
A very simple introduction to using Python in Latex
Nasser M. Abbasi

January 31, 2024 Compiled on January 31, 2024 at 2:41am

Contents
1 Example using pyconsole 1

2 Example using pycode 3

3 Calling python passing it argument to process and getting the Latex
back 4

4 Calling python from latex to solve differential equations and show
its solution 5

This note describes all the steps to use Python inside Latex. The directions are based
on using Linux, since this is the system I tried this on.

Using texlive 2020, this package (pythontex) is already there. There is not additional
installation needed. Once you install texlive itself, then you have this package.

1 Example using pyconsole
Here is the most simple tex file that uses python� �
\documentclass[11pt]{article}%
\usepackage{pythontex}
\begin{document}
This document uses Python
\end{document}� �
Now comes the tricky part. To compile it, we have to do the following commands� �
pdflatex foo.tex
/usr/local/texlive/2022/texmf-dist/scripts/pythontex/pythontex.py foo.tex� �

1

mailto:nma@12000.org

Which prints on the screen this� �
>/usr/local/texlive/2022/texmf-dist/scripts/pythontex/pythontex.py python_file.tex
This is PythonTeX 0.17

--
PythonTeX: python_file - 0 error(s), 0 warning(s)� �
If you get an error ModuleNotFoundError: No module named ’pygments’ then try
the following to install pygments: pip install pygments first.

Now need to compile the latex file on more time� �
pdflatex foo.tex� �
We have to run the above 3 commands each time. On my installation of texlive 2022,
the script pythontex.py was not already in the path, so instead of keep typing the
above long command each time, I added an alias to my bashrc� �
vi $HOME/.bashrc #add this line below to the file
alias PYX=/usr/local/texlive/2022/texmf-dist/scripts/pythontex/pythontex.py

#after exiting vi, typed
source $HOME/.bashrc� �
So now I can write (less typing) the following� �
pdflatex foo.tex
PYX foo.tex
pdflatex foo.tex� �
Or you can add it to the path. You must have python itself installed. Version 2.7 or
better, else none of the above will work.

In the above example, we did not do anything interesting. Let us now make a python
variable, raise it to the power 2, and show the result in Latex� �
\documentclass[11pt]{article}%
\usepackage{pythontex}
\usepackage{nopageno}
\begin{document}
\begin{pyconsole}
x = 987.27

2

x = x**2
\end{pyconsole}

The variable is $x=\pycon{x}$
\end{document}� �
Which produces the following PDF file when compiled

>>> x = 987.27
>>> x = x**2

The variable is x = 974702.0529

Figure 1: PDF file showing Python computation result inside it

2 Example using pycode
In this example we will call Python to do symbolic computation, which is integrating a
function, then obtain the latex back of the result. For this sympy is used inside Python.

Create Latex file like this� �
\documentclass[11pt]{article}%
\usepackage{pythontex}
\usepackage{nopageno}
\begin{document}
\begin{pycode}
from sympy import *
x=symbols('x')
result = latex(integrate("(1+x)**(1/2)",x))
\end{pycode}

The result of integrating $\int \sqrt{ 1+x } \, dx$ is given by \py{result}

\end{document}� �
Now compile using the same commands as first example above� �
pdflatex foo.tex
/usr/local/texlive/2022/texmf-dist/scripts/pythontex/pythontex.py foo.tex
pdflatex foo.tex� �

3

Which produces the following PDF file when compiled

The result of integrating
∫ √

1 + x dx is given by 2(x+1)
3
2

3

Figure 2: PDF file showing Python computation result inside it

3 Calling python passing it argument to process
and getting the Latex back

In this example, we make a small function inside pycode which takes one argument
which is string that represents the integrand to integrate and second argument which
is the integration variable.

