Programming in Mathematica using object based

paradigm
|Nasser M. Abbasil
January 29, 2024 Compiled on January 29, 2024 at 3:08am
Contents
1 Introduction 1
2 Code implementation of the Class and how to use it 4l
2.1 Create an instance of theclass
2.2 Use it to make a stepresponseplot
2.3 Change the plant damping ratio and update the response plot 6]

3 Making a Manipulate to use the above Class to simulate plant

response to different parameters
3.1 Codein Mathematica
4 Conclusion a1l
4.1 References 1

1 Introduction

Mathematica can be effectively used for object based programming. It is well known that
using object based programming helps in managing the complexity of large programs.
Using Object based programming in Mathematica can lead to the best of both worlds:
object based combined with functional programming.

Object based can be used to help in organizing the program in the large and functional
programming is used in the actual implementation of the Classes methods.

The idea is simple. A Module acts as what is the Class in standard OO languages.
Inside this module will be additional inner Modules. These inner Modules act as the
Class methods. Inner Modules can be made public or private.

mailto:nma@12000.org

By adding the name of an inner Module in the list of the local variables of the outer
Module, the inner Module becomes private and is seen and only be called from other
inner Modules.

The outer Module local variables are the Class private variables and these variables
can be accessed only by the Class inner modules.

An object is first created as an instance of the outer Module and from then on this object
can be used in the same way as an object is used standard OO by using the notation
object@method[parameters] where the @ here acts as the dot "." acts in common OO
languages.

In other words, the dot is replaced by @ and almost everything else remains the same.
This makes the notation easier to use for someone who is more familiar with common
OO notations.

The following example illustrates this idea where a Class that represents a second order
system is defined and used to make an instance of a second order system (such as a
spring-mass-damper) and the object methods are used for some basic control system
operations to illustrate how to use it.

The Class is called plantClass (which is the outer Module name). To create a specific
instance of this Class, the constructor is first called using the call

-

plant=plantClass[parameters]

N

The following diagram summarizes this setup, followed by the Mathematica code itself

\

plantClass[Sstiffness_,Sdamping_,Smass_,Ss_,St_]:=Module[any private
{stiffness,damping,mass, tf,polynomial,self,unitStepResponse,poles,s,t,update}, method name
e must be added
(¥ private methods *) here

update[]:=(
polynomial=1/(mass*s”2+damping*s+stiffness);
tf=TransferFunctionModel[polynomial,s];
unitStepResponse=Chop @First@OutputResponse[tf,UnitStep[t],t];
poles=TransferFunctionPoles[tf];

);

R public methods *)

(*setter methods*)
self@setStiffness[v_]:=(stiffness=v;updatel[];);
self@setDamping[v_]:=(damping=v;updatel];);

self@setMass[v_]:=(mass=v;updatel];); Public getter

|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
i (*getter methods*)
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|

and setter
self@getMass[]:=mass; methods must
self@getDamping[]:=damping; have self@
self@getStiffness[]:=stiffness; prefix to them
self@getTF[]:=tf;
self@getPolynomial[]:=polynomial;
self@getStepResponse[]:=unitStepResponse;
self@getPoles[]:=poles;
self@getBode[]:=BodePlot[tf];
(Femmmmmmmm e constructor code *)
s=Ss;
t=5t;
stiffness=$stiffness; Class
damping=$damping; constructor
mass=$mass; code here
update[];
" The last line in the
ie Module must be self
mass=10;damping=1;stiffness=1; Create an
plant=plantClass[stiffness,damping,mass,s,t]; <«—— instance of the
Class

Figure 1: Basic class layout

2 Code implementation of the Class and how to

use it

In the following, the complete code of the Class and example of using it are given. A
plant is created, then the step response is plotted, then a Manipulate is made that uses
this Class where the plant’s mass, damping and stiffness are used as Manipulate sliders
control variables to be changed and the plant step response is updated each time.

plantClass[$stiffness_, $damping , $mass_, $s_, $t_]1 :=
Module [{stiffness, damping, mass, tf, polynomial, self,
unitStepResponse, poles, s, t, update},
SetAttributes[self, HoldAll];
(*¥——- = -- private methods —---- = = —-——=%)
update[] := (
polynomial = 1/(mass*s”2 + damping*s + stiffness);
tf = TransferFunctionModel [polynomial, s];
unitStepResponse = Chop@First@OutputResponse[tf, UnitStep[t], t];
poles = TransferFunctionPoles[tf];

);

(*¥——- - ----public methods - == -- - *)

