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1 Definitions, Important formulas, and
terminology

1.1 Planar displacement
General motion of a body in 2D that includes rotation and translation. We use [A] for
the rotation matrix, the vector d for the translation and the matrix [T ] for displacement.
Hence we write

X = [A]x + d

1.2 Spatial displacement
General motion of a body in 2D that includes rotation and translation. Another name
for this is rigid displacement. Distance between points in a body remain unchanged
before and after spatial displacement.

1.3 Homogeneous Transformation
Recall that the transformation that defines spatial displacement, which is given by
X = [A]x + d is non-linear due to the presence of the translation term d. It is more
convenient to be able to work with linear transformation, therefore we add a fourth
component to the position vector which is always 1 and rewrite the transformation,
now calling it as T which maps X to x as

X = T x

Or in full component form


X1

X2

X3

1

 =

T︷ ︸︸ ︷
a11 a12 a13 d1
a21 a22 a23 d2
a31 a32 a33 d3
0 0 0 1



x1

x2

x3

1


Or in short form {

X
1

}
=

T︷ ︸︸ ︷[
A d
000 1

]{
x
1

}
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1.4 The rotation axis
The set of points that remain fixed during the rotation defined by [A]. We use Rodrigues
vector b to define the rotation axis.

1.5 A Pole or a Fixed point
A pole is point that remains fixed during planar or spatial displacement. Planar dis-
placement (2D) have a pole, but 3D spatial displacement do not have a pole in general,
since the requirement for a pole is to have an inverse for [I − A] which for 3D is not
possible since A has an eigenvalue of 1.

The following diagram is an example of a pole under planar displacement.



Z

Y

Pole. This point has the same 

coordinates in both frames of references

For spatial displacement (3D), one condition, when satisfied will result in a fixed point.
This condition occurs when the translation vector d is perpendicular to the rotation
vector b. The pole in this case is given by

c = b× (d− b× d)
2b · b

Not only is this point c fixed, by any point on the line c + tS is also fixed. Where t

is a parameter and S is a unit vector. Hence we can a fixed line under such a spatial
displacement, and this line is called the rotation axis.
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1.6 Rotational displacement
This is a special case of spatial displacement when the translation vector d is perpen-
dicular to the rotation axis b. To make the difference more clear, the following diagram
is an illustration of spatial displacement which is not rotational displacement, and one
which is.

F F

Spatial 

displacement

Rotational 

displacement

Rotation 

Axis

1.7 Rodrigues vector b

Defines the rotation axis under [A]. Using S as the unit vector along b, then b = kS
where k is the length of vector b given by tan

(
θ
2

)
where θ is the rotation angle around

the rotation axis. Hence we can write

b = tan
(
θ

2

)
S

We see that the
‖b‖ = tan

(
θ

2

)
Hence at θ = ±1800 , ‖b‖ = tan

(
±π

2

)
which goes to infinity. A plot of the function

tan (α) is below showing the discontinuities at ±π
2
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1.8 Screw

Screw is defined as a pair of vectors (W,V)T such that W ·V 6= 0 and |W| 6= 1. The
pitch of the screw pω is defined as W·V

W·W

1.9 Plücker coordinates of a line
Given a line defined by a parametric equation L(k) = C+ kS, where C is a reference
point and S is a unit vector along the line, the Plücker coordinates of this line is given

by
{

S
C× S

}
C× S represents the moment of the line around the origin of the reference

frame. The following diagram helps to illustrates this.

F

i

j

k

s
C

C  S

L

line

Line L has Plücker coordinates 
S

C  S
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1.10 screw defined in terms of the plücker coordinates of its
axis

We said above that a screw is defined as a pair of vectors (W,V)T . Given the plücker
coordinates of the screw line (W,C×W)T , then we can write the pair of vectors that
defines the screw associated with this screw line as follows{

ωS
ωC× S+ωpωS

}
Where pω is the screw pitch and ω = |W|

1.11 Important relations between Cayley Matrix B

These are some important formulas put here for quick reference.

