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1 Introduction
Morse function is used as follows. We have set of nonlinear first order ODE’s. We’d
like to determine if the nonlinear system is stable or not at its critical (or equilibrium)
points. This is done by first finding the critical points and then linearizing the system
around each one of these points, since it is much easier to check if the system is stable
or not when it is linear by finding the eigenvalues of the Jacobian matrix.

But how do we know that behavior of the linear system around the critical points is
the same as the nonlinear system? In other words, if the linearized system is stable at
a critical point, does this mean also the nonlinear is stable? By finding Morse function,
called F (x1, x2, · · ·) below, and then by finding the determinant of its Hessian evaluated
at each critical point, i.e. det (∇2F ), then if the determinant is not zero, then the critical
point is called non-degenerate, which means the nonlinear system behaves the same
as the linear system around the critical point. So if the linear system says the critical
point is stable, we know the nonlinear system is also stable. But if det (∇2F ) = 0 then
the point is called degenerate. In this case, the nonlinear system is not guaranteed to
behave the same was as the linearized system.

Morse function is basically the first integral at the critical point, and it always come
out having a quadratic form (in the state variables of the system). If all terms in the
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quadratic form have positive sign, then the system is stable at the critical point. If one
term in the quadratic form have negative sign, then the system is unstable there. But
this all makes sense only if the point is non-degenerate, so we should always check the
point is non-degenerate before trying to find Morse function.

To find Morse function, we need to first find what is called the first integral, called
F̃ (x1, x2, · · ·) below, of the set of given ODE’s. The first integral F̃ (x1, x2, · · ·) normally
represents the energy of the system. For example, the Hamiltonian is a first integral.
But in general, it is any function F̃ (x1, x2, · · ·) which is constant along each solution
path. To check that a given F̃ (x1, x2, · · ·) is a first integral of the system, we can do
this test

∂F̃

∂x1

ẋ1 +
∂F̃

∂x2

ẋ2 + · · ·+ ∂F̃

∂xn

ẋn = 0

If the above test fail to give zero then F̃ (x1, x2, · · ·) is not a first integral of the set of
ODE’s, and most likely we made mistake in finding it in first place. Also, not all set
of ODE’s have a first integral and it can be hard sometimes to find the first integral
analytically since it involves solving nonlinear set of ODE’s if the system is nonlinear.

2 Examples

2.1 Example 1 (non linear pendulum)
ẍ+ sin x = 0

step 1 convert to state space. Let x1 = x, x2 = ẋ. Taking derivative w.r.t. gives ẋ1 =
x2, ẋ2 = ẍ = − sin x1. Hence (

ẋ1

ẋ2

)
=
(

x2

− sin x1

)
=
(
f1
f2

)

step 2 Find first integral
dx2

dx1
= f2

f1
= − sin x1

x2

Integrating ∫
x2dx2 = −

∫
sin x1dx1

1
2x

2
2 − cosx1 = E

Where E is the constant of integration. Let F̄ (x1, x2) ≡ 1
2x

2
2 − cosx1.
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step 2.1 Verify that the above is indeed first integral by checking that ∂F̃
∂x1

ẋ1 + ∂F̃
∂x2

ẋ2 +
· · ·+ ∂F̃

∂xn
ẋn = 0. Hence

∂F̄ (x1, x2)
∂x1

ẋ1 +
∂F̄ (x1, x2)

∂x2

ẋ2 = sin x1ẋ1 + x2ẋ2

But ẋ2 = ẍ, x1 = x, ẋ1 = x2. Hence the above becomes

∂F̄ (x1, x2)
∂x1

ẋ1 +
∂F̄ (x1, x2)

∂x2

ẋ2 = sin xx2 + x2ẍ

= x2(sin x+ ẍ)

But sin x + ẍ = 0 since this is the ODE given. Therefore ∂F̄ (x1,x2)
∂x1

ẋ1 + ∂F̄ (x1,x2)
∂x2

ẋ2 = 0
as expected.

step 3 Find critical points by solving (
f1
f2

)
=
(
0
0

)
(

x2

− sin x1

)
=
(
0
0

)
Hence x2 = 0 and x1 = {0, π,−π}. Therefore the critical points are (0, 0) , (π, 0) , (−π, 0)

step 4 Find Hessian of F̄ (x1, x2) = 1
2x

2
2 − cosx1 at each critical point and determine if

the determinant of the Hessian at each critical point is non-degenerate.

