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1 Introduction

This is a derivation of the 2D Laplacian finite difference approximation on 2D grid with
Neumann boundary conditions for solving the elliptic PDE. The PDE is

_v2u = f(xay)
0? 0?

The derivation is given for the general case of non-uniform grid (meaning h, is not
equal to hy). At the end it is simplified to uniform grid by setting h, = h,,.

Notation used is based on the following grid where it is assumed that the grid size is
nxn
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Figure 1: grid notation

Starting with centered difference scheme
Uj-1—2Uij+Uijr1 | Uim1j —2Ui 5+ Uina ;)\
- + = fij

02 02

And solving for U; ; gives

1 1 =Uij-1—=Uijr1  —Ui—1; = Ui
2(jg ) o g R
oty Ui+ Vi) = haUini + Uinyg) _ Iy
nzhz ) hZh2 = Jig
2(hi + hz) U — h;(Ui,j—l + Ui,j.g_l) + hi(Ui—l,j + Ui+1,j) _ 5
hZh2 ij % = fi;

z' %y Ty
Hence
h2h?

Ui; = m [hz(Ui,j—l + Uijp1) + B2 Uiy + Ui+1,j)} + Wf” (1A)
Therefore, for node i, j the equation —V?u = f(x,y) becomes
he(Uijr + Uigir) + hi(Uimaj + Uipa) = 2(h3 + 1) Uiy \
_< i ) = fij
—2(h2 + h2) Ui + h2(Us j—1 + Usja) + hi(Uimrj + Usrj) = —R2R2 i 5




The above formula reduces to the standard one when h, = h,

Usj-1+Uijr1+ Uiy + Ui ; + W2 fi
4

Ui,j =
Therefore, the equation —V?u = f(x,y) becomes

—(—4U;; + Uijo1 + Ui + Uiy + Us ) = B fi

1.1 Derivations of formulas for Neumann boundary
conditions

Below is the derivation of the discretization for the case when Neumann boundary
conditions are used.

1.1.1 Left edge

Given a 2D grid, if there exists a Neumann boundary condition on an edge, for example,

on the left edge, then this implies that g—z in the normal direction to the edge is some

function of y.

Assuming that % = g(y) on the left edge is as shown in the following diagram
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Figure 2: Left edge

The value of the unknown u(z,y) is not given on the left boundary, only its derivative
(in the normal direction to the edge, pointing outwards) is given. Therefore it is not



possible to use the standard 5-point Laplacian on the first column j = 1, since that
requires v be known on the left edge.

Therefore, when j = 1, then U;; is not known (if this was a Dirichlet boundary
conditions, then U;; will be known).

Neumann boundary conditions are handled as follows. Taking the case of the left edge,
an imaginary boundary located h, to the left of the actual left edge is added as shown
below
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Figure 3: grid

ou . : . : ou ~, Ui2-Uipo
Then 37 is approximated on the line j =1 by using 32 =~ =5;—=>

the following results

. Therefore for j =1

Ui,2 - Ui,O

oh, =3gi1 (2)

From eq (1A) above, given below again

1 h2h?
J T 9 (h?c + h?,) [ y( g-1 7+ ,J+1) + ha( 15 T +17.7)} + 9 (hg + hg)f’J
When j = 1 the above becomes
Up1= _ [R2(Uip + Ui2) + B2(Uic11 + Uiy11)] + —hihz fi; ()
3,1 — 9 (h% + h?/) y\Yi,0 7,2 z\Vi—1,1 i+1,1 9 (h% + h?/) 2,J

But using Eq. (2) gives
Ui,O = Ui,2 - 2hzgi,1



Substituting the above into Eq. (3) results in

1 h2h?
Ui =~ [W2(Uis — 2hogi1 + Usn) + h2(Ui_11 + U = f (3A
71 2 (h% + hg) |: y( v2 g>1+ 72)+ .’L‘( 171+ +171)j| + 2 (h% + hg) fy.] ( )

An expression for U on the left edge is obtained. This will be added to the set of the
equations to solve for.

Hence, For Neumann boundary conditions, the process starts by looking for the edge
which have this condition specified on it, and for each such edge a set of equations as
the above are added to the current set of equations for the internal points.