(x1 + x2)T [B] (x1 + x2) = 0

See (4A) below for derivation of the above where

[B] =

 0 −bz by

bz 0 −bx
−by bx 0


and also

[B] = tan θ

2[S]

Where

[S] =

 0 −sz sy

sz 0 −sx
−sy sx 0


From [B] we obtain a row vector and call it

b = (bz, by, bz)T

(This is rodrigues vector) From [S] we obtain a row vector and call it

s = (sx, sy, sz)T

(This is unit vector along the screw axis). We also have

[B] = tan θ

2[S]

And in terms of the vectors b, s the above becomes

b = tan θ

2s
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2 Introduction to the rotation matrix in 3D
We seek to derive an expression for the rotation matrix in 3D. Consider a point x1 in
3D being acted upon by a rotation matrix A. Let the final coordinates of this point be
x2. We consider the position vectors of these points, so we will designate these points
by their position vectors x1 and x2 from now on. The following diagram illustrate this.

x1

x

y

z

Rotation A

BEFORE AFTER

x2

x1

x

y

z

X’

Y’

Z’

rotation around x axis by angle 

Y’

Z’

x2

X’



|x1 |  |x2 |

Hence we have that
x2 = Ax1

Since |x1| = |x2| we can write

x1 · x1 = x2 · x2

x1 · x1 − x2 · x2 = 0
(x1 − x2) · (x1 + x2) = 0 (1)

The geometric meaning of the above last equation is shown in the following diagram
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x1

x

y

Y’

Z’

x2

X’



x
1  x

2

x 1


x 2

To introduce the rotation matrix A into the equations, we can write x1−x2 as x1−Ax1.
Hence

x1 − x2 = [I − A]x1 (2)

Similarly, we obtain
x1 + x2 = [I + A]x1 (3)

From (3) we obtain
[A+ I]−1 (x1 + x2) = x1

Substitute the above expression for x1 into (2) we obtain

x1 − x2 = [A− I] [A+ I]−1 (x1 + x2) (3A)

We now call the matrix [A− I] [A+ I]−1 as B

B = [A− I] [A+ I]−1 (3B)

We can also write from above the following

A = [I −B]−1[I +B] (3C)
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Now rewrite (3A) as
x1 − x2 = [B] (x1 + x2) (4)

What is the geometric meaning of [B]? we see that it is an operator that acts on vector
x1 + x2 to produce the vector x1 − x2, however from the diagram above we see that
the vector x1 − x2 is perpendicular to x1 + x2 and scaled down.

Hence
(x1 + x2)T [B] (x1 + x2) = 0 (4A)

This implied that B is skew-symmetric and have the form given by

B =

 0 −bz by

bz 0 −bx
−by bx 0

 (4A)

Matrix B can be written as a column vector called b = [bx, by, bz]T such that for any
vector y we have

[B]y = b× y

The vector b is called Rodrigues vector.

Let the vector x1 + x2 = y then we write

[B]y = b× y

Where b is some vector perpendicular to y such that its cross product with y results
in [B]y

The vector b is the vector that defines the rotation axis. The length of this vector is k
and a unit vector along b is called S, Hence we can write

b = kS

Now we solve for B.

We will use equation (3B) to find the form of B for different rotations.

Consider for example the 3D rotation around the x axis given by

A =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


From (3B) we obtain
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x1

x

y

Y’

Z’

x2

X’



x
1  x

2

x 1


x 2

For example for θ = 450 the B matrix is

B =

0 0 0
0 0 −0.414214
0 0.414214 0


Hence we see that bz = 0, by = 0, bx = −0.41421 hence

b =

0.414210
0


Hence geometrically, Rodrigues vector is along the x axis and in the positive direction
as illustrated in the following diagram.
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x

Y’

Z’

X’



Z

Y

b

Rodrigues vector b defines the rotation axis

The size of the b vector depends on the angle or rotation θ. The Rodrigues vector will
be largest when θ is almost 1800 and smallest when θ is zero.

3 Screw displacement
We now derive an expression for the invariant under spatial displacement, which is the
screw axis.

Consider the following general spatial displacement

11





d

[A]

Spatial displacement showing the rotation 

matrix [A] and the translation vector d. The 

coordinates system F is the initial position 

and the coordinates system M is the final 

position.

F

M

We start be decomposing the translation vector d into 2 components: One parallel (d2)
and one perpendicular (d∗) to the rotation axis of [A] as follows (notice that d∗ is
perpendicular to the x− axis which is where the rotation occurs around)
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

d*

[A]

F

M

d2

d

Decompose translation vector into its components 

d=d*+d2

Recall from earlier that the vector S is a unit vector along the rotation axis of [A]
in the direction of b. We found earlier that b = tan

(
θ
2

)
S. Hence we can write that

d2 = −kS where k = tan
(
θ
2

)
Let us redraw the above diagram putting all of these symbols to make the discussion
more clear.
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

d*

[A]

F

M

-S

d

Decompose translation vector into its components 

d=d*+k S. Also showing the Rodigues’s vector of 

rotation

b

 t

an


2
S

Now since
d = d∗ − kS

Then the spatial displacement operator T can be written as follows

T = [A, d]
= [A,d∗ − kS]

Hence the spatial displacement is

X = Tx
= [A,d∗ − kS]x
= [A,d∗]x− [I, kS]x

Hence we see that the spatial displacement can be viewed as rotational displacement
followed by pure translation. Recall from above that rotational displacement is a special
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type of spatial displacement where the translation part is perpendicular to the rotation
axis. We can represent the above equation geometrically as follows



d*

[A]

F

M

F

M

-kS

The rotational displacement part

+

The translation part along kS

3.1 Derivation for expression for finding reference point for
screw axis

Rotational displacement have a fixed point given by

C = b× (d∗ − b× d∗)
2b · b

The derivation of the above equation is as follows.