∇2F̄ (x1, x2) =

 ∂2F
∂x1∂x1

∂2F
∂x1∂x2

∂2F
∂x2∂x1

∂2F
∂x2∂x2


=

 ∂
∂x1

(sin x1) ∂F
∂x1

x2

∂F
∂x2

(sin x1) ∂F
∂x2

x2


=
(
cosx1 0
0 1

)

Hence ∇2F̄ (x1, x2) evaluated at x1 = 0, x2 = 0 is ∇2F̄ (x1, x2) =
(
1 0
0 1

)
. The determi-

nant of this is 1 6= 0. Hence non-degenerate.

∇2F̄ (x1, x2) evaluated at x1 = π, x2 = 0 is ∇2F̄ (x1, x2) =
(
cos π 0
0 1

)
=
(
−1 0
0 1

)
.

The determinant of this is −1 6= 0. Hence non-degenerate.
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∇2F̄ (x1, x2) evaluated at x1 = −π, x2 = 0 is∇2F̄ (x1, x2) =
(
cos (−π) 0

0 1

)
=
(
−1 0
0 1

)
.

The determinant of this is −1 6= 0. Hence non-degenerate.

Since det
(
∇2F̄ (x1, x2)

)
6= 0 at each critical point, then Morse function exist.

step 5 Find Morse function F (x1, x2) associated with F̄ (x1, x2) at each critical point.

For (0, 0): Taylor expansion of F (x1, x2) around a = (0, 0) gives

F (x1, x2) = F̄ (a) + (x− a)∇F (a) + 1
2(x− a)∇2F (a) (x− a)T

But ∇F (a) = 0 since a is critical point. The above becomes

F (x1, x2) = F̄ (a) + 1
2(x− a)∇2F (a) (x− a)T

= F̄ (x1, x2)x1=0
x2=0

+ 1
2
(
x1 x2

)
∇2F̄ (x1, x2)

x1=0
x2=0

(
x1

x2

)
=
(
1
2x

2
2 − cosx1

)
x1=0
x2=0

+ 1
2
(
x1 x2

)(cosx1 0
0 1

)
x1=0
x2=0

(
x1

x2

)

= −1 + 1
2
(
x1 x2

)(1 0
0 1

)(
x1

x2

)
= 1 + 1

2
(
x1 x2

)(x1

x2

)
= 1 + 1

2
(
x2
1 + x2

2
)

Since F (x1, x2) is constant, say E, then the above can be written as

F (x1, x2) = x2
1 + x2

2

= E

Where 1 and 1
2 are combined into the constant E. Since there is no negative term in

the quadratic form above, then the index of the critical point is 0 which means this is
stable critical point.

For (π, 0): Taylor expansion of F (x1, x2) around a = (π, 0) gives

F (x1, x2) = F̄ (a) + (x− a)∇F (a) + 1
2(x− a)∇2F (a) (x− a)T
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But ∇F (a) = 0 since a is critical point. The above becomes

F (x1, x2) = F̄ (x1, x2)x1=π
x2=0

+ 1
2
(
x1 − π x2

)
∇2F̄ (x1, x2)x1=π

x2=0

(
x1 − π

x2

)
=
(
1
2x

2
2 − cosx1

)
x1=π
x2=0

+ 1
2
(
x1 − π x2

)(cosx1 0
0 1

)
x1=π
x2=0

(
x1 − π

x2

)

= 1 + 1
2
(
x1 − π x2

)(−1 0
0 1

)(
x1 − π

x2

)
= 1 + 1

2
(
−x1 + π x2

)(x1 − π

x2

)
= 1 + 1

2
(
(−x1 + π) (x1 − π) + x2

2
)

= 1 + 1
2
(
−(x1 − π)2 + x2

2
)

Since F (x1, x2) is constant, say E, then the above can be written as

F (x1, x2) = −(x1 − π)2 + x2
2

= E

Since there is a negative term in the quadratic form above, then the index of this critical
point is −1 which means this is unstable critical point. (index must be zero for stable
critical point)

For (−π, 0): Taylor expansion of F (x1, x2) around a = (−π, 0) gives

F (x1, x2) = F̄ (a) + (x− a)∇F (a) + 1
2(x− a)∇2F (a) (x− a)T

But ∇F (a) = 0 since a is critical point. The above becomes

F (x1, x2) = F̄ (x1, x2)x1=−π
x2=0

+ 1
2
(
x1 + π x2

)
∇2F̄ (x1, x2)x1=−π

x2=0

(
x1 + π

x2

)
=
(
1
2x

2
2 − cosx1

)
x1=−π
x2=0

+ 1
2
(
x1 + π x2

)(cosx1 0
0 1

)
x1=−π
x2=0

(
x1 + π

x2

)

