
Note on radon and iradon transforms and Matlab’s
iradon on the all-at-once call vs. the one-at-time call

Nasser M. Abbasi

July 17, 2008 Compiled on January 29, 2024 at 2:56am

Contents
1 Radon transform introduction 2

2 Matlab iradon and the all-at-once vs the one-at-time 11

3 References 13

This note was motivated by a strange result found when using Matlab iradon.

In matlab, when using iradon to obtain a backprojection image from a set of projections,
a different result is obtained depending if one calls iradon() passing it the set of
projections all at once vs. if one calls iradon() once for each projection, and then sum
the resulting set of backprojections.

Calling the first method above all-at-once method and the method as the one-at-
time method, then it is found that using the one-at-time method resulted in an image
whose intensity levels is 2N times that of the image resulting from using the all-at-once
method. Here N is the number of projections.

This report is the result of investigation made to determine the reason for this difference.

1

mailto:nma@12000.org

1 Radon transform introduction

Line L

θ

x

y

The equation of the line L can be written in 2 ways. The standard way is

y = mx+ b

Where m is the slope and b is the intercept. It can also be written in terms of the
parameters p and θ as

L(p, θ) = {(x, y) : x cos θ + y sin θ = p}

Any point (x, y) on the line L with specific p and specific θ satisfy x cos θ + y sin θ = p

Assuming there exist a function f(x, y) defined over the region shown above. The
integral of this function over the line L(p, θ) is∫

L

f(x, y) ds

where ds is a differential element of the line

2

Line L

θ
x

fx, y

ds
y

It is simpler to express the above integral in terms of x and y. To do that, a trick is
used with the help of the delta function. The above integral can be written as

∞∫
y=−∞

∞∫
x=−∞

f(x, y) δ(x cos θ + y sin θ − p) dxdy

Hence for a specific p, θ the above will integrate f(x, y) over the line L(p, θ). The above
is the radon transform of f(x, y) over the line L(p, θ). So the radon transform is really
the line integral of a f(x, y)

The result of the above radon transform is one numerical value. It is the line integral
value. We can imagine a projection line into which we accumulate the result of these
line integrals as follows

3

Line L

θ
x

fx, y

y

This height represents the line

integral of f(x,y) on line L

Now suppose we have many parallel lines to L and we perform the line integral of
f(x, y) over each of these lines (since all these lines are parallel to line L, then all of
them will have the same θ, but they will have different p each). This will result in many
line of the projection line as follows

θ
x

fx, y

y

This height represents the line

integral of f(x,y) on line L2

p1

p2

L1L2

This height represents the line

integral of f(x,y) on line L3

L3

This height represents the line

integral of f(x,y) on line L1

Z

So, if we do the above over many parallel lines, we obtain many sample points on
the projection line z, Notice that the projection line z in the above diagram is some
arbitrary line drawn just to collect the result of the line integrals into. It represents a
detector which collects the results of each line integral. If we collect many line integrals
to cover the whole region. Hence for each specific angle θi we obtain a projection vector
gi as shown in the following diagram

4

θ
x

fx, y
y

p1

p2

Z

These values make up a vector

of values. This vector is called

the projection of

F(x,y) at angle theta

g1

g2 gN

g0

g1

g2



gN1

The projection shown above is a discrete function. It is a function of p and θ. Hence we
have g(p, θ). But for the same angle θ, g is a function of p, So some books write gθ(p).

Notice that z is parallel to p, and can be called the axis of the projection.

Once the projection gθ(p) is obtained, then it is converted to the (discrete) Fourier
domain using FFT. The discrete Fourier transform is

Gk =
N−1∑
n=0

gn exp
(
−2πi

N
kn

)
k = 0, 1, · · · , N − 1

Hence we obtain the vector G which is the discrete Fourier transform of the projection
g, This is illustrated in the following diagram. Notice that the numbers Gk are complex
numbers and hence have phase and magnitude. In the implementation of the discrete
Fourier transform, the FFT is used for performance.