(*setter methods*)

self@setStiffness[v_] := (stiffness = v; updatel];);
self@setDamping[v_] := (damping = v; updatel[];);
self@setMass[v_] := (mass = v; updatel];);

(*¥getter methods*)

self@getMass[] := mass;
self@getDamping[] := damping;
self@getStiffness[] := stiffness;

self@getTF[] := tf;

self@getPolynomial[] := polynomial;
self@getStepResponse[] := unitStepResponse;
self@getPoles[] := poles;

self@getBode[] := BodePlot[tf];

(*——- - - - constructor code ————-— == = —*)
s = $s;
t = $t;

stiffness = $stiffness;
damping = $damping;
mass = $mass;

update[];

self
1;

2.1 Create an instance of the class

‘mass = 10; damping = 1; stiffness = .5;
‘plant = plantClass[stiffness, damping, mass, s, t];

2.2 Use it to make a step response plot

‘Plot[plant@getStepResponse[], {t, 0, 50},

‘ FrameLabel -> {{y[t], Nomne}, {t,

‘ Row[{"Step response of a plant represented as transfer function ",
‘ plant@getPolynomial[]}]1}}, Frame -> True, PlotRange -> All]

1
Step response of a plant represented as transfer function

1082 +s+0.5
30F T T T T T T T T

25} |

2.0F |

1.0F -

Figure 2: Plot generated from the above command

2.3 Change the plant damping ratio and update the response
plot

plant@setDamping[5] ;
Plot [plant@getStepResponse[], {t, 0, 20},
FrameLabel -> {{y[t], Nomne}, {t,
Row[{"Step response of a plant represented as transfer function ",
plant@getPolynomial []}]}}, Frame -> True, PlotRange -> All]

1
Step response of a plant represented as transfer function

10s? +55+0.5
1AO¥‘ T T T \7
0.5+ .
\‘i 0.0 5
-0.5F+ .
_1'0‘\ 1 1 1 1]
0 5 10 15 20

Figure 3: Plot generated from the above command

3 Making a Manipulate to use the above Class to
simulate plant response to different parameters

The above Class is now used inside Manipulate. It is important that the object instan-
tiation occur in the Manipulate Initialization section, and after the Class code and not
before it.

In this example, the object is the second order plant, and one instance is created in the
Manipulate Initialization section. Each time a slider changes, the object internal state
is updated using a setter method. Here is a diagram to help illustrate the layout

/

/ ~~
~~{plant,None}, ;\

- Tick; S~
Plot[plant@getStepResponse[],{t,0,20},FrameLabel->{{"y[t]",None},{"t",Row[{"Step response of \I

- " plant@getPolynomial[]}]}},Frame->True,PlotRange->All], /
S~ Manipulate e)/qofession
Gridl{ T T T T e .

{Text@Style["mass",11],

Manipulator[Dynamic[mass,{mass=#; plant@setMass[mass];tick+=del}&],{1,10,1},ImageSize->Tiny],

Te_xt@Ster[Dynamic[mass],11]}}],
g = Callback code using second
argument of Dynamic, to

==~ z Plant is th in object
{{m.aSS,T}I‘NUHE}, ant1s the main obje emulate event callback.
E{stlffness,l},None}, Update the object internal
{damping,1},None}, state
{{tick,0},None},

{{del,SMachineEpsilon},None},
TrackedSymbols:>{tick},

Initialization:>
{

plantClass[Sstiffness_,Sdamping_,Smass_,Ss_,St_]:=Module[{stiffness,da mping,mass,\
tf,polynomial,self,unitStepResponse,poles,s,t,update},

(*emmmmmmmmeme e private methods *)
update[]:=(
polynomial=1/(mass*s”2+damping*s+stiffness);
poles=TransferFunctionPoles[tf];

);

(F-mmmmmmmm e public methods *)

(*setter methods*)
self@setStiffness[v_]:=(stiffness=v;update[];);
self@setDamping[v_]:=(damping=v;updatel];);
self@setMass[v_]:=(mass=v;updatel];);

> Plant Class
(*getter methods*)
self@getMass[]:=mass;
self@getDamping[]:=damping;

e T constructor code *)

t=5t;
stiffness=S$stiffness;
damping=$damping;
mass=Smass;
update[];

| - /\ Instance of a plant object
- o= created in the Initialization

/ S~
’\pIant=pIantCIass[l,l,l,s,t];H ™ section. Constructor call

Figure 4: Using the class inside Manipulate

3.1 Code in Mathematica

Manipulate[
tick;
Plot [plant@getStepResponse[], {t, 0, 20},
FrameLabel -> {{"y[t]", Nomnel}, {"t",
Row[{"Step response of ", plant@getPolynomial[]}]}},
Frame -> True, PlotRange -> All
1,

