out that this derivation is more complicated than the algebraic approach. It
involves a change of basis matrix (which will be our M matrix) and the representation
of linear transformation T as a matrix under some basis (which will be our A matrix).
Let us start from the beginning.

Given the vector x in Rn, it can have many different representations (or coordinates)
depending on which basis are used. There are an infinite number of basis that span Rn,
hence there are infinite representations for the same vector. Consider for example R2.

The standard basis vectors are
{[

1
0

]
,

[
0
1

]}
, but another basis are

{[
1
1

]
,

[
0
1

]}
, and

yet another are
{[

1
1

]
,

[
0
−1

]}
, and so on.
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basis v

basis v

basis v
Change of basis

Figure 1: Change of basis

In Rn any n linearly independent vectors can be used as basis. Let xv be the vector
representation in w.r.t. basis v, and let xv′ be the vector representation w.r.t. basis v′.

basis v

ba
si
s
v


Change of basis

Same vector X has different representation depending on which basis are used

xv   x,yxv  x,y

M
v v

basis v

Figure 2: Same vector under different basis

An important problem in linear algebra is to obtain xv given xv′ and the change of
basis matrix [M ]v′→v.

This requires finding a matrix representation for the change of basis. Once the [M ]v′→v

matrix is found, we can write
xv = [M ]v′→v xv′ (1)

Where [M ]v′→v is the change of basis matrix which when applied to xv′ returns the
coordinates of the vector w.r.t. basis v.

From (1) we see that given xv, then to obtain xv′ we write

xv′ = [M ]−1
v′→vxv (1A)

Another important problem is that of linear transformation T , where now we apply
some transformation on the whole space and we want to find what happens to the
space coordinates (all the position vectors) due to this transformation.
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Consider for example T which is a rotation in R2 by some angle θ. Here, every position
vector in the space is affected by this rotation but the basis remain fixed, and we want
to find the new coordinates of each point in space.

Let xv be the position vector before applying the linear transformation, and let yv be
the new position vector. Notice that both vectors are written with respect to the same
basis v. Similar to change basis, we want a way to find yv from xv, hence we need a
way to represent this linear transformation by a matrix, say [T ]v with respect to the
basis v and so we could write the following

yv = [T ]v xv (2)

basis v

Linear Transformation T

Same basis v but T causes change in vector representation

basis v
T

v

y
v

xv xv

Figure 3: Linear transformation effect

Assume the basis is changed to v′. Let the representation of the same linear transfor-
mation T w.r.t. basis v′ be called [T ]v′ , so we write

yv′ = [T ]v′ xv′ (2A)

basis v
Change basis v->v’

Combining change of basis and linear transformation

xv

basis v

xv 

basis v

xv 

y
v   T

v xv 

Linear 
Transformatio

n

T
v 

Figure 4: Combining change of basis and linear transformation

5



Hence when the basis changes from v to v′, T representation changes from [T ]v to [T ]v′ .
Now assume we are given some linear transformation T and its representation [T ]v
w.r.t. basis v, how could we find T representation [T ]v′ w.r.t. to new basis v′?
From (2) we have

yv = [T ]v xv

But from (1) xv = [M ]v′→v xv′ , hence the above becomes

yv = [T ]v ([M ]v′→v xv′)

Pre-multiplying from left the above equation by [M ]−1
v′→v we obtain

[M ]−1
v′→vyv = [M ]−1

v′→v[T ]v[M ]v′→vxv′

But since [M ]−1
v′→vyv = yv′ , then above reduces to

yv′ = [M ]−1
v′→v[T ]v[M ]v′→vxv′

But from (2A) yv′ = [T ]v′ xv′ , hence the above becomes

[T ]v′xv′ = [M ]−1
v′→v[T ]v[M ]v′→vxv′

Therefore
[T ]v′ = [M ]−1

v′→v[T ]v[M ]v′→v (3)
Notice the difference between change of basis and linear transformation. In change of
basis, the vector x remained fixed in space, but the basis changed, and we want to
find the coordinates of the vector w.r.t the new basis. With linear transformation, the
vector itself is changed from xv to yv, but both vectors are expressed w.r.t. the same
basis.
Equation (3) allows us to obtain a new matrix representation of the linear transfor-
mation T by expressing the same T w.r.t. to different basis. Hence if we are given a
representation of T which is not the most optimal representation, we can, by change of
basis, obtain a different representation of the same T by using (3). The most optimal
matrix representation for linear transformation is a diagonal matrix.
Equation (3) is called a similarity transformation. To make it easier to compare (3)
above with what we wrote in the previous section when we derived the above using an
algebraic approach, we let [T ]v′ = B, [T ]v = A, hence (3) is