5

θ
x

fx, y
y

g1

g2 gN

FFT
g0

g1

g2



gN1

G0

G1

G2



GN1

Real valued

numbers
complex valued

numbers

So, why do we do the above? The reason is to filter the projection data. Filtering
the projection produces better backprojection (sharper) than without filtering (more
blurred). It is easier to apply filtering in the frequency domain than in the spatial
domain (multiplication vs convolution). Now that the FFT is done and G obtained, a
filter is selected. Consider the ram-Lak filter. This filter has a frequency response as
follows1

So, assume the filter frequency spectrum is given by the vector H, (this is a complex
vector, since it is the frequency spectrum of the filter). Hence the filtered backprojection

1reference: http://dukemil.egr.duke.edu/XRAY/CT/Simulation/ct_in.html

6

http://dukemil.egr.duke.edu/XRAY/CT/Simulation/ct_in.html

is given by
G̃ = GH

Where I use the tilde symbol to represent a filtered frequency response.

Now that we filtered the projection, we need to return back to the spatial domain.
Hence we obtain g̃ by inverse discrete Fourier transform of G̃ and this is given by

g̃n = 1
N

N−1∑
k=0

G̃k exp
(
2πi
N

kn

)
n = 0, 1, · · · , N − 1

Now we have obtain the spatial representation g̃ of the projection g after being filtered.
However, this contains both complex and real components (since it is complex valued
as result of the IFFT). Then we need to take its real part

g̃ = real(g̃)

The above is illustrated by the following diagram

θ
x

fx, y
y

g1

g2 gN

FFT

g0

g1

g2



gN1

Real valued

numbers

Filter

spectrum
Projection

spectrum

G0

G1

G2



GN1

H0

H1

H2



HN1



G 0

G 1

G 2



G N1

IFFT

G 0

G 1

G 2



G N1

g 0

g 1

g 2



g N1

Filtered

projection

spectrum

Take the

real part of

this vector

g 0

g 1

g 2



g N1

Filtered

projection in

spatial

domtain

Filtered

projection in spatial

domtain, but with

complex and real

parts

7

The above can also be represented using plots of the spatial and frequency spectrum of
the above vectors. For these plots, I used a projection signal made up from some simple
function of x. The plots shown are the actual FFT and IFFT and the filter ram-lak
used to obtain the filtered backprojection

FFT

Filter (ram-lak)
Projection

spectrum

Filtered

projection

spectrum

IFFT

gN *

=



To better see the

result of the filter,

we can do fftshift

on the left plot to

obtain

To better see the

spectrum of the

projection, use

fftshift

To better see the

spectrum of the

filter, use fftshift

projection

And take

real part

projection

g
G H

G g

θ
x

fx, y
y

g1

g2 gN

Now that the filtered projection is obtained, then backprojection is done. Notice that
the filtering, when we talk about filtered backprojection, is carried on the projection
itself, and not on the backprojection. I am not sure if it is possible to do backprojection
on the projection first, then apply filtering on the resulting backprojection image.

8

The filtered projection is g̃θ(p), where the tilde indicates this is a filtered projection.
Now that we have calculated g̃θ(p), we can obtain the backprojection, which will be
a 2D function. Assume the original function (which we do not know in practice, was
f(x, y), then let the backprojection function be fB(x, y). Hence

fB(x, y) =
π∫

θ=0

g̃θ(p) dθ

But p = x cos θ + y sin θ, hence the above becomes

fB(x, y) =
π∫

θ=0

g̃θ(x cos θ + y sin θ) dθ

What the above is saying, is that to find fB(x, y) at some x, y position, the angle θ is
changed to cover all the angles from zero to 1800, and for each angle in this interval,
the function g̃θ(p) is evaluated at p = x cos θ + y sin θ. The sum of all these gives fB at
that x, y values. We do these for each x, y value in the region to obtain all the values
of fB. Assume there are N projections made. Hence N angles (since each projection
corresponds to one angle). Then the discrete version of the above integral becomes

fB(x, y) =
{

N−1∑
m=0

g̃θm(x cos θm + y sin θm)
}
∆θ

Since there are N angles, then we divide π by N to obtain each specific angle in the
range. Hence

θm = π

N
m

And also we see that ∆θ = π
N

So the sum becomes

(1)fB(x, y) =
π

N

N−1∑
m=0

g̃θm

(
x cos

(π

N
m
)
+ y sin

(π

N
m
))

And the above is the equation used for the backprojection. The following diagram
illustrates the above.