(*controls and event callbacks+*)
Grid[{
{Text@Style["mass", 11],
Manipulator[
Dynamic[mass, {mass = #; plant@setMass[mass];
tick += del} &], {1, 10, 1}, ImageSize -> Tiny],
Text@Style [Dynamic [mass], 11]
I
{Text@Style["damping", 11],
Manipulator[
Dynamic [damping, {damping = #; plant@setDamping[damping];
tick += del} &], {1, 10, 1}, ImageSize -> Tiny],
Text@Style [Dynamic [damping], 11]
},
{Text@Style["stiffness", 11],
Manipulator[
Dynamic[stiffness, {stiffness = #; plant@setStiffness[stiffness];
tick += del} &J], {1, 10, 1}, ImageSize -> Tinyl],
Text@Style [Dynamic[stiffness], 11]
}
,

{plant, None},

{{mass, 1}, Nome}l},

{{stiffness, 1}, None},
{{damping, 1}, None}l},

{{tick, 0}, Nomel},

{{del, $MachineEpsilon}, None},
TrackedSymbols :> {tick},

SynchronousUpdating -> False,

ContinuousAction -> False,
SynchronousInitialization -> True,
Initialization :>
{
plantClass[$stiffness_, $damping , $mass_, $s_, $t_] :=
Module[{stiffness, damping, mass, tf, polynomial, self,
unitStepResponse, poles, s, t, updatel,
SetAttributes[self, HoldAll];
e

private methods —- == = -- *)
update[] := (
polynomial = 1/(mass*s”2 + damping*s + stiffness);
tf = TransferFunctionModel [polynomial, s];
unitStepResponse =
Chop@First@OutputResponse[tf, UnitStep[t], t];
poles = TransferFunctionPoles[tf];

)3
(*- -—- ——————public methods-—-- - -— - —%)
(*setter methods*)
self@setStiffness[v_] := (stiffness = v; update[];);
self@setDamping[v_] := (damping = v; update[];);
self@setMass[v_] := (mass = v; update[];);
(*getter methods*)
self@getMass[] := mass;
self@getDamping[] := damping;
self@getStiffness[] := stiffness;
self@getTF[] := tf;
self@getPolynomial[] := polynomial;
self@getStepResponse[] := unitStepResponse;
self@getPoles[] := poles;
self@getBode[] := BodePlot[tf];
(*- = = --- constructor code —-—- = = ———%)
s = $s;
t = $t;

stiffness = $stiffness;
damping = $damping;
mass = $mass;

update[]

self
1;

.
I

plant = plantClass[1, 1, 1, s, t];

}

mass

damping
stiffness

vt

12

1.0

0.3

0.6

0.4

0.2

0.0

| 3
| 3
| 5

1
Step response of

1+5+5

Figure 5: Screen shot of the Manipulate

10

4 Conclusion

It is well known that object based programming help to improve the design of software
and managing the complexity of large applications. Mathematica can be used effectively
as object based and combined with functional programming, which leads to better
overall software. I have used this setup for first time in an actual demonstration for the
simulation of control system successfully, and I have found that it helped better organize
my demonstration code and shortened the development time. The demonstration can
be downloaded from https://demonstrations.wolfram.com/Simulation0OfFeedbac]|
kControIlSystemWithControllerAndSecondUrde/ or from fhttps://12000.0rg/my n
ptes/mma demos/PID/index.htm

4.1 References

1. http://mathematica.stackexchange.com/questions/586/how-can-you-givj

—a-module—a-context—and—-have—-its—local-variables—and-modules—be

11

https://demonstrations.wolfram.com/SimulationOfFeedbackControlSystemWithControllerAndSecondOrde/
https://demonstrations.wolfram.com/SimulationOfFeedbackControlSystemWithControllerAndSecondOrde/
https://12000.org/my_notes/mma_demos/PID/index.htm
https://12000.org/my_notes/mma_demos/PID/index.htm
http://mathematica.stackexchange.com/questions/586/how-can-you-give-a-module-a-context-and-have-its-local-variables-and-modules-bel
http://mathematica.stackexchange.com/questions/586/how-can-you-give-a-module-a-context-and-have-its-local-variables-and-modules-bel

	Introduction
	Code implementation of the Class and how to use it
	Create an instance of the class
	Use it to make a step response plot
	Change the plant damping ratio and update the response plot

	Making a Manipulate to use the above Class to simulate plant response to different parameters
	Code in Mathematica

	Conclusion
	References