Since we seek a fixed point C, then we write

C = [T ]C
= [A]C+ d∗ (4)

Using Cayley’s formula, derived above in equation (3C), reproduced below

A = [I −B]−1[I +B] (3C)

and substitute for A in (4), we obtain

C = [I −B]−1[I +B]C+ d∗
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Multiply both sides by [I −B]

C−[B]C= [I +B]C+ [I −B]d∗

0 = 2[B]C+ [I −B]d∗

−1
2[I −B]d∗ = [B]C (4B)

But by definition
[B]C = b×C

Hence (4B) becomes

−1
2d

∗ + 1
2Bd∗ = b×C

−1
2d

∗ + 1
2b× d∗ = b×C

1
2(b× d∗ − d∗) = b×C

Take the cross product of both sides w.r.t. b we obtain

b×
(
1
2(b× d∗ − d∗)

)
= b× (b×C) (4C)

To simplify the above, use the relation

A× (B×C) = B(A ·C)−C(A ·B)

Apply the above relation on the RHS of (4C), hence (4C) can be rewritten as

b×
(
1
2(b× d∗ − d∗)

)
= b× (b ·C)−C(b · b)

But the vector C is perpendicular to b hence b ·C = 0 and the above simplifies to

C = b× (d∗ − b× d∗)
2b · b

Now we continue to derive an expression for the screw axis.

We now consider a line L that passed through this point C and is parallel to the rotation
axis of [A] (in other words, along the same direction as the vector S). Any point along
this line remain fixed relative to the rotational displacement X = [A, d∗]x part of the
spatial displacement.

In addition, since the translation part of the spatial displacement, and given by X =
[I, kS]x, is a translation in the same direction and slides along the vector kS as k

changes, then this line will also remain fixed relative to the translation part as well.
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Hence we conclude that the line L will remain fixed relative to the overall spatial
displacement T .

This line is called the screw axis. And this type of decomposing the spatial displace-
ment into rotational displacement followed by pure translation is called the screw
displacement.

How to geometrically find the screw axis? Let us find the point C first. Let take an
example similar to the above diagrams, where say θ = 300, d∗ = 0i + j + k, S = i ,
hence

b =

k︷ ︸︸ ︷
tan

(
300
2

)
S

= 0.26795i

hence

C = b× (d∗ − b× d∗)
2b · b

C = 0.26795i× {(0i+ j+ k)− (0.26795i)× (0i+ j+ k)}
2 (0.26795i) · (0.26795i)

C = 0i− 1.3660j+ 2.3660k

On the above diagram we now can draw the screw axis using the above coordinates for
the point C
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

d*

[A]

F

M

M

kS

i

j

k

1

1

=30 degrees

Screw Axis

kS

Example showing screw axis for an example spatial displacement

0i  1.3660j  2.3660k

It is important to note that it is the line given by L = C+ kS (the screw axis) which
is fixed under the spatial displacement, and not any one single point on this line.

4 The Screw Matrix
We now derive a new expression for spatial displacement using the screw axis line,
which we denote as S , the angle of rotation θ and the amount of slide k along the screw
axis.

The screw matrix is a new mathematical operator that we can use to denote spatial
displacement between 2 different reference frames. Earlier we showed that we can use the
homogeneous transformation operator T (A, d) = [A, d] to denote spatial displacement,
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and now we seek to obtain a new expression for a spatial displacement operator which
is a function of the following 3 parameters

1. The screw axis line which we call S with the plucker coordinates (s,C× s)

2. The angle or rotation θ

3. The amount of slide k

This is in addition to the mathematical object we examined earlier which is

d = d∗ + kS (5)

Since C is a fixed point under the translation by d∗ hence we write

C = [A,d∗]C
= AC+ d∗

Hence
d∗ = [I − A]C

Substitute the above into (5) we obtain

d = [I − A]C+ kS (5A)

But the spatial displacement T is defined as

[T ] = [A,d]

Hence using (5A) the above becomes

[T ] = [A, [I − A]C+ kS] (5B)

Using the notation of θ for angle of rotation and the slide k and S to denote the screw
axis, we can write (5B) as

[T (θ, k, S)] = [A(θ,S) , [I − A(θ,S)]C+ kS] (5C)

So now (5C) is an expression for the spatial operator T in terms of S,k and θ. Recall
that

A(θ,S) = [I] + sin θ[S] + (1− cos θ)
[
S2]

Where

[S] =

 0 −sx sy

sz 0 −sx
−sy sx 0


We call [T (θ, k, S)] the screw Matrix.