Therefore, for node (i,1) the equation —V?u = f becomes
Z(hi + hZ) Uiq — hg(QUm — 2h9i1) — R2(Ui—11 + Uig11) _f
h2h -
2(h2 + hf,) Ui — h§(2Ui,2 — 2h,gi1) — h2(Ui—11 + Uip11) = R2R2 S

Y

The edge points which have Neumann boundary conditions are initialized the same
way as the internal units before the iterative process begins.

Eq. (3A) above reduces to the standard one when h, = h, giving
Uix = i(QUi,z —2hzgin +Ui1g +Uspa1 + hzfi,j)
Therefore, the equation —V?u = f for such a node becomes
4Ui,1 - 2Ui,2 - Ui—l,l - Ui+1,1 = h2fi,j - 2hzgi,1

The term 2h,g;; is moved to the RHS since it is a known quantity and will go into the
force vector since only unknowns are kept in the LHS.

1.1.2 Right edge

Now the case for right edge is considered. Assuming that % = q(y) is given.

U; ena—1—U;,

Ou 51, hence for the

% s approximated on the line j = end by using 2 ~
last column (j = n) this results in

Ui n—1 — UZ n+1
: : = {in 1

From Eq. (1A) above, shown below again

1 h2h?
U= m [hi(Ui,j—l +U; j+1) + hi(Ui—l,j + Ui-{—l,j)} + mfi’j



For j = n it becomes

1 h2h?2
Uin:—h2 Uin— +Uzn +h2 Ui— n+Uz n +# in 2
y 9 (h%+h:l2/) [ y( n—1 y +1) :1:( 1, +1, )} 92 (h%_'_h:lz/)f: ( )
But from Eq. (1)
Uz’,n-I—l = Ui,n—l - 2hmqi,n
Substituting the above into Eq. (2) results in
Uin = ;[hﬁ(w- — 2hyGin) + W2 Uiz + Uir10)] + ﬂf (3)
nwn 9 (h% + hf/) y i,n—1 xQz,n z\Yi—1n i+1,n 9 (h% + hf/) 7,n

Therefore, for node (i,n) the equation —V2u = f becomes

2(hi + hf,) Uin— hz(ZUi,n—l —2hyqip) — W2(Uiz1, + Uis1,n)
hZh

= fi,n
Eq. (3) reduces to the standard one when h, = h,, giving
1 2
Uin = 1 (2Ui,n—1 —2hyGin +Uicin +Uiy1n + h fzn)

Therefore, equation —V2u = f for such a node becomes

4Uz','n, - 2Ui,n—1 - Ui—l,n - Ui+1,n = h2fz',n - Qh%‘,n

1.1.3 Top edge

Assuming g—z = B(x) is given for the top edge. % is approximated on the line ¢ = 1 by

Ou ~, Usz,;—Uo,;

using 5t ~ =5

, resulting in

Us; — Uo
i — - 1

Using Eq. (1A) above, shown below again

1 h2h?
U.,=——[hU, .1+ U, h2(Ui—1; 4+ Uisq.s i —
sJ 2 (h% + h:lzl) |: y( J—1 + aJ+1) + .'13( 1,5 + +L.7)i| + 2 (h% + hg) f17.7
For the i = 1 it becomes
Uy, = 1 [R2(Urj—1 4 Urjsr) + h2(Uo; + Usyj)] + ek, fi;i (2
1,5 — 9 (hi +h§) y\“1,j-1 1,j+1 z\Y 0,5 2,j 9 (h% n hi) 1,5



But from Eq. (1)
UO,j - UQ,]’ - Zhy ,81’]'

Substituting the above into Eq. (2) results in

1 K2k

Uj = =55 |ha(Urj-1 + Ur h2(2Us; — 2hy Brj)] + = f1i (3
Lj 2(h§+h§)[y( 1j-1+ Urjt1) + hg(2Us, y/Bl,J)}+2(h%+h§)fl,j 3)

Therefore, for node (1, j) equation —V?u = f becomes

2(h3 + h3) Uy — ho(Urj1 + U ja) — h3(20s5 — 2hy Brj)
h2h2 =i

2(h”2” + h?zl) Ui = h?/(Uld—l +Uvjn) — h3(2Uz; — 2hy Buj) = h h2f1a

Eq. (3) reduces to the standard one when k = 0 and when h, = h,, giving

Uj1+Uijp +2Us; — 2h B+ h2 fi
4

Ul,J
And equation —V?u = f reduces to

AUy — Upjoy — Upje1 — 2Us; = K2 f1; — 2k By

1.1.4 Bottom edge

Assuming 8—" = a(z) is given on the bottom edge.