= 1 + 1
2
(
x1 + π x2

)(−1 0
0 1

)(
x1 + π

x2

)
= 1 + 1

2

(
−(x1 + π) x2

)(x1 + π

x2

)
= 1 + 1

2
(
−(x1 + π)2 + x2

2
)
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Since F (x1, x2) is constant, say E, then the above can be written as

F (x1, x2) = −(x1 + π)2 + x2
2

= E

Since there is a negative term in the quadratic form above, then the index of this critical
point is −1 which means this is unstable critical point. (index must be zero for stable
critical point)

2.2 Example 2

ẋ = y

ẏ = x− 2x3

step 1 (
ẋ1

ẋ2

)
=
(

x2

x1 − 2x3
1

)
=
(
f1
f2

)
step 2 Find first integral

dx2

dx1
= f2

f1
= x1 − 2x3

1
x2

Integrating ∫
x2dx2 =

∫
x1 − 2x3

1dx1

1
2x

2
2 =

1
2x

2
1 −

2
4x

4
1 + E

1
2x

2
2 −

1
2x

2
1 +

1
2x

4
1 = E

Where E is the constant of integration. Let F̄ (x1, x2) ≡ 1
2x

2
2 − 1

2x
2
1 + 1

2x
4
1. The above is

also the equation of orbit.
step 2.1 Verify that the above is indeed first integral by checking that ∂F̃

∂x1
ẋ1 + ∂F̃

∂x2
ẋ2 +

· · ·+ ∂F̃
∂xn

ẋn = 0. Hence

∂F̄ (x1, x2)
∂x1

ẋ1 +
∂F̄ (x1, x2)

∂x2

ẋ2 =
(
−x1 + 2x3

1
)
ẋ1 + x2ẋ2

But x1 = x, ẋ1 = y, x2 = y, ẋ2 = ẏ Hence the above becomes

∂F̄ (x1, x2)
∂x1

ẋ1 +
∂F̄ (x1, x2)

∂x2

ẋ2 =
(
−x1 + 2x3

1
)
y + yẏ

= y
((
−x1 + 2x3

1
)
+ ẏ
)
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But ẏ = x− 2x3 as given. The above becomes

∂F̄ (x1, x2)
∂x1

ẋ1 +
∂F̄ (x1, x2)

∂x2

ẋ2 = y
(
−x1 + 2x3

1 + x− 2x3)
= 0

as expected for first integral.

step 3 Find critical points by solving (
f1
f2

)
=
(
0
0

)
(

x2

x1 − 2x3
1

)
=
(
0
0

)

Therefore the critical points are (x1, x2) =
{
(0, 0) ,

(
1√
2 , 0
)
,
(
− 1√

2 , 0
)}

step 4 Find Hessian of F̄ (x1, x2) = 1
2x

2
2− 1

2x
2
1+ 1

2x
4
1 at each critical point and determine

if the determinant of the Hessian at each critical point is non-degenerate.

∇2F̄ (x1, x2) =

 ∂2F
∂x1∂x1

∂2F
∂x1∂x2

∂2F
∂x2∂x1

∂2F
∂x2∂x2


=

 ∂
∂x1

(−x1 + 2x3
1) ∂F

∂x1
x2

∂F
∂x2

(−x1 + 2x3
1) ∂F

∂x2
x2


=
(
−1 + 6x2

1 0
0 1

)

Hence ∇2F̄ (x1, x2) evaluated at x1 = 0, x2 = 0 is ∇2F̄ (x1, x2) =
(
−1 0
0 1

)
. The

determinant of this is −1 6= 0. Hence non-degenerate.

∇2F̄ (x1, x2) evaluated at x1 = 1√
2 , x2 = 0 is ∇2F̄ (x1, x2) =

(
−1 + 3 0

0 1

)
=
(
2 0
0 1

)
.

The determinant of this is 2 6= 0. Hence non-degenerate.

∇2F̄ (x1, x2) evaluated at x1 = − 1√
2 , x2 = 0 is ∇2F̄ (x1, x2) =

(
−1 + 3 0

0 1

)
=
(
2 0
0 1

)
.

The determinant of this is 2 6= 0. Hence non-degenerate.