The following diagram helps to illustrate this.
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

[A]

F

i

j

k

S

(Screw Axis Line)

s(Unit 

vector)

d

Amount of slide along S

d*

C

Spatial dispacement

homogeneous transformation operator

TA,d  A,d
Screw Matrix

T ,k,S  A,S, I  A,SC  kS

where

A,S  I  sinS  1  cosS2 

Two different operators that defines spatial displacement

5 The spatial displacement of screws
So far we have discussed spatial displacements applied to points. We showed two
Matrices can be used to accomplish this. The homogeneous transformation matrix
T (A, d) = [A, d] and the screw matrix T (θ, k, S) = [A(θ,S) , [I − A(θ,S)]C+ kS] where
A(θ,S) = [I] + sin θ[S] + (1− cos θ) [S2] .

We now show a matrix [T̂ ] which is used for the spatial displacement of a line and not
just a point. This is based on using the plücker coordinates of a line to represent the
line. Geometrically this is illustrated in the following diagram
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Line

p  x

x

p

x

p  x

plücker coordinates T 

xLine

plücker coordinates

x

X

P  X

P  X
X

P

First 

coordinates 

system

Second 

coordinates 

system

Spatial displacement of lines using the new transformation matrix T 

Since
[
T̂
]
operates on the Plücker coordinates of a line, then we write

X =
[
T̂
]
x{

X
P×X

}
=

[
T̂
]{ x

p× x

}
(6A)

To processed further, we now assume a point q on the line x such that x = q − p as
illustrated below
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Line

x

p

x

q

x  q  p

Hence we can now write, in the new coordinates{
X

P×X

}
=

{
Q−P

P× (Q−P)

}
(6B)

But

Q−P=[T ]q − [T ]p
= [A]q + d−([A]p+ d)
= [A]q−[A]p
= [A] (q − p)
= [A]x (6C)
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And

P× (Q−P) = P×Q−P×P
= P×Q
= [T ]p×[T ]q
= ([A]p+ d)×([A]q + d)

= ([A]p×[A]q)+([A]p× d)+(d×[A]q)+
0︷ ︸︸ ︷

d× d
= ([A]p×[A]q)+([A]p× d)+(d×[A]q) (6D)

Since [A] is a rotation matrix, then

([A]p× d)+(d×[A]q) = [D] [A] (q − p)

Where [D] is a skew-symmetric matrix defined such that [D]y = d× y

Hence (6D) can be written as

P× (Q−P) = ([A]p×[A]q) + [D] [A] (q − p)
= [A] (p× q) + [D] [A] (q − p) (6E)

By substitution of (6E) and (6C) into RHS of (6B) we obtain{
X

P×X

}
=

{
Q−P

P× (Q−P)

}
=

{
[A]x

[A] (p× q) + [D] [A] (q − p)

}
But q − p = x. Hence the above becomes{

X
P×X

}
=

{
[A]x

[A] (p× q) + [D] [A]x

}
Now substitute q = p+ x in the above we obtain{

X
P×X

}
=

{
[A]x

[A] (p×(p+ x)) + [D] [A]x

}

=
{

[A]x
[A] (p× p+ p× x) + [D] [A]x

}

=
{

[A]x
[A] (p× x) + [D] [A]x

}

=
[

A 0
DA A

]{
x

p× x

}
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Hence

[T̂ ] =
[

A 0
DA A

]
The we can write {

X
P×X

}
= [T̂ ]

{
x

p× x

}
We now analyze the spatial displacement of the screw axis under [T̂ ]

Recall that a screw axis Plücker coordinates are written as{
W

p×W

}
=

{
ωS

ωp× S+ωpωS

}

Where S is the unit vector in along the axis, p is the fixed reference point on the axis
and pω is the screw pitch and ω = ‖W‖ where W is the Rodrigues vector. To make
things more clear, we illustrate these quantities in the following diagram
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
[A]

F

M

S

Screw Axis

p

screw axis Plücker coordinates

p is the screw pitch and   W

W kS

W

p  W


S

p  S pS

p  S

We now perform spatial displacement on the screw axis using its Plücker coordinates{
ωS