B = M−1AM

The matrix [T ]v′ is similar to [T ]v. (i.e. B is similar to A). Both matrices represent the
same linear transformation applied on the space. We will show below some examples
of how to find [T ]v′ given [T ]v and [M ]. But first we show how to obtain matrix
representation of T.
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1.2.1 Finding matrix representation of linear transformation T

Given a vector x ∈ Rn and some linear transformation (or a linear operator) T that acts
on the vector x transforming this vector into another vector y ∈ Rn according to some
prescribed manner T : x → y. Examples of such linear transformation are rotation,
elongation, compression, and reflection, and any combination of these operations, but
it can not include the translation of the vector, since translation is not linear.

The question to answer here is how to write down a representation of this linear
transformation? It turns out that T can be represented by a matrix of size n× n, and
the actual numbers that go into the matrix, or the shape of the matrix, will depend on
which basis in Rn we choose to represent x.

We would like to pick some basis so that the final shape of the matrix is the most
simple shape.

Let us pick a set of basis v = {e1, e2, · · · , en} that span Rn hence

xv = a1e1 + a2e2 + · · ·+ anen

Now
Txv = T (a1e1 + a2e2 + · · ·+ anen)

And since T is linear we can rewrite the above as

Txv = a1Te1 + a2Te2 + · · ·+ anTen (1)

We see from above that the new transformed vector Txv has the same coordinates as
xv if we view Tei as the new basis.

Now Tei itself is an application of the linear transformation but now it is being done on
each basis vector ei. Hence it will cause each specific basis vector to transform in some
manner to a new vector. Whatever this new vector is, we must be able to represent it
in terms of the same basis vectors {e1, e2, · · · , en} , therefore, we write

Te1 = ξ11e1 + ξ21e2 + · · ·+ ξn1en

Where ξij is the ith coordinate of the vector Tej. And we do the same for Te2

Te2 = ξ12e1 + ξ22e2 + · · ·+ ξn2en

And so on until
Ten = ξ1ne1 + ξ2ne2 + · · ·+ ξnnen

Or
Tej = ξijei
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Now plug the above into (1) and obtain

Txv = a1(ξ11e1 + ξ21e2 + · · ·+ ξn1en)
+ a2(ξ12e1 + ξ22e2 + · · ·+ ξn2en)
+ · · ·
+ an(ξ1ne1 + ξ2ne2 + · · ·+ ξnnen)

Hence, if we take the ei as common factors, we have

Tx = e1(a1ξ11 + a2ξ12 + · · ·+ anξ1n)
+ e2(a1ξ21 + a2ξ22 + · · ·+ anξ2n)
+ · · ·
+ en(a1ξn1 + a2ξn2 + · · ·+ anξnn)

Hence, since Txv = a1Te1+a2Te2+· · ·+anTen from (1), then by comparing coefficients
of each basis vector ei we obtain

a1T = a1ξ11 + a2ξ12 + · · ·+ anξ1n

a2T = a1ξ21 + a2ξ22 + · · ·+ anξ2n

· · ·
anT = a1ξn1 + a2ξn2 + · · ·+ anξnn

Or in matrix form

T


a1
a2
...
an

 =


ξ11 ξ12 · · · ξ1n
ξ21 ξ22 · · · ξ2n
... ... · · · ...
ξn1 ξn2 · · · ξnn



a1
a2
...
an


Hence we finally obtain that

T ⇒ [T ]v =


ξ11 ξ12 · · · ξ1n
ξ21 ξ22 · · · ξ2n
... ... · · · ...
ξn1 ξn2 · · · ξnn


Let us call the matrix that represents T under basis v as [T ]v .

