
attempt to explain scaling factors in Matlab help on
FFT

Nasser M. Abbasi

Sept. 17, 2009 Compiled on January 29, 2024 at 3:20am

1 the question
Matlab help on FFT (doc FFT) shows this example� �
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector

% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid

x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')

NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum.
plot(f,2*abs(Y(1:NFFT/2+1)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')� �
Looking at this line Y = fft(y,NFFT)/L;

Why the code divides the FFT result by L?

1

mailto:nma@12000.org

And this line plot(f,2*abs(Y(1:NFFT/2+1)))

Why does it multiply by 2?

2 answer

2.1 for the first first line
This scaling factor L comes from Nyquist sampling theory.

Assuming the analog signal is x(t) with corresponding Fourier transform X(ω).

Sampling x(t) with some sampling frequency results in a sequence of numbers: the
sampled sequence x[nT] where T is the sampling period and n is the sequence number.

Let the sequence of complex numbers Y (k) be the Fourier transform of the sampled
sequence, i.e. the DFT of x(nT)

If the sampling frequency is larger than twice the largest frequency in the signal x(t)
then the magnitude of X(ω) will be proportional to the magnitude of Y (k).

The proportionality factor turns out to be the sampling period T .

This means on can write

X(w) = T ∗ Y (k)

Matlab returns back Y (k) from the FFT() function when given a sequence of numbers.

Hence to scale Y (k) and obtain the sampled version of X(ω) then Y (k) is multiplied
by T as per equation above.

The example from Matlab help above was using one second for the duration of the data
and it sampled the data at a sampling frequency such that T = 1/L.

That is why the code divided by L.

It was actually multiplying by the sampling period T which happened to be 1/L in
this example.

I think it would have been clearer to write Y = fft(y,NFFT)*T

But in the example above it is same thing.

As a rule, if you know the signal is being sampled at a frequency larger than twice
the largest frequency embedded in the signal, then multiply the DFT you obtain from
Matlab fft() function by the sampling period.

2

Since in practice most of time we make sure we sample at large enough frequency, then
normal practice is to multiply the fft() result by the sampling period.

The proof of above equation requires a bit of algebra, I scanned 2 pages from a book I
have on this (DSP by Liu and Peled) pages 38 and 39. Here it is (Click to enlarge).

And looking at equation 1-93 in the above.

2.2 on the second part� �
plot(f,2*abs(Y(1:NFFT/2+1)))� �
Why does it multiply by 2?

First, they should not have multiplied by 2 the Y (1) entry (i.e. the DC entry at frequency
0). The correct way would have been to do 2Y , followed by Y (1) = Y (1)/2 to adjust
the Y at DC back to what it was before plotting it.

But the reason they multiplied Y by 2 is just normalization.

Matlab fft() returns Y(k) in the range 0 to fs (with a 2π factor), and not from 0· · · fs/2.

3

So, the code was only using Y (k) from 0· · · fs
2 , i.e. first half of the Y (k).

Hence it was throwing away the part from fs
2 · · · fs.

Since X(k) is symmetric, it was throwing away exactly half of the sequence Y (k).

To keep the things equal (or to keep the energy the same, if you well, and I am being
loose in the terms used here) as before throwing half of Y away, we need to multiply
by 2 again to adjust it. (Similar to an area, which we cut in half, then to keep the area
the same, we multiply the remaining area back by 2).

The code above was plotting only half of Y (k). You do not need to multiply by 2 if you
are plotting the whole Y (k). Normally what is done is to use fftshift (which makes
Y (k) centered around 0 instead of how Matlab returns it)

4

	the question
	answer
	for the first first line
	on the second part