Ou Un—1,j—Unt1,5

S is approximated on the line (i = n) by using § a“ R Sy giving
Un— J Un J
o = (1)
y
From Eq. (1A) above, shown below again
1 9 ) hzh2
Uij = 2(R2 + 12) [hyUijo1 + Uiji1) + hy(Uierg + Ui g)] + mfn,a
For i = n it becomes
Unj = ! [R2(Unj—1 + Unjs1) + B2(Un-1j + U, )}+ ey foj (2)
n,J — 2 (hi_'_h:,z/) y\Yn,j—1 n,j+1 n—1,j n+1,j (h2 —+—h2) n,j

But from Eq. (1)
Un+1,j = Un—l,j - Zhy Ay j



Substituting the above into Eq. (2) results in

1

h2h?
_ 2 2 z'y )
U":j - 2 (h:% + h%) [hy(Un,j—l + U’I‘L,j-l—].) + h.’l)(2Un_17j - 2hy a”’j)] + 2 ) f'n‘,J (3)

(h2 +h2

Therefore, for node (n, j) equation —V?u = f becomes

(2 (h_,% + h?/) — hihikz) Un,j — hi(Un,j—l + Un,j_|_1) — hi(2Un—1,j — 2hy Oén,j) .
h2h? = Jni

Eq. (3) reduces to the standard one when k = 0 and when h, = h, giving

Un,j_1 + Un,j+1 + 2Un_1,j —2h Qp j + h2fn,j
4

Unj =
Therefore, equation —V?u = f reduces to
Wi = Unjr = Unjr = 2Up—15 = h* foj — 2h a

The following diagram shows a typical stencil for the edges under Neumann boundary

conditions
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Figure 4: typical stencil for the edges under Neumann boundary conditions



2 (Generating the solution equation for Jacobi
iteration

From Eq. (1A) it was found that

1 h2h?
o . 1o\ h2 i,j— i,j h2 i—1,5 i+1,5 — Y i (1
2 (hi +h§) [ y(U,J 1+ U,J+1) + z(U 1,5 + U+1,J)] + 9 (h_,% + hg)fﬂ ( )

Ui’j =
—V2u = f is the following

h2(Uij1+ Uija) + h2(Uicrg + Uiprg) = 2(h2 +h2) Uiy \
B h2h? = fig

Hence

1 h2h2
2 (R2 + 72) (B (Ui + Ulgan) + Ra (U + Ulg) ] + mﬂ,j
_ hy (Ufjo1 + Ufi) + W (UE; + Ulay) + R fis

2 (h2+h2)

k+1 _
UZ?j -

The residue is
ri; = fij + Viu

_ h2(Uij1+ Uijer) + h2(Uic1; + Uiga ) — 2(h2 + h2) Ui 5
= fij + hihg ( )

Eq. (2) reduces to the following when h, = h, Where

. AU + Ui j1 +Usjp1 +Uim1j + Uiy
rij = fij — 2

3 Generating the solution equation for
Gauss-Seidel

When iteration runs from top to bottom, left to right, the following can be used

Uk — h2 (Ul + UFjpa) +R2(UE; + Uf ) + ke fi
> (42 + )

Some books write the above as

hy (UiiZs + Ulj) + 12 (U + Ulay) + i fig

k+1 __
Vii™ = 2 (h2 + h2)




It leads to the same result in software, as long as iterations is run left to right, top to
down, using the index notation given here.

Another option is to run the iterations bottom to top, right to left.

As long as one is consistent, same result will be obtained. The idea is to use the most
recent updated cell in the matrix all the time.

The residue is
ri; = fij + Viu

_ h2(Uij1+ Uijer) + h2(Uic1; + Uipa) — 2(h2 + h2) Ui 5
= fij + hihg (2)

It is important in the above, to find the residual before updating the cell. In the code,
the following should be used

_ by (U1 + Ulj) + B2 (UL, + Uly) — 2(R3 + 1) U
rij = fij + h2h3
Uk — by (Uijs + Ullyin) + W2 (U, + Ulay) + h2hgfig
v 2 (h2 +13)
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