We see from the above that the jth column of [T ]v contain the coordinates of the vector
Tej. This gives us a quick way to construct [T ]v: Apply T to each basis vector ej, and
take the resulting vector and place it in the jth column of [T ]v.
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We now see that [T ]v will have a different numerical values if the basis used to span Rn

are different from the ones used to obtain the above [T ]v .
Let use pick some new basis, say v′ = {e′1, e′2, · · · , e′n}. Let the new representation of
T now be the matrix [T ]v′ , then the jth column of [T ]v′ is found from applying T on
the new basis e′j

Te′j = ζije′i
Where now ζij is the ith coordinates of the the vector Te′j which will be different from
ξij since in one case we used the basis set v′ = {e′i} and in the other case we used the
basis set v = {ei}. Hence we see that [T ]v′ will numerically be different depending on
the basis used to span the space even though the linear transformation T itself did not
change.

1.2.2 Finding matrix representation of change of basis

Now we show how to determine [M ]v→v′ , the matrix which when applied to a vector
xv will result in the vector xv′ .

Given a vector x, it is represented w.r.t. basis v = {e1, e2, · · · , en} as

xv = a1e1 + a2e2 + · · ·+ anen

and w.r.t. basis v′ = {e′1, e′2, · · · , e′n} as

xv′ = b1e′1 + b2e′2 + · · ·+ bne′n

basis v basis v

e1

e2

xv  a1e1  a2e2

a1

a2

e1


e2


xv   b1e1
  b2e2



b1

b2

The same vector having different representation depending on basis used

Figure 5: Vector representation and basis

But the vector itself is invariant under any change of basis, hence xv = xv′

a1e1 + a2e2 + · · ·+ anen = b1e′1 + b2e′2 + · · ·+ bne′n (1)
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Now write each basis e′i in terms of the basis ej, hence we have

e′1 = c11e1 + c12e2 + · · ·+ c1nen
e′2 = c21e1 + c22e2 + · · ·+ c2nen
...

e′n = cn1e1 + cn2e2 + · · ·+ cnnen (2)

Substitute (2) into RHS of (1) we obtain

a1e1 + a2e2 + · · ·+ anen = b1(c11e1 + c12e2 + · · ·+ c1nen)+
b2(c21e1 + c22e2 + · · ·+ c2nen)+
· · ·
+ bn(cn1e1 + cn2e2 + · · ·+ cnnen)

Factor out the basis ei from the RHS, we obtain

a1e1 + a2e2 + · · ·+ anen = (b1c11e1 + b1c12e2 + · · ·+ b1c1nen)+
(b2c21e1 + b2c22e2 + · · ·+ b2c2nen)+
· · ·
+ (bncn1e1 + bncn2e2 + · · ·+ bncnnen)

Hence

a1e1 + a2e2 + · · ·+ anen = e1(b1c11 + b2c21 + · · ·+ bncn1)+
e2(b1c12 + b2c22 + · · ·+ bncn2)+
· · ·
+ en(b1c1n + b2c2n + · · ·+ bncnn)

Now comparing coefficients of each of the basis ei we obtain the following result

a1 = b1c11 + b2c21 + · · ·+ bncn1

a2 = b1c12 + b2c22 + · · ·+ bncn2

· · ·
an = b1c1n + b2c2n + · · ·+ bncnn

Or in Matrix form, we write
a1
a2
...
an

 =


c11 c21 c31 · · · cn1
c12 c22 c32 · · · cn2
... · · · · · · . . . ...
c1n c2n c3n · · · cnn



b1
b2
...
bn

 (3)
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The above gives a relation between the coordinates of the vector x w.r.t. basis v (these
are the ai coordinates) to the coordinates of the same vector w.r.t. to basis v′ (these
are the coordinates bj). The mapping between these coordinates is the matrix shown
above which we call the [M ] matrix. Since the above matrix returns the coordinates of
the vector w.r.t. v when it is multiplied by the coordinates of the vector w.r.t. basis v′,
we write it as [M ]v′→v to make it clear from which basis to which basis is the conversion
taking place.