Since det
(
∇2F̄ (x1, x2)

)
6= 0 at each critical point, then Morse function exist.

step 5 Find Morse function F (x1, x2) associated with F̄ (x1, x2) at each critical point.
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For (0, 0): Taylor expansion of F (x1, x2) around a = (0, 0) gives

F (x1, x2) = F̄ (a) + (x− a)∇F (a) + 1
2(x− a)∇2F (a) (x− a)T

But ∇F (a) = 0 since a is critical point. The above becomes

F (x1, x2) = F̄ (x1, x2)x1=0
x2=0

+ 1
2
(
x1 x2

)
∇2F̄ (x1, x2)

x1=0
x2=0

(
x1

x2

)

=
(
1
2x

2
2 −

1
2x

2
1 +

1
2x

4
1

)
x1=0
x2=0

+ 1
2
(
x1 x2

)(−1 + 6x2
1 0

0 1

)
x1=0
x2=0

(
x1

x2

)

= 0 + 1
2
(
x1 x2

)(−1 0
0 1

)(
x1

x2

)
= 1

2
(
−x1 x2

)(x1

x2

)
= 1

2
(
−x2

1 + x2
2
)

Since F (x1, x2) is constant, say E, then the above can be written as

F (x1, x2) = −x2
1 + x2

2

= E

Since there is a negative term in the quadratic form above, then the index of this critical
point is −1 which means this is unstable critical point. It is a saddle. (index must be
zero for stable critical point)

For
(
0, 1√

2

)
: Taylor expansion of F (x1, x2) around a =

(
0, 1√

2

)
gives

F (x1, x2) = F̄ (a) + (x− a)∇F (a) + 1
2(x− a)∇2F (a) (x− a)T
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But ∇F (a) = 0 since a is critical point. The above becomes

F (x1, x2) = F̄ (x1, x2) x1=0
x2= 1√

2

+ 1
2

(
x1 x2 − 1√

2

)
∇2F̄ (x1, x2)

x1=0
x2= 1√

2

(
x1

x2 − 1√
2

)

=
(
1
2x

2
2 −

1
2x

2
1 +

1
2x

4
1

)
x1=0
x2= 1√

2

+ 1
2

(
x1 x2 − 1√

2

)(−1 + 6x2
1 0

0 1

)
x1=0
x2= 1√

2

(
x1

x2 − 1√
2

)

= 1
4 + 1

2

(
x1 x2 − 1√

2

)(2 0
0 1

)(
x1

x2 − 1√
2

)

= 1
4 + 1

2

(
2x1 x2 − 1√

2

)( x1

x2 − 1√
2

)

= 1
4 + 1

2

(
2x2

1 +
(
x2 −

1√
2

)2
)

Since F (x1, x2) is constant, say E, then the above can be written as

F (x1, x2) = 2x2
1 +

(
x2 −

1√
2

)2

= E

Since there is no negative term in the quadratic form above, then the index of the
critical point is 0 which means this is stable critical point. (Center node)

For
(
0, −1√

2

)
: Taylor expansion of F (x1, x2) around a =

(
0, −1√

2

)
gives

F (x1, x2) = F̄ (a) + (x− a)∇F (a) + 1
2(x− a)∇2F (a) (x− a)T
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But ∇F (a) = 0 since a is critical point. The above becomes

F (x1, x2) = F̄ (x1, x2) x1=0
x2=−1√

2

+ 1
2

(
x1 x2 + 1√

2

)
∇2F̄ (x1, x2)

x1=0
x2=−1√

2

(
x1

x2 + 1√
2

)

=
(
1
2x

2
2 −

1
2x

2
1 +

1
2x

4
1

)
x1=0
x2=−1√

2

+ 1
2

(
x1 x2 + 1√

2

)(−1 + 6x2
1 0

0 1

)
x1=0
x2=−1√

2

(
x1

x2 + 1√
2

)

= 1
4 + 1

2

(
x1 x2 + 1√

2

)(2 0
0 1

)(
x1

x2 + 1√
2

)

= 1
4 + 1

2

(
2x1 x2 + 1√

2

)( x1

x2 + 1√
2

)

= 1
4 + 1

2

(
2x2

1 +
(
x2 +

1√
2

)2
)

Since F (x1, x2) is constant, say E, then the above can be written as

F (x1, x2) = 2x2
1 +

(
x2 +

1√
2

)2

= E

Since there is no negative term in the quadratic form above, then the index of the
critical point is 0 which means this is stable critical point. (center node)

2.3 Example 3

ẋ1 = x1 − x1x2 − x3
2 + x3

(
x2
1 + x2

2 − 1− x1 + x1x2 + x3
2
)

(A)
ẋ2 = x1 − x3(x1 − x2 + 2x1x2)
ẋ3 = (x3 − 1)

(
x3 + 2x3x

2
2 + x3

3
)

step 1ẋ1

ẋ2

ẋ3

 =

x1 − x1x2 − x3
2 + x3(x2

1 + x2
2 − 1− x1 + x1x2 + x3

2)
x1 − x3(x1 − x2 + 2x1x2)
(x3 − 1) (x3 + 2x3x

2
2 + x3

3)

 =

f1
f2
f3


step 2 Find first integral

TO DO.
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