Test notebook for my Mathematica package
copyright Nasser M. Abbasi
Last updated Jan 10, 2017
This notebook tests each function on nma.m, which is package I maintain that contains some useful functions.
butterd
butterworth digital filter design
test1
test2
butterToBandPass
test1
make a normalized butter low pass analog filter of order 4
convert to band pass
Plot the magnitude spectrums
butterToBandStop
test1
make a normalized butter low pass analog filter of order 4
convert to band stop
Plot the magnitude spectrums
butterToHighPass
test1
make a normalized butter low pass analog filter of order 4
convert to high pass
Plot the magnitude spectrums
butterToLowPass
test1
make a normalized butter low pass analog filter of order 4
convert the cut off frequency to a new cutoff frequency
Plot the magnitude spectrums
centerImageData
convertToLCD
diagonalBlockMatrix
diagonalDominantMatrixQ
displayHurwitz
Hurwitz Matrix | root locations | Real part of roots | ||||||||||||||||||
|
|
fcPulseTrain
get nth fourier series complex coeff
-4 | 0 |
-3 | |
-2 | 0 |
-1 | |
0 | |
1 | |
2 | 0 |
3 | |
4 | 0 |
formatBinary
generateLTVControllabilityMatrix
generateLTVObservabilityMatrix
getButterworthPolynomial
Generate butterworth H(s) given order and cuttoff
test1
test2
test3
test4 find normalized Butterworth
test 5, even
getControllableForm
getMagnitudeOfPulseTrainFourierCoeff
getMaxPadding
getPhaseOfPulseTrainFourierCoeff
getPositiveAndNegativeTerms
getStateGainVector
hurwitz
9 | 6 | 1 | 0 | 0 |
11 | 8 | 3 | 0 | 0 |
0 | 9 | 6 | 1 | 0 |
0 | 11 | 8 | 3 | 0 |
0 | 0 | 9 | 6 | 1 |
kharitonovPoly
leadingDet
linspace
makePulseTrain
matrix2DLexOrdering
matrix2DredBlackPositions
To apply the 2D Laplacian on a matrix using red-black
Try to see how to make this below work (currently I get error, for later....)
numIt
numItse
plotFourierTransform
poissonMatrixOnSquareDirichlet
polarForm
quantizationLevel
snip
str
stripGraphMouseAppearance
toOffsetBinary
toOnesComplement
0.9375 | 0111 |
0.875 | 0111 |
0.8125 | 0110 |
0.75 | 0110 |
0.6875 | 0110 |
0.625 | 0101 |
0.5625 | 0100 |
0.5 | 0100 |
0.4375 | 0100 |
0.375 | 0011 |
0.3125 | 0010 |
0.25 | 0010 |
0.1875 | 0010 |
0.125 | 0001 |
0.0625 | 0000 |
0. | 1111 |
-0.0625 | 1111 |
-0.125 | 1110 |
-0.1875 | 1101 |
-0.25 | 1101 |
-0.3125 | 1101 |
-0.375 | 1100 |
-0.4375 | 1011 |
-0.5 | 1011 |
-0.5625 | 1011 |
-0.625 | 1010 |
-0.6875 | 1001 |
-0.75 | 1001 |
-0.8125 | 1001 |
-0.875 | 1000 |
-0.9375 | 1000 |
-1. | 1000 |
toSignMagnitude
toTwoComplement
Function to obtain Fourier series approximation given fundamental period and complex fourier coefficients 0..N-1
test on a square pulse
Funtion to divide polynomial by powers of variable and keep powers in form
test
Function to convert low pass digital filter to high pass using frequency transformation
test
test2
Function to convert low pass digital filter to bandpass digital filter using frequency transformation
test
Function to convert low pass digital filter to bandstop digital filter by frequency transformation
test
checkForSingularity
point | limit x p(x) | limit x^2 q(x) |
0 | c | 0 |
1 | 1+a+b-c | 0 |
∞ | 1-a-b | a b |
point | limit x p(x) | limit x^2 q(x) |
-1 | 1 | |
1 | 1 | |
∞ | 0 | ∞ |