Looking at (2) and (3) above, we see that column j in [M ]v′→v is the coordinates of
the e′j w.r.t. basis v.

Hence the above gives a method to generate the change of basis matrix [M ]v′→v. Simply
represent each basis in v′ w.r.t. to basis v. Take the result of each such representation
and write it as a column in [M ]v′→v. We now show few examples to illustrate this.

Example showing how to find change of basis matrix

Given the R2 basis v = {e1, e2} =
{[

1
0

]
,

[
0
1

]}
, and new basis v′ = {e′1, e′2} ={[

1
1

]
,

[
−1
1

]}
, find the change of basis matrix [M ]v→v′

Column 1 of [M ]v→v′ is the coordinates of e1 w.r.t. basis v′. i.e.

e1 = c11e′1 + c21e′2 (4)

and column 2 of [M ]v→v′ is the coordinates of e2 w.r.t. basis v′. i.e.

e2 = c12e′1 + c22e′2 (5)

But (4) is [
1
0

]
= c11

[
1
1

]
+ c21

[
−1
1

]
Hence 1 = c11 − c21 and 0 = c11 + c21, solving, we obtain c11 = 1

2 , c21 =
−1
2 and (5) is[

0
1

]
= c12

[
1
1

]
+ c22

[
−1
1

]
Hence 0 = c12 − c22 and 1 = c12 + c22, solving we obtain c12 = 1

2 , c22 =
1
2 , hence

[M ]v→v′ =

 1
2

1
2

−1
2

1
2


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Now we can use the above change of basis matrix to find coordinates of the vector

under v′ given its coordinates under v. For example, given xv =
[
10
5

]
, then

xv′ =

 1
2

1
2

−1
2

1
2

[
10
5

]
=

[
7.5
−2.5

]

1.2.3 Examples of similarity transformation

Example 1 This example from Strang book (Linear Algebra and its applications,
4th edition), but shown here with little more details.
Consider R2, and let T be the projection onto a line at angle θ = 1350. Let the first

basis v =
{[

1
0

]
,

[
0
1

]}
and let the second basis v′ =

{[
1
−1

]
,

[
1
1

]}
.

basis v basis v

e1

e2

e1


e2


1

0

0

1

Te1 
0.5

0.5

  1350

Te2 
0.5

0.5

T
v


0.5 0.5

0.5 0.5

T
v  

1 0

0 0

Change of basis

Figure 6: Change of basis illustration

The first step is to find [M ]v′→v. The first column of [M ]v′→v is found by writing e′1w.r.t.
basis v, and the second column of [M ]v′→v is found by writing e′2w.r.t. basis v, Hence

e′1 = c11e1 + c21e2[
1
−1

]
= c11

[
1
0

]
+ c21

[
0
1

]
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Or 1 = c11 and c21 = −1. And

e′2 = c12e1 + c22e2[
1
1

]
= c12

[
1
0

]
+ c22

[
0
1

]
Hence c12 = 1 and c22 = 1. Hence

[M ]v′→v =
[
1 1
−1 1

]
Now we need to find [T ]v the representation of T w.r.t. basis v. The first column of
[T ]v is the new coordinates of the basis v1 after applying T onto it. but

Te1 = T

[
0
1

]
=

[
0.5
−0.5

]
and the second column of [T ]v is the new coordinates of the basis v2 after applying T

onto it. but

Te2 = T

[
1
0

]
=

[
−0.5
0.5

]
Hence

[T ]v =
[
0.5 −0.5
−0.5 0.5

]
Therefore

[T ]v′ = [M ]−1
v′→v[T ]v[M ]v′→v

=
[
1 1
−1 1

]−1 [ 0.5 −0.5
−0.5 0.5

] [
1 1
−1 1

]
[T ]v′ =

[
1 0
0 0

]