ωP× S+ωpωS

}
(6C)

Rewrite the above as general plücker coordinates
{
W
V

}
then the spatial displacement
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of this general line is as seen above in (6B) becomes{
[A]w

[D][A]w+ [A]v

}
We need seek to evaluate the above coordinates for the screw axis given in (6C)

In other words, given v = ωp× s+ωpωs and W = ωS we need to find [A]v,[A]w and
[D][A]w

The first plücker coordinate ωS transforms easily as

ωS=ω[A] s
=[A]ωs

But ωs is just the Rodrigues vector in the new coordinates system which we call lower
case w hence

ωS = [A]w

Now we need to transform the second plücker coordinate ωp× s+ωpωs

With the help of the [D] matrix which can be used to rewrite the cross product of 2
vectors as [D] times one the 2 vectors, we can write

[D]S = d× S

But S =[A] s hence the above becomes

[D] [A] s = d× S

And since ω is a scalar, we can write the above as

ω[D] [A] s=ωd× S
[D] [A] (ωs) = ωd× S

[D] [A]w=ωd× S (6D)

Now we need to compute [A]v which is [A] (ωp× s+ωpωs)

[A] (ωp× s+ωpωs) = ω([A] (p× s) + ωpω[A] s)
= ω(([A]p× [A] s) + ωpω[A] s)
= ω(([A]p× S) + ωpωS) (6E)

Hence {
W
V

}
=

{
[A]w

[D][A]w+ [A]v

}
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6 The screw axis of a displacement

Here we show that the screw axis is invariant of the 6 × 6 transformation matrix [T̂ ]
derived in the last section.

Given the screw axis line S defined by its plucker coordinates
[
S
V

]
we need to show

the following
S = [T̂ ]S (1)

(1) can be written as

S − [T̂ ]S = 0[
I − T̂

]
S = 0 (2)

Now, if we can find solution to the above others than S = 0 then we have showed that
(1) is valid. Equation (1) can be written as[

I − T̂
] [S

V

]
= 0

But

[T̂ ] =
[

A 0
DA A

]
Hence we obtain [[

I 0
0 I

]
−

[
A 0
DA A

]] [
S
V

]
= 0

[
I − A 0
−DA I − A

] [
S
V

]
= 0

[
(I − A)S

−[D] [A]S+[I − A]V

]
= 0

Hence we obtain 2 equations{
(I − [A])S = 0
−[D] [A]S+[I − A]V = 0
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From the first equation we obtain [A]S = S substitute into the second equation

−[D]S+[I − A]V= 0
[I − A]V=[D]S

Introduce [D]S = −[S]d hence the above becomes

[I − A]V = −[S]d (3)

And from the cayley’s formula for A

A = [I −B]−1[I +B]

Then (3) becomes [
I − [I −B]−1[I +B]

]
V= −[S]d[

I − [I +B]
[I −B]

]
V= −[S]d

Hence

[[I −B]− [I +B]]V= [I −B](−[S]d)
−2[B]V = [I −B](−[S]d)

[B]V = 1
2[I −B][S]d (4)

But we know that [B] = tan
(
θ
2

)
[S] where θ is the rotation angle, and [S] =

 0 −sz sy

sz 0 −sx
−sy sx 0


hence (4) becomes

tan
(
θ

2

)
[S]V = 1

2[I −B][S]d

[S]V = [S] 1
2 tan

(
θ
2

) [I −B]d

Hence
V = 1

2 tan
(
θ
2

) [I −B]d (5)

Hence we showed that a non zero solution for (2) exist given by S =
[
S
V

]
where V is

given in (5). This shows that (1) is valid which is what we wanted to show.

Therefore the screw axis S is invariant of the 6× 6 transformation matrix [T̂ ].

28



7 References
1. Geometric Design Of Linkages. By Professor J.Michael McCarthy. Springer pub-

lication.

2. Introduction to Theoretical Kinematics. By Professor J.Michael McCarthy

3. Class notes, MAE245. Theoretical Kinematics spring 2004. UCI. Professor J.Michael
McCarthy

29


	Definitions, Important formulas, and terminology
	Planar displacement
	Spatial displacement
	Homogeneous Transformation
	The rotation axis
	A Pole or a Fixed point
	Rotational displacement
	Rodrigues vector b
	Screw
	Plücker coordinates of a line
	screw defined in terms of the plücker coordinates of its axis
	Important relations between Cayley Matrix B

	Introduction to the rotation matrix in 3D
	Screw displacement
	Derivation for expression for finding reference point for screw axis

	The Screw Matrix
	The spatial displacement of screws
	The screw axis of a displacement
	References