9

θ1 x

fx, y
y

g1p
g2p

θ2

  
N

Notice that in the above, backprojection is carried out in the spatial domain. This is how
the Matlab iradon does it. Other way to do backprojection is to stay in the frequency
domain by using the central slice theorem. This is done as follows: One the Fourier
transform of the projection is found, it is moved to the 2D plane which represents the
2D fourier transform of the image being reconstructed by the backprojection. It goes
into a radial line through the center of the 2D fourier transform at the same angle θ of
the projection. This is done for each projection. The result is a 2D fourier transform of
the image. However, it is filled radially. This diagram from Kak illustrates this:

10

Then filtering is done now in the frequency domain. Next, gridding is carried out to
transform the above to a Cartesian coordinates since IFFT works on these only (by
interpolation). Then IFFT is done to obtain the final backprojection image.

But since the purpose of this note is to talk about Matlab iradon(), then we will use
(1) as the method of backprojection.

2 Matlab iradon and the all-at-once vs the
one-at-time

Now we start the investigation on why when using Matlab to determine backprojection
from a set of projections it gives different results depending if the call is made in
all-at-once vs. one-at-a-time.

Let consider the all-at-once first. From (1) we see that the backprojection image is

fB(x, y) =
π

N

N−1∑
m=0

g̃θm

(
x cos

(π

N
m
)
+ y sin

(π

N
m
))

If we call the sum as img, then the above becomes

fB(x, y) =
π

N
img

Notice however, that matlab iradon.m does the following at the end: (type iradon.m to
see)

(2)fB = π

2N img

I am not sure now why Matlab divides by an extra 2. I think this might be because if
the angles given at from 0 to 3600, then there is a double counting involved (since the
image can be fully constructed from 0 to 1800, and hence it assumes the angles given
have full range of 2π, and so to compensate for doubling the intensity of the image, it
divides by an extra 2 at the end.

So, now that (2) gives the backprojection in the all-at-once method, let consider the
one-at-time method. Supposed again we have N angles, and we call iradon N times.
But each time we call iradon with one angle, we have to pass the same angle twice, and
the same projection twice, and divide the result by 2. From help:� �
Compute the backprojection of a single projection vector. The IRADON
syntax does not allow you to do this directly, because if THETA is a
scalar it is treated as an increment. You can accomplish the task by

11

passing in two copies of the projection vector and then dividing the
result by 2.� �
So, in each call now, N = 2, and so we write

fB1 =
(

π

2× 2img1

)
/2 = π

8 img1

fB2 =
(

π

2× 2img2

)
/2 = π

8 img2

...

fBN
=

(
π

2× 2imgN

)
/2 = π

8 imgN

Now we add all the above and obtain

(3)fB1 + fB2 + · · ·+ fBN
= π

8 (img1 + img2 + · · ·+ imgN)

Now, img1 + img2 + · · ·+ imgN must be twice the img from the call to iradon in the
once-at-time method, since using the same assumption as Matlab, where it assumed 0
to 3600 range and not 0 to 1800, we will double add the intensity. Hence (3) becomes

fB1 + fB2 + · · ·+ fBN
= π

8 (2img)

= π

4 img (4)

Compare (4), which is the one-at-time, with (2), which is the all-at-once, we see that

fB1 + fB2 + · · ·+ fBN
= π

4 img

fB = π

2N img

Therefore, we see that

fB1 + fB2 + · · ·+ fBN

fB
=

π
4 img
π
2N img

= N

2

Hence the one-at-time result is N
2 times the all-at-once. And this is what was found.

Therefore, when using iradon() to obtain a backprojection in the one-at-time method,
we obtain N

2 times the image that would have been obtained if using the all-at-once
method.

12

3 References
1. http://www.comap.com/product/samples/UMM794.pdf

2. Principles of computerized tomographic imaging by Kak and Slaney

3. Matlab radon and iradon help.

13

http://www.comap.com/product/samples/UMM794.pdf

	Radon transform introduction
	Matlab iradon and the all-at-once vs the one-at-time
	References