Hence we see that the linear transformation T is represented as
[
1 0
0 0

]
w.r.t. basis v′,

while it is represented as
[
0.5 −0.5
−0.5 0.5

]
w.r.t. basis v′. Therefore, it will be better to

perform all calculations involving this linear transformation under basis v′ instead of
basis v

13



basis v

basis v

e1

e2

e1


e2


1

0

0

1

Change of basis

  
4

Te1 
cos

sin
Te2 

sin

cos

T
v


cos sin

sin cos

T
v


1

2
 1

2

1

2

1

2

1

1

1

1

T
v  

1

2
 1

2

1

2

1

2

Change of basis selected did not result in simplification of representation of T

Figure 7: Change of basis

Example 2 Consider R2, and let T be a rotation of space by θ = π
4 . Let the first

basis v =
{[

1
0

]
,

[
0
1

]}
and let the second basis be v′ =

{[
1
1

]
,

[
−1
1

]}
.

The first step is to find [M ]v′→v. The first column of [M ]v′→v is found by writing e′1w.r.t.
basis v, and the second column of [M ]v′→v is found by writing e′2w.r.t. basis v, Hence

e′1 = c11e1 + c21e2[
1
1

]
= c11

[
1
0

]
+ c21

[
0
1

]
Or 1 = c11 and c21 = 1 and

e′2 = c12e1 + c22e2[
−1
1

]
= c12

[
1
0

]
+ c22

[
0
1

]
Hence c12 = −1 and c22 = 1. Hence

[M ]v′→v =
[
1 −1
1 1

]
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Now we need to find [T ]v the representation of T w.r.t. basis v. The first column of
[T ]v is the new coordinates of the basis v1 after applying T onto it. but

Te1 = T

[
0
1

]
=

[
cos θ
sin θ

]
and the second column of [T ]v is the new coordinates of the basis v2 after applying T

onto it. but

Te2 = T

[
1
0

]
Te2 =

[
− sin θ
cos θ

]
Hence

[T ]v =
[
cos θ − sin θ
sin θ cos θ

]

=
[
cos π

4 − sin π
4

sin π
4 cos π

4

]

[T ]v =

 1√
2 − 1√

2
1√
2

1√
2


Therefore

[T ]v′ = [M ]−1
v′→v[T ]v[M ]v′→v

=
[
1 −1
1 1

]−1
 1√

2 − 1√
2

1√
2

1√
2

[
1 −1
1 1

]

=

 1
2

1
2

−1
2

1
2

[
0 −

√
2

√
2 0

]

=

 1√
2 − 1√

2
1√
2

1√
2



Hence we see that the linear transformation T is represented as

 1√
2 − 1√

2
1√
2

1√
2

 w.r.t. basis
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v′, while it is represented as

 1√
2 − 1√

2
1√
2

1√
2

w.r.t. basis v′. Therefore the change of basis

selected above did not result in making the representation of T any simpler (in fact
there was no change in the representation). This means we need to find a more direct
method of finding the basis under which T has the simplest representation. Clearly we
can’t just keep trying different basis to find if T has simpler representation under the
new basis.

1.2.4 How to find the best basis to simplify the representation of T?

Our goal of simpler representation of T is that of a diagonal matrix or as close as
possible to being diagonal matrix (i.e. Jordan form). Given [T ]v and an infinite number
of basis v′ that we could select to represent T under in the hope we can find a new
representation [T ]v′ such that it is simpler than [T ]v, we now ask, how does one go
about finding such basis?

It turns out the if we select the eigenvectors of [T ]v as the columns of [M ]v′→v, this will
result in [T ]v′ being diagonal or as close to being diagonal as possible (block diagonal
or Jordan form).