Create Latex file like this� �
\documentclass[11pt]{article}%
\usepackage{amsmath}
\usepackage{pythontex}
\usepackage{nopageno}
\begin{document}

\begin{pycode}

from sympy import *

def int(theIntegrand,var):
var = symbols(var)
anti = integrate(theIntegrand,var)
return latex(anti)

\end{pycode}

The result of integrating $\int \frac{1}{\sqrt{ 1+x }} \, dx$ is given by $\py{int("1/(1+x)**(1/2)","x")}$

Here is some list of integrations to do

\begin{align*}
\int \frac{1}{\sqrt{ 1+x }} \, dx &= \py{int("1/(1+x)**(1/2)","x")} \\
\int \sin x \, dx &= \py{int("sin(x)","x")} \\

4

\int x \sin x \, dx &= \py{int("x*sin(x)","x")} \\
\int x^2 \sin x \, dx &= \py{int("x**2 * sin(x)","x")} \\
\int x e^{2 x} \, dx &= \py{int("x*exp(2*x)","x")} \\
\int \frac{1}{1+u} \, du &= \py{int("1/(1+u)","u")} \\
\end{align*}

\end{document}� �
Compiling again using the same commands as the above examples� �
pdflatex foo.tex
/usr/local/texlive/2022/texmf-dist/scripts/pythontex/pythontex.py foo.tex
pdflatex foo.tex� �
Produces the following PDF file

The result of integrating
∫

1√
1+x

dx is given by 2
√
x+ 1

Here is some list of integrations to do

∫
1√
1 + x

dx = 2
√
x+ 1∫

sinx dx = − cos (x)∫
x sinx dx = −x cos (x) + sin (x)∫
x2 sinx dx = −x2 cos (x) + 2x sin (x) + 2 cos (x)∫

xe2x dx =
(2x− 1) e2x

4∫
1

1 + u
du = log (u+ 1)

Figure 3: PDF file showing Python computation result inside it

4 Calling python from latex to solve differential
equations and show its solution

In this example, we make a small function inside pycode which takes and ode to solve,
using different initial conditions.

Create Latex file like this

5

� �
\documentclass[11pt]{article}%
\usepackage{amsmath}
\usepackage{pythontex}
\usepackage{nopageno}
\begin{document}

\begin{pycode}

from sympy import *

def solveODE(ode,y,x):
x = Symbol(x)
y = Function(y)
lhs,rhs = ode.split('=')
ode = Eq(S(lhs),S(rhs))
sol = dsolve(ode,y(x))
return latex(sol)

def solveODEwithIC(ode,y,x,ic):
x = Symbol(x)
y = Function(y)
lhs,rhs = ode.split('=')
ode = Eq(S(lhs),S(rhs))
sol = dsolve(ode,y(x),ics= S(ic))
return latex(sol)

\end{pycode}

Given the first order differential equation $y'(x)=1+2 x$, it has the solution
\[

\py{solveODE("Derivative(y(x),x)=1+2*x","y","x")}
\]
%
When the initial conditions are $y(0)=3$, then the solution becomes
\[

\py{solveODEwithIC("Derivative(y(x),x)=1+2*x","y","x","{y(0):3}")}
\]
We can also solve second order ODE in Latex. For example, given the ode $y''(x)+3 y(x)=1+2 x$
then its solution is

6

\[
\py{solveODE("Derivative(y(x),x,x)+y(x)=1+2*x","y","x")}

\]
The above solution with initial conditions $y(0)=1$ and $y'(0)=0$ is given by
\[

\py{solveODEwithIC("Derivative(y(x),x,x)+y(x)=1+2*x","y","x","{y(0):1,y(x).diff(x).subs(x, 0): 0}")}
\]

\end{document}� �
Compiling again using the same commands as the above examples produces the following
PDF file

Given the first order differential equation y′(x) = 1 + 2x, it has the
solution

y(x) = C1 + x2 + x

When the initial conditions are y(0) = 3, then the solution becomes

y(x) = x2 + x+ 3

We can also solve second order ODE in Latex. For example, given the ode
y′′(x) + 3y(x) = 1 + 2x then its solution is

y(x) = C1 sin (x) + C2 cos (x) + 2x+ 1

The above solution with initial conditions y(0) = 1 and y′(0) = 0 is given
by

y(x) = 2x− 2 sin (x) + 1

Figure 4: PDF file showing Python computation result inside it

References:

1. Pythontex main documenation http://www.ctan.org/pkg/pythontex

2. pythontex quickstart PDF

3. Pythontex GitHub

4. A Gentle Introduction to PythonTeX

7

http://www.ctan.org/pkg/pythontex
https://github.com/gpoore/pythontex/tree/master/pythontex_quickstart
https://github.com/gpoore/pythontex
https://tug.org/tug2013/slides/Mertz-A_Gentle_Introduction_to_PythonTeX.pdf

	Example using pyconsole
	Example using pycode
	Calling python passing it argument to process and getting the Latex back
	Calling python from latex to solve differential equations and show its solution

