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1 First order ODE

Let the nonlinear ode be

f(z,y,9)=0
In parametric methods we let ¥ = p and z = z(p),y = y(p). If we can isolate
z = G(y,p) or y = G(z,p) then we can solve the ode using this method. This method
can be simpler than the direct method when the ode is nonlinear. This is really should
only be attempted for nonlinear odes. This is learned best by examples. I will add more
background theory later.

1.1 Both z,y are present in the ode

1.1.1 Example 1

Solve
y(y)’ — 4oy +y =0 (1)
Let ' = p. The above becomes
yp’ —4dap+y =0 (2)
Let’s see if we can_isolate z first. Solving for z gives
= %p(y +p%y)
= G(y(p),p) 3)
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Since G does not depend on z, then we can continue. Using (3) then (will show how
this came about later)

oG
dy _ Pap
dp 1 —p%
_y(’-1)
p(3—p?)
This is separable ode
d 2-1
dy _ (p 3 dp
y p(B-p?)

dy (p?*—1)
/ / 83— pz)
lny=—§ln(p(p —3))-|—c

" ow -9
Hence the solution to (1) is
o(p) = 1 (v +7%) (4(v)
-9 4(2
)= s (4(2)

The above is the solution to (1) in parametric form where the dependency between y
and z is via p. We can stop here. But let see if we can get the solution as y(x) as the
normal case is. Eliminating p between 4(1) and 4(2) results in the solution

c® — 64c3x® + 24c3zy® — 482%y* + 169° =0

And the above is the final nonparametric solution. It is an implicit solution.

We might think this method is complicated, but it is actually much simpler than the
first method. How would we solve (1) directly? We will starting by solving for 3/ in (1)
which gives

2x 4+ /4z? — y?
y = ()

Yy
w7
Y



Starting with the first one above, we notice it is homogeneous ode. Let u = ¥ and it

becomes
o — —u?+vV-u2+4+2
UL

This is separable which results in

U du — 1 d

/_uz+m+2 “‘/5 ’

The above integrals gives a very complicated antiderivative. After that we have to
replace v back by £ and simplify. We would do the same for the second ode in (5). It
is clear here that the parametric method is simpler. But for the parametric method to
work, we would have to be able to isolate z or y from (1) and obtain G(y,p) function
in the first case or G(z,p) in the second case in order to continue. We also need to be
able to eliminate p at the end in order to get an explicit y(z) solution, This could proof
to be tricky.

In the above example, we isolated z. Let see what happens if we choose to isolate y
from (2) instead. Solving for y gives
yp” —4zp+y =0
y(1+p°) = dzp

4dzp
= G(z,p)
Hence this works also. In this case we have
dz %—g
Y Te)
dp  p—9%2
4P’z +4x
p(P*—-3)(P*+1)

— (p (p2_—4§§ 2;24+ 1))

This is separable. Solving gives

(1+p%
r =C
ps (p* —3)3
3
2 = ¢ (1+p?



Eliminating p from (6,7) gives the solution
z(—3z%y* + y° — 2562°c, + 96zy’cy + 256¢7) =0

or
—3z%y* + y® — 2562°c, + 96zy s + 256¢F = 0

Which is an implicit solution.

1.1.2 Example 2

Solve

2

y—zy —y' + ()" =0 (1)

This problem from chapter 7, problem 7. From Boole book, page 137. This is actually
a clairaut ode. Let ¢y’ = p. The above becomes

y—azp—p+p =0 (1)

Solving for z gives

Since G does not depend on x then
dy _ P5
dp  1-p%
_
()
_ oy
pPP+y?—p
This is non-linear ode in . So this is no better than what we started. Let try to isolate
y instead. Solving (1) for y gives

y=ap+p—p’
= G(z(p) ,p)

Therefore
oG
dx p

Tt oG
But p — g—G = 0. Hence this method does not work for this ode.

a;_



1.2 Only y is present in the ode

1.2.1 Example 1

When only y or z (but not both) are present, we can do the following. Solve

y—ay —\/1+(y) =0

(1)

This is problem chapter 7, problem 7. From Boole book, page 137. Let ¥ = p. The

above becomes

d

Where p = 2. Hence dx =

dzx
Hence

Hence

Therefore p is

Where 7z is the variable.

y=ap++/1+p?

y—ap—+/1+p>=0

y = f(p)
—ap+ VTH P

1 4
dr=—-|a+ d
p( \/1+p2) P
:c—/a+ 1 d
p Vixp T

= alnp + arcsinhp + ¢;

e® = cpa earcsmhp

arcsinh(p)—z

0= cpe

p= RootOf (C _zaearcsinh(_z)—w)

Hence the solution from (2) becomes

;dy. But from the above dy = f'(p) dp

(2)

p

= <a+ m) dp.

= a RootOf (C _zaearcsinh(_z)—w) + \/1 + 2RootOf (C _zaearcsinh(_z)—z)



1.2.2 Example 2

Solve
) +20)° +y=0 (1)
Let p = Z—Z
y=p"+2p° (2)
y = f(p)

Where p = %. Hence dz = %dy. But from the above dy = f'(p)dp = (2p + 6p?) dp.
Hence

dx = 1—1)(229 + 6p2) dp
= (2+6p)dp
T = / (24 6p) dp
=2p+3p’+c
Solving for p gives
p TLE \;m

Hence the solution from (2) becomes (for the first root)

y=p’+2p°
(—1+\/3m+c>2+2<—1+\/3x+c)3
3 3

And for the second root

y=p°+2p°

S L]

These methods produce simpler solution if we can solve for p easily in the above.



1.3 Only z is present
1.3.1 Example 1
T = 1+y'+(y')3

Let ¢y = p therefore

z=14+p+p°
= f(p)

But dy = pdz. But from the above dz = f’(p) dp. Hence

dy = pf'(p) dp
=p(1+3p®)dp

Therefore

+—p +c

/p 1+3p
P
2 4

(2)

p is eliminated between (1,2) to obtain the final solution. From (2) there are 4 roots

for p. For example, looking at the first root

1
P = g\/—3+3\/1—120+12y

Substituting this in (1) gives one solution to the ode as

1 1 s
x=1+ <§\/—3+3\/1—120+12y) + (5\/—3+3\/1—12c+12y>

There are 3 more solutions.
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