Let us apply this to the second example in the previous section. In that example, we
had

[T ]v =

 1√
2 − 1√

2
1√
2

1√
2


The eigenvectors of [T ]v are

[
−i

1

]
and

[
i

1

]
, [M ]v′→v =

[
−i i

1 1

]
. Therefore

[T ]v′ = [M ]−1
v′→v[T ]v[M ]v′→v

=
[
−i i

1 1

]−1
 1√

2 − 1√
2

1√
2

1√
2

[
−i i

1 1

]

[T ]v′ =

(1
2 −

1
2i
)√

2 0

0
(1
2 +

1
2i
)√

2


Which is diagonal representation. Hence we see that the linear transformation T is

represented as

(1
2 −

1
2i
)√

2 0

0
(1
2 +

1
2i
)√

2

 w.r.t. basis v′
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1.3 Summary of similarity transformation
To obtain B = M−1AM such that B is real and diagonal requires that A be real and
symmetric. The eigenvalues of A goes into the diagonal of B and the eigenvectors of A
go into the columns of M. This is an algebraic view.

Geometrically, A is viewed as the matrix representation under some basis v of a linear
transformation T . And B is the matrix representation of the same linear transformation
T but now under a new basis v′ and M is the matrix that represents the change of
basis from v′ to v.

The question then immediately arise: If A must be real and symmetric (for B to be
real and diagonal), what does this mean in terms of the linear transformation T and
change of basis matrix M? This clearly mean that, under some basis v, not every linear
transformation represented by A can have a similar matrix B which is real and diagonal.
Only those linear transformations which result in real and symmetric representation
can have a similar matrix which is real and diagonal. This is shown in the previous
examples, where we saw that T defined as rotation by 450 under the standard basis

v =
{[

1
0

]
,

[
0
1

]}
resulted in A =

 1√
2 − 1√

2
1√
2

1√
2

 and since this is not symmetric, hence

we will not be able to factor this matrix using similarity transformation to a diagonal
matrix, no matter which change of basis we try to represent T under. The question
then, under a given basis v what is the class of linear transformation which leads to a
matrix representation that is symmetric? One such example was shown above which is
the projection into the line at 1350. This question needs more time to look into.

We now write Λ to represent a diagonal matrix, hence the similarity transformation
above can be written as

Λ = M−1AM

Or
A = MΛM−1
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A  M M1

Eigenvalues of A go into the 
diagonal

Eigenvectors of A go into the columns

A is real and 
symmetric

Figure 8: Illustration of similarity transformation

2 Singular value decomposition (SVD)
Using similarity transformation, we found that for a real and symmetric matrix A

we are able to decompose it as A = MΛM−1 where Λ is diagonal and contains the
eigenvalues of A on the diagonal, and M contains the right eigenvectors of A in its
columns.

2.1 What is right and left eigenvectors?
Right eigenvectors are the standard eigenvectors we have been talking about all the
time. When λ is an eigenvalues of A then x is a right eigenvector when we write

Ax = λx

However, x is a left eigenvector of A when we have

xHA = λxH

where xH is the Hermitian of x

2.2 SVD
Given any arbitrary matrix Am×n it can be factored into 3 matrices as follows Am×n =
Pm×mDm×nQn×n where P is a unitary matrix (PH = P−1 or PHP = I), and Q is also
unitary matrix.

These are the steps to do SVD

1. Find the rank of A, say r

18



2. Let B = AH
n×mAm×n, hence Bn×n is a square matrix, and it is semi positive

definite, hence its eigenvalues will all be ≥ 0. Find the eigenvalues of B, call these
σ2
i . There will be n such eigenvalues since B is of order n×n. But only r of these

will be positive, and n− r will be zero. Arrange these eigenvalues such that the
first r non-zero eigenvalues come first, followed by the zero eigenvalues:

n eigenvalues︷ ︸︸ ︷
σ2
1, σ

2
2, · · · , σ2

r , 0, 0, · · · , 0

3. Initialize matrix Dm×n to be all zeros. Take the the first r eigenvalues from above
(non-zero ones), and take the square root of each, hence we get

r singular values︷ ︸︸ ︷
σ1, σ2, · · · , σr

and write these down the diagonal of D starting at D(1, 1), i.e. D(1, 1) =
σ1, D(2, 2) = σ2, · · · , D(r, r) = σr. Notice that the matrix D need not square
matrix. Hence we can obtain an arrangement such as the following for r = 2

D =

σ1 0 0 0
0 σ2 0 0
0 0 0 0


where the matrix A was 3× 4 for example.

4. Now find each eigenvalue of AHA. For each eigenvalue, find the corresponding
eigenvector. Call these eigenvectors u1,u2, · · · ,un.

5. Normalize the eigenvectors found in the above step. Now u1,u2, · · · ,un eigenvec-
tor will be an orthonormal set of vectors. Take the Hermitian of each eigenvector
uH
1 ,uH

2 , · · · ,uH
n and make one of these vectors (now in row format instead of

column format) go into a row in the matrix Q.i.e. the first row of Q will be
uH
1 , the second row of Q will be uH

2 , etc...
(
AHA

)
n×n

find eigenvectors and normalize→

u1,u2, · · · ,ur,

ortho basis (n-r) for N(A)︷ ︸︸ ︷
ur+1, · · · ,un

 → Qn×n =



uT
1

uT
2
...
uT
r

uT
r+1

...
uT
n


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6. Now we need to find a set of m orthonormal vectors, these will be the columns of
the matrix P : find a set of r orthonormal eigenvector vi = 1

σi
Aui, for i = 1· · · r.

Notice that here we only use the first r vectors found in step 5. Take each one of
these vi vectors and make them into columns of P . But since we need m columns
in P not just r, we need to come up with m− r more basis vectors such that all
the m vectors form an orthonormal set of basis vectors for the row space of A,
i.e. Cm. If doing this by hand, it is easy to find the this m− r by inspection. In a
program, we could use the same process we used with Gram-Schmidt, where we
learned how find a new vector which is orthonormal to a an existing set of other
vectors. Another way to find the matrix P is to construct the matrix AAH and
find its eigenvectors, those go into the columns of the matrix P as follows

(
AAH

)
m×m

find eigenvectors and normalize→

{orthonormal basis for range A︷ ︸︸ ︷
v1,v2, · · · ,vr ,vr+1, · · · ,vm

}
→ Pm×m =

[
v1 v2 · · · vr vr+1 · · · vm

]
7. This completes the factorization, now we have A = P D Q

The following diagram help illustrate the SVD process described above.
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For these n  r vectors

Aui  0

Hence basis for NA

Row space(A)

Null space(A)

A(MxN) matrix, Rank=r

Rn

Dimension=r

Dimension= n-r

Column space(A)

(or range of A)

Left Null space(A)

Dimension=r

Dimension= m-r

Rm

A 

a11 a12  a1n

   

am1 am2  amn

A  PDQ

SVD factorization

Orthonormal Basis for Null Space of A

AHA
nn

f ind eigenvectors

 u1,u2,,ur,

ortho basis for N(A)

ur1,,un  Qnn 

u1
T

u2
T



ur
T

ur1
T



un
T

AAH 
mm

f ind eigenvectors



r ortho basis for range A

v1,v2,,vr ,vr1,,vm  Pmm  v1 v2  vr vr1  vm

Amn  PmmDmnQnn

D1.vsd

By Nasser M. Abbasi

July 3,2007

From these r vectors we obtain

vi 
Aui

 i

Hence r basis for Range A

And normalize

And normalize

n eigenvalues

1
2
,2

2
,,r

2, 0,0,, 0

Figure 9: SVD process
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3 Conclusion
As a conclusion, the following diagram shows the difference between similarity trans-
formation factorization of a matrix and SVD.

A  M M1

Eigenvalues of A go into the 
diagonal

Eigenvectors of A go into the columns

A is real, 
sqaure and 
symmetric

Similarity Transformation

nxn nxn nxn nxn

Diagonal matrix

A  P D Q
A is arbitrary 
mxn matrix

AAH

Normalized 
Eigenvectors of 
AA’ go into the 
columns of P

AHA
Normalized 
Eigenvectors of 
A’A go into the 
rows of Q

The square root of the nonzero 
eigenvalues of AA’ (or A’A) go into 
the diagonal of matrix D. These are 
called the singular values of A

mxn
mxm mxn nxn

Nasser M. Abbasi

diag10.vsdx

Figure 10: similarity transformation factorization of a matrix and SVD
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Trying to understand SVD from geometrical point view requires more time, and this is
left for future research into this subject